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Abstract

We report the development and operation of the Harvard-Smithsonian

129Xe/3He dual noble gas maser. The dual noble gas maser (DNGM) is the

first device to sustain simultaneous active maser oscillations on distinct tran-

sitions in two intermingled atomic species, and it allows sensitive differential

measurement of the 129Xe and 3He nuclear spin-1/2 Zeeman transition fre-

quencies [1–3]. We used the DNGM to test Lorentz and CPT symmetry

with unprecedented precision. Specifically, a search for sidereal variations

in the frequency difference between the DNGM’s co-located 129Xe and 3He

maser ensembles has placed an upper bound of 47 nHz on Lorentz and CPT

violating parameters in a standard-model extension that allows violation of

these symmetries. Our measurement sets the most stringent limit to date

on leading-order Lorentz and CPT violations of the neutron: ∼ 10−31 GeV.

We also report in this thesis progress in a search for a permanent electric

dipole moment (EDM) of the 129Xe atom. Our preliminary result of dXe < 1

x 10−26 e-c.m. sets a direct bound on time-reversal (T ) symmetry violating

interactions in the 129Xe nucleus.
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Chapter 1

Introduction

In the field of precision measurements, atomic frequency standards play

a privileged role. This is due to several characteristics such as: accuracy,

reproducibility, [and] stability with time.

Jacques Vanier, 2000

This thesis reports the development and operation of the Harvard-Smithsonian

129Xe/3He dual noble gas maser. The dual noble gas maser (DNGM) is the first

device to sustain simultaneous active maser oscillations on distinct transitions in

two intermingled atomic species, and it allows sensitive differential measurement

of the 129Xe and 3He nuclear spin-1/2 Zeeman transition frequencies [1–3]. We

used the DNGM to test Lorentz and CPT symmetry with unprecedented precision.

Specifically, a search for sidereal variations in the frequency difference between the

DNGM’s co-located 129Xe and 3He maser ensembles has placed an upper bound of

47 nHz on Lorentz and CPT violating parameters in a standard-model extension

that allows violation of these symmetries. Our measurement sets the most stringent

limit to date on leading-order Lorentz and CPT violations of the neutron: ∼ 10−31

GeV. We also report in this thesis progress in a search for a permanent electric dipole

1



moment (EDM) of the 129Xe atom. Our preliminary result of dXe < 1 x 10−26 e-

c.m. sets a direct bound on time-reversal (T ) symmetry violating interactions in

the 129Xe nucleus.

Introduction to Operational Principles of the DNGM

Precision measurement of the Zeeman splitting in a two-state system is important

for magnetometry [4, 5], as well as for searches for physics beyond the standard

model [6–17]. The most precise tests of new physics are often realized in differen-

tial experiments which compare the transition frequencies of two co-located clocks,

typically radiating on their Zeeman or hyperfine transitions. The advantage of differ-

ential measurements is that they render the experiment insensitive to common-mode

systematic effects, such as uniform magnetic field fluctuations [18].

The DNGM was first proposed by Walsworth in 1991, and has been developed at

the Harvard-Smithsonian Center for Astrophysics in collaboration with researchers

at the University of Michigan [1–3]. It is the first device to sustain simultaneous

active maser oscillations on distinct transitions in intermingled atomic species, and

it allows sensitive differential measurement of the 129Xe and 3He nuclear spin-1/2

Zeeman transition frequencies: ∼ 4.8 kHz for 3He and ∼ 1.7 kHz for 129Xe in a static

magnetic field of ∼ 1.5 gauss. The maser population inversions for the 129Xe and

3He ensembles are created by spin exchange collisions between the noble gas atoms

and optically-pumped Rb vapor [18,19]. The DNGM has two chambers, one acting

as the spin exchange “pump bulb” and the other serving as the “maser bulb.” This

two chamber configuration permits the combination of physical conditions necessary

for a high flux of spin-polarized noble gas atoms into the maser bulb, while also

maintaining 129Xe and 3He maser oscillations with good frequency stability.

A schematic diagram of the dual noble gas maser is given in Figure 1.1, with
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Figure 1.1: Schematic depiction of the Harvard-Smithsonian dual noble gas maser
(DNGM).
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typical system parameters listed in Tables 1.1, 1.2, and 1.3. A mixture of 129Xe, 3He,

and N2 gases is contained in a two-chambered cell (Figure 3.3) blown from Corning

7056 borosilicate glass. The inner surface of the cell is treated with a silane coating

to minimize spin relaxation of the 129Xe atoms at the walls [20]. A cell consists of

a roughly spherical pump bulb (spin-exchange optical pumping region) joined by a

straight transfer tube to a roughly cylindrical maser bulb (interaction region). In

cells capable of searches for a 129Xe electric dipole moment (EDM), molybdenum

discs epoxied to the ends of the maser bulb seal the cell and serve as high voltage

electrodes used in the EDM measurement described in Chapter 6 of this thesis.

The pump bulb also contains a small amount of Rb metal, and is maintained at a

temperature of approximately 115 C̊. Thus there is a moderate number density

of Rb vapor (∼ 1013 cm−3) present in the pump bulb. In the maser bulb the Rb

vapor density is low (∼ 1010 cm−3) because of the relatively cool temperature (∼

41 C̊) of this chamber. The low Rb density in the maser bulb prevents unwanted

Rb-induced spin exchange relaxation and frequency shifts from adversely affecting

the masing 3He and 129Xe ensembles.

The DNGM is housed inside three concentric cylindrical magnetic shields which

screen the experiment from inhomogeneous DC magnetic fields and ambient RF

noise. A homogeneous and stable field of ∼ 1.5 gauss is used to split the noble gas

Zeeman sublevels. This field is created with a single-layer solenoid located inside

the magnetic shields together with field-gradient correction coils mounted around

the maser bulb. The resultant field homogeneity (∇B ∼ 20 µG/cm) allows spin

coherence relaxation times (T2) of the 129Xe and 3He ensembles of ∼ 330 and ∼ 170

seconds, respectively, in the DNGM.

Light from a high power laser diode array is circularly polarized and focused onto

the pump bulb. Such light is resonant with the Rb D1 transition (λ = 795 nm) and
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induces an electron spin polarization in the Rb vapor via a standard optical pumping

process [21]. The N2 gas in the pump bulb promotes collisional de-excitation of

the optically pumped Rb atoms. This prevents radiation trapping, which would

otherwise limit the efficiency of the optical pumping process [21]. Spin exchange

collisions between the 129Xe and 3He atoms and optically-pumped Rb vapor [18,19]

polarize the noble gas nuclei and provide the population inversion necessary for

continuous (i.e., active) maser oscillation.

The polarized 129Xe and 3He atoms diffuse out of the pump bulb and down the

transfer tube into the maser bulb. The maser bulb is located at the center of a

single pickup coil tuned simultaneously to the 129Xe and 3He Larmor precession

frequencies. This double-resonant circuit provides positive feedback to the noble

gas Zeeman transitions, and under proper conditions the 129Xe and 3He ensembles

each perform continuous and independent maser oscillations. After making radiative

transitions in the maser bulb, the noble gas atoms diffuse back to the pump bulb

where they are re-polarized by spin-exchange. Thus active maser oscillation of both

species can continue indefinitely.

It should be emphasized that operation of the two species maser requires a two

chamber design to separate the spin-exchange pump and maser operations. The

129Xe-Rb spin-exchange rate is two orders of magnitude greater than that of 3He-Rb.

Thus in a single bulb, a Rb density adequate to maintain a 3He population inversion

that will sustain 3He maser oscillation will also induce excessive de-coherence of

the 129Xe ensemble and prevent 129Xe maser oscillation. Moreover, the differential

frequency resolution of a single-chamber DNGM would be severely limited by noble

gas Zeeman frequency shifts induced by the magnetization of, and the collisional

contact hyperfine interaction with, optically pumped Rb.

The 129Xe and 3He maser signals from the pickup coil (typically ∼ 3 to 5 µV)
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are amplified and sent to a pair of digital lockin detectors. All reference frequen-

cies used in the experiment are derived from the same hydrogen maser clock to

eliminate concerns about unstable phase and frequency shifts among the reference

oscillators. Active feedback to the solenoid’s magnetic field locks the phase of the

129Xe (or 3He) maser to that of a 1.7 kHz (or 4.8 kHz) reference signal, thereby

isolating the experiment from common-mode systematic effects (such as stray mag-

netic field fluctuations) which would otherwise shift the frequencies of the noble

gas masers in proportion to the ratio of their magnetic moments. The short and

long-term frequency stability [3] of the phase-locked maser is typically several or-

ders of magnitude better than that of the free-running maser; hence the Zeeman

frequency of the phase-locked maser is treated as a constant in all DNGM data

analysis. Because magnetic field variations in the maser bulb are only compensated

for at the level of the phase-locked maser’s intrinsic frequency stability, it is always

better to lock the higher SNR maser. Under our typical operating conditions, this

has always been the 129Xe maser. In principle, however, the same physics can be

tested with either maser phase-locked. Any frequency shift mechanism acting on the

phase-locked maser would change the magnetic field required to maintain a constant

phase-locked maser frequency; this alteration of the magnetic field would cause a

frequency shift in the free-running maser. Any frequency shift mechanisms acting

on the free-running maser would, of course, be directly observable.

Continuous oscillation in the DNGM permits long coherent measurements of

the noble gas Zeeman frequencies (on timescales ∼ 5,000 seconds). In a regime

where phase noise processes dominate frequency noise processes [2, 22], a coherent

frequency measurement can achieve greater precision than the incoherent average

of a set of shorter measurements made during an equivalent period of time [1], as

illustrated in Figure 1.2.
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Figure 1.2: A figure emphasizing that a coherent frequency measurement can achieve
greater precision than the incoherent average of a set of shorter measurements made
during an equivalent period of time [1].

Chapters 5 and 6 of this thesis describe two tests of fundamental physical sym-

metries that have been and will be performed using the DNGM. In Chapter 5, a

search for sidereal variations in the relative frequency of the co-located 129Xe and

3He masers limits the size of Lorentz and CPT symmetry violating interactions

involving the neutron. Chapter 6 reports on progress toward a a search for a perma-

nent electric dipole moment (EDM) of the 129Xe atom, as a probe of time reversal

(T ) symmetry violation in elementary particle interactions. We now provide a brief

overview of each of these experiments.

A Test of Lorentz and CPT Symmetry Using the DNGM

Lorentz symmetry is a fundamental feature of modern descriptions of nature, in-

cluding both the standard model of particle physics and general relativity. However,

these realistic theories are believed to be the low-energy limit of a single fundamental

theory at the Planck scale. Even if the underlying theory is Lorentz invariant, spon-

taneous symmetry breaking might result in small apparent violations of Lorentz

invariance at an observable level [6]. Experimental investigations of the validity

of Lorentz symmetry therefore provide valuable tests of the framework of modern
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theoretical physics.

Kostelecký and co-workers have recently developed a standard model extension

that treats the effects of spontaneous Lorentz symmetry breaking in the context

of a low-energy effective theory, in which terms can be induced which appear to

violate Lorentz invariance explicitly [6, 23–30]. Lorentz symmetry remains a prop-

erty of the underlying fundamental theory, because the breaking is spontaneous.

This leads to the effective low energy theory possessing many desirable properties,

such as microcausality, energy positivity, and momentum and energy conservation.

Also, standard quantization methods are retained, so that Dirác and Schrödinger

equations emerge at the appropriate limits.

We used the 129Xe/3He maser to search for a Lorentz-violation signature by

monitoring the relative phases and Larmor frequencies of the co-located 3He and

129Xe masers as the laboratory reference frame rotated with respect to the distant

stars. The DNGM was operated with the 129Xe maser phase-locked, the 3He maser

free-running, and the quantization axis of the experiment directed east-west in the

Earth’s reference frame. To leading order, the standard-model extension [6] of Kost-

elecký et al. predicts that the Lorentz-violating frequency shifts for the 3He and 129Xe

maser are the same size and sign. We thus searched for a sidereal variation of the

3He maser frequency of the form

δνHe = A cos(Ωst) +B sin(Ωst), (1.1)

where Ωs is the angular frequency of the sidereal day (Tsidereal ≈ 23.93 hours),

and the parameters (A,B) represent the net effect of Lorentz- and CPT-violating

couplings on the 3He maser frequency with the 129Xe maser phase-locked. With 90

days of data taking, we found no such sidereal variation of the 3He maser frequency
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at the one-standard-deviation level of 47 nHz.

In the context of the standard model extension, the parameters (A,B) are pre-

dominantly associated with neutron couplings. Thus the experiment described in

Chapter 5 sets the most stringent limit to date on leading order Lorentz and CPT

violation of the neutron: about 10−31 GeV, or more than six times better than the

best previous measurements [6].

A Test of T Symmetry Using the DNGM

Time reversal was long assumed to be a fundamental, perfect symmetry of elemen-

tary particle interactions. In 1964, however, a single, indirect1 example of a violation

of T -symmetry was discovered in the decay of neutral K-mesons [31]. During the

past 30 years much theoretical effort has been devoted to understanding T -symmetry

violation in nature, and many experiments have been performed to search for fail-

ures of T -symmetry beyond that originally observed in the K-meson system. The

theoretical work has posited various possible sources of T -asymmetry beyond the

standard model, but no new experimental examples have been found, thus pre-

venting confirmation of a correct theory and leaving T -symmetry violation as an

important problem in elementary particle physics. In addition, the inferred mat-

ter/antimatter asymmetry in the universe may be a consequence of T -asymmetry

in the laws of elementary particle interactions [32]. Thus an understanding of T -

symmetry violation is important both for high energy physics and cosmology.

Composite systems like atoms and molecules may also be probed for evidence

of T -symmetry violation due both to intrinsic T -violation of their sub-atomic con-

stituents as well as T -odd interactions among these constituents [17,33]. We used the

1This experiment measured CP violation, which implies T violation if CPT holds. Recent work
on the CPLEAR experiment at CERN has made direct observation of T -symmetry violation in
same system.
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DNGM to test T -symmetry violation by searching for a possible permanent electric

dipole moment (EDM) of the 129Xe atom. For any atom, molecule, or elementary

particle to have an EDM, both T and P (parity) symmetry must be violated. In

the absence of degeneracies, Wigner-Eckart [34] selection rules require an EDM d

to be parallel or antiparallel to the system’s angular momentum vector J. But d

results from an effective separation of charge and is thus a polar vector (T -even,

P -odd) while J is an axial vector (T -odd, P -even). Thus the relative orientations of

d and J change under either time reversal or spatial inversion. Calculations indicate

that atomic EDM magnitudes increase rapidly with atomic number Z [35]. Thus

precision experimental EDM searches using high-Z atoms such as 129Xe serve as

good testbeds for physics beyond the standard model.

In Chapter 6 we provide motivation for, and progress on, a search for a permanent

electric dipole moment (EDM) of the 129Xe atom. Our preliminary EDM search

consisted of sequential applications of an electric field across the interaction region.

The electric field was oriented parallel to the experiment’s static magnetic field,

and its direction was reversed regularly. Coupling to a 129Xe EDM would produce a

maser frequency shift linear in the magnitudes and signs of both the 129Xe EDM and

the electric field. The static magnetic field was stabilized by phase-locking the 129Xe

maser to a stable frequency standard. The free-running 3He maser was monitored

for electric-field-proportional frequency shifts. A 129Xe EDM coupling would change

the magnetic field required to maintain a constant 129Xe maser frequency: this

EDM-induced alteration of the magnetic field would cause a frequency shift in the

free-running 3He maser. As will be detailed in Chapter 6, no effect was found at the

level of |dxe| ≤ 1× 10−26 e-c.m. (1-σ statistical level).
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Tabulation of Typical DNGM Parameters

We conclude this introduction with three tables containing typical values for DNGM

operating parameters which are important throughout this thesis. The last column

of each table indicates the section of the thesis where the reader should look for

further discussion of the parameter of interest.2 Note that much of the information

in the following tables is cell-specific. We have taken parameters from cell SE3,

whose gas fill-pressures and geometry are provided in Tables 3.1 and 3.2.

Parameter Description Typical Value Section

Tp pump bulb temperature 115 C̊ 3.3
Tm maser bulb temperature 41 C̊ 3.3
Pxe

129Xe fill pressure 120 Torr 3.1
Phe

3He fill pressure 1100 Torr 3.1
Pnit N2 fill pressure 80 Torr 3.1
[Rb]p pump bulb Rb density 2.0× 1013cm−3 3.4
[Rb]m maser bulb Rb number density 8.2× 1010cm−3 2.6
Prb pump bulb Rb polarization 0.5 2.2.1
Bz static magnetic field 1.5 G 3.5
η resonator fill factor .02 A

Table 1.1: Typical dual noble gas maser operating parameters.

2Note that there is a list of tables before the introductory chapter. Also note that footnotes and
figure captions often provide contact information for vendors, and refer to the DNGM logbooks
in which extensive details of relevant experimental procedures may be found. For instance, the
citation “DNGM-13, pages 13-23” indicates that more information, including cross-references to
computer data files, can be found in the DNGM logbook number 13, pages 13-23.
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Parameter Description 129Xe value 3He value Section

Qeff effective dual resonator Q 9.9 9.3 3.7.3, A
[ng] noble gas density 4.0× 1018cm−3 4.2× 1019cm−3 3.1
T1,meas polarization relaxation time 1000 sec 8 hr 2.4, 4.4
Dng noble gas diffusion constant .17 cm2s−1 .84cm2s−1 3.5.5
Gm polarization transfer rate 4× 10−4s−1 2.5× 10−3s−1 2.4, [36]
T2 transverse coherence time 333 sec 170 sec 2.3
τrd radiation damping time 76 sec 16 sec 4.3
νng operating frequency 1710 Hz 4710 Hz –

Table 1.2: Typical dual noble gas maser operating parameters in the maser bulb.

Parameter Description 129Xe value 3He value Section

[ng] noble gas density 3.2× 1018cm−3 3.3× 1019cm−3 3.1
γ−1
se spin exchange time .08 hr 173 hr 2.2.2

T1,meas polarization relaxation time 500 sec 8 hr 2.4, [36]
Dng noble gas diffusion constant .24 cm2s−1 1.2 cm2s−1 3.5.5
Gp polarization transfer rate 4× 10−4s−1 2.5× 10−3s−1 2.4, [36]

Table 1.3: Typical dual noble gas maser operating parameters in the pump bulb.
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Chapter 2

Theoretical Principles

This chapter introduces the main theoretical principles of the 129Xe/3He dual noble

gas maser. Longitudinal and transverse polarization creation and relaxation mech-

anisms are described, and a modified Bloch theory of the DNGM is presented. Also

introduced are the methods by which maser phase and frequency data are analyzed

in order to assess the performance of the DNGM as a precision oscillator. The

chapter concludes with a description of frequency shift mechanisms in the DNGM.

2.1 Preliminaries

The interaction Hamiltonian for a noble gas atom with nuclear magnetic moment

mng in a magnetic field B(r, t) is

Ĥ = −mng ·B(r, t). (2.1)
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The value of mng is given by

mng = gng

[
eh̄

2mpc

]
I, (2.2)

where I is the nuclear spin (Iz = ±1/2), and the quantity in braces is the nuclear

magneton µN , which has value 0.5050824× 10−27 J/T [37]. The value of the Landé

g-factor is -2.13 for 3He and -0.770 for 129Xe; and the gyromagnetic ratio (hγng ≡

gngµN) has values -3243.4 Hz/G and -1178.0 Hz/G for 3He and 129Xe, respectively.

The ratio γhe/γxe appears frequently in this thesis, and has the approximate value

2.7541.

The expectation value of mng evolves according to the von Neumann equation

ih̄
∂

∂t
〈mng〉 =

〈
[mng, Ĥ]

〉
. (2.3)

After expansion of the commutator and re-arrangement of terms, Equation 2.3 can

be written as

ih̄
∂

∂t
〈mi〉 =

〈
[mng, Ĥ]i

〉
= γih

∑
j,k

〈mj〉Bkεijk. (2.4)

where εijk is the completely antisymmetric Levi-Civita density. In terms of the

vector cross-product, this relation takes the more familiar form

∂

∂t
〈mng〉 = γ〈mng〉 ×B(r, t). (2.5)

It is thus permissible to treat the quantum dynamics of the 129Xe and 3He spins

classically as long as mng is understood to be a quantum mechanical expectation

value.1 Consistent with conventions found in most of the maser literature [1–3], we

1This result holds true for spin systems of any dimensionality, as long as the energy coupling
to the magnetic field is dipolar. It is thus possible to create masers from noble gas species with
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will equate the noble gas magnetic moment at each point in space with a magneti-

zation density in a small volume dV :

mng = µng[ng]Png, (2.6)

where Png is the expectation value of the noble gas polarization vector in dV , [ng]

is the noble gas number density, and µng = gngµN refers to the numerical value of

the noble gas magnetic moment.

The mean magnetization Mng of each ensemble can then be expressed as the

volume integral of mng over the interaction region:

Mng =
∫

mng(r)dV. (2.7)

When referring to magnetization in the DNGM, Mz indicates longitudinal magne-

tization along the direction of the static magnetic field, and M⊥ indicates magneti-

zation which lies in the plane transverse to the z-axis. Note that the polarization

and magnetization vectors for both 129Xe and 3He are oppositely directed because

of their negative g-factors.

2.2 Polarization of 129Xe and 3He

In the DNGM experiment, the 129Xe and 3He nuclei are polarized by spin-exchange

interactions with optically pumped Rb vapor [21, 38, 39]. This process occurs in

two stages. First, Rb is polarized by optical pumping with circularly polarized light

tuned to the Rb D1 transition. Second, polarization from the Rb valence electrons

spin> 1/2, provided that quadrupole and higher-order couplings can be suppressed. For example,
a demonstration of a dual 3He/21Ne Zeeman maser (using the nuclear spin-3/2 21Ne species) has
recently been performed in our laboratory.
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is transferred to the 129Xe and 3He nuclei during collisions between the Rb and

noble gas atoms. The spin-exchange process is similar for both noble gas species,

but the angular momentum transfer rate from the Rb to the 129Xe atoms is ∼ 2300

times the transfer rate from the Rb to the 3He atoms. In this section we present

a brief summary of the physics of the spin-exchange optical pumping process, and

conclude with a discussion of the polarization relaxation mechanisms that are most

important in the DNGM. References [20,21,36] develop more thoroughly the topics

reviewed here.

2.2.1 Optical Pumping of Rubidium

The two naturally occurring isotopes of Rb, 85Rb (S = 1/2, I = 5/2) and 87Rb

(S = 1/2, I = 3/2), have ground state hyperfine splittings of 3036 MHz and 6835

MHz, respectively. A typical DNGM cell contains a gas mixture of ∼ 1000 Torr

3He, ∼ 100-200 Torr 129Xe, and ∼ 50-100 Torr N2. The presence of these gases

broadens the Rb D1 line to a width of ∼ 20 GHz, which is much larger than the

hyperfine splitting of either isotopic ground state.2 Figure 2.1 thus shows a simplified

level diagram for both isotopes of Rb, with the (unresolvable) hyperfine levels not

depicted. The ms = +1/2 and ms = −1/2 Zeeman sublevels are split by the

experiment’s solenoidal magnetic field: ∆νz = 466 kHz/G. This Zeeman splitting

is also not resolved for typical DNGM magnetic fields ∼ 1 G because of collisional

broadening. However, such collisions cause insignificant spin depolarization in the

Rb ground electronic state; hence the two ms sublevels are resolved in angular

momentum space. Circularly polarized σ+ light selectively drives the D1 transition

2S1/2 → 2P1/2, with ∆m = +1. Spontaneous radiative decay from the excited state

2The pressure broadening coefficients for the Rb D1 transition are approximately 14 GHz/atm
for N2 and 18 GHz/atm for 129Xe and 3He [20].
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occurs with a probability of 2/3 to return to the ms = −1/2 ground state and a

probability of 1/3 to return to the ms = +1/2 ground state, which is the desired,

spin-polarized state.

When a Rb atom undergoes such radiative decay, it emits a photon that in

general will have neither the same polarization nor propagation direction as the

optical pumping light. Re-absorption of these emitted photons by ground state

ms = 1/2 Rb atoms limits the efficiency of the optical pumping process. The

addition of ∼ 80 Torr of N2 buffer gas to each DNGM cell provides a mechanism

for radiationless de-excitation of the Rb valence electron. The Rb-N2 cross-section

for collisional Rb de-excitation is several orders of magnitude larger than the Rb-

3He and Rb-129Xe cross-sections, with a decay time of ∼ 2 nanoseconds [40]. The

spontaneous radiative decay time is ∼ 30 nanoseconds; thus ∼ 94% of the Rb atoms

decay non-radiatively [40]. Collisional mixing between the Rb and 129Xe, 3He, and

N2 atoms also rapidly populates the two 2P1/2 ms states equally. Hence non-radiative

decay to either ground state ms level occurs with equal probability. In this simple

picture, and in the absence of spin-destruction mechanisms that connect the two ms

ground states, it requires an average of two σ+ photons to polarize one Rb valence

electron.

The rate equation governing the Rb polarization represents the competition be-

tween the optical pumping rate, γopt, and the rate of spin-relaxation of the Rb atom

between the ground state sublevels, Γrb. We can write the optical pumping rate as

γopt(z) = η
∫

Φ(ν, z)σabs(ν)dν (2.8)

where Φ(ν, z)dν is the (position-dependent) laser σ+ photon flux in the interval

(ν, ν+dν), σabs(ν) is the absorption cross-section for σ+ light (dependent on the Rb
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Figure 2.1: Elementary depiction of optical pumping of Rb by circularly polarized
σ+ light. In a pressure-broadened cell the hyperfine levels cannot be energetically
resolved and are not shown. The ms = 1/2 and ms = −1/2 Zeeman sublevels are
split by the experiment’s solenoidal magnetic field in both the 52S1/2 and 52P1/2

electronic states, and are resolved in angular momentum space.
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species a krb−a cm3s−1 [a] cm−3

3He 1.0× 10−18 3× 1019

129Xe 4.7× 10−15 3× 1018

Rb 4.2× 10−13 1× 1013

N2 9.0× 10−18 1× 1018

Table 2.1: Values for the spin-rotation rate constants krb−a and typical gas densities
[a].

density and polarization), and η is the probability that an unpolarized Rb atom will

end up in the target ms = +1
2

state per photon absorbed (including the “slowing

down” effect due to the internal Rb hyperfine interaction [20]). For simplicity, we

will ignore the position dependence of the photon flux and the Rb polarization in

the discussions that follow.

The Rb spin-destruction rate Γrb is due mainly to spin-rotation interactions3

between Rb and other atoms in the optical pumping region [40]:

Γrb = krb−he[
3He] + krb−xe[

129Xe] + krb−rb[Rb] + krb−nit[N2], (2.9)

where the krb−a = 〈vaσrb−a〉 are velocity dependent rate constants resulting from

collisions of Rb atoms with atoms of type a. Table 2.1 gives values for the relevant

krb−a; it is clear that Γrb is dominated by spin-rotation interactions of the Rb and

129Xe atoms [36]. The time dependence of the Rb polarization is

dPrb
dt

= γopt(1− Prb)− ΓrbPrb, (2.10)

3Recall that spin-rotation interactions are of the form Ĥsr = αLpair · S where Lpair is the
angular momentum associated with the center of mass motion of a Rb and second atom. Spin
rotation can transform spin angular momentum to kinematic angular momentum and is thus a
mechanism for polarization loss only.
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which has the following solution for the initial condition Prb(0) = 0:

Prb(t) =
γopt

γopt + Γrb

(
1− e−(γopt+Γrb)t

)
(2.11)

For typical DNGM operating conditions, Prb reaches its equilibrium value of ∼ 50%

in ∼ 1 msec.

2.2.2 Spin Exchange

The polarization of a Rb valence electron can be transferred to a noble gas nucleus

by a spin-exchange interaction4 of the form

Ĥ = −2gngµBµng
N∑
i=1

[
Si · I
r3
i

− 3
(I · ri)(Si · ri)

r5
i

+
8π

3
δ(ri)Si · I

]
(2.12)

where I represents the nuclear spin of the noble gas and Si is summed over the

Rb valence electron and all the noble gas electrons [41, 42]. The last term in the

Hamiltonian represents the Fermi contact interaction between the electrons and the

noble gas nucleus, and it is this interaction that dominates the spin exchange process

[41]. The sum over all noble gas electrons can best be understood by considering

the exchange enhancement process [42], in which the Rb valence electron can be

exchanged with one of the noble gas electrons. This effectively brings the polarized

Rb electron spin closer to the noble gas nucleus and increases the cross-section

for angular momentum transfer to the nuclear spin. The total gas pressure in a

typical DNGM cell is approximately 1.5 atmosphere. This is low enough to permit

the formation of transient Rb-129Xe Van der Waals molecules during three-body

collisions between Rb and noble gas atoms. The third atom serves as a sink for

4This interaction also leads to a noble gas polarization-induced shift of the Rb Zeeman frequency.
This “contact shift” effect will be discussed in greater detail in Section 2.6.
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the energy and momentum of the Rb-129Xe pair, and the resultant formation of a

Van der Waals molecule increases the Rb-129Xe hyperfine interaction time, thereby

enhancing the Rb-129Xe spin-exchange rate [19].

As with the polarization of Rb, the polarization of 3He and 129Xe can be char-

acterized by a spin-exchange source term γse = kse[Rb] and a relaxation term Γng.

Mechanisms for noble gas relaxation will be discussed in Section 2.2.3. Under typical

operating conditions in the DNGM pump bulb, kse−he ≈ 7×10−20 (binary collisions

only) and kse−xe ≈ 4×10−16+1×10−15, where the second term arises from the three-

body interactions described above [36]. Estimated values of the spin-exchange rates

for the DNGM parameters used in recent measurements are thus γse−he ≈ 1× 10−6

s−1 and γse−xe ≈ 0.020 s−1 in the pump bulb.5 The rate equation for Png is given by

dPng
dt

= γse(Prb − Png)− ΓngPng (2.13)

In the DNGM, typical Rb polarization times are ∼ 1 ms; those for 129Xe are ∼

10 minutes; and those for 3He are ∼ 3 hours. It is thus safe to solve the Png rate

equation treating Prb as a constant on the scale of both noble gas pumping times.

For the initial condition Png(0) = 0 we have:

Png(t) =
Prbγse

γse + Γng

(
1− e−(γse+Γng)t

)
. (2.14)

2.2.3 Longitudinal Spin Relaxation

Ignoring polarization loss in the transfer tube and in the absence of masing, the

steady-state longitudinal noble gas magnetization density can be written as the

5This estimated rate is larger than our measured rate of 129Xe polarization by a factor of 10
or so. The discrepancy is probably due to inaccuracy in determining [Rb] and uncertainty in the
constants contributing to kse.
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product

mng = µng[ng]

(
γopt

γopt + Γrb

)(
γse

γse + Γng

)
, (2.15)

where [ng] is the noble gas number density and µng is the magnetic moment of the

noble gas nucleus. Here we summarize mechanisms that contribute to the longitu-

dinal relaxation rates Γng of the noble gas atoms. References [21, 40] develop these

topics in much greater detail. In the discussions that follow, it is helpful to keep in

mind that measured DNGM polarization lifetimes (1/T1 = γse + Γng) for 129Xe are

T1,p ∼ 500 s in the pump bulb and T1,m ∼ 1000 s in the maser bulb; and for 3He

are T1,p ≈ T1,m ∼ 8 hours. For 129Xe, the longitudinal polarization relaxation rate

Γxe includes the effects of polarization transport from the region under considera-

tion (parameterized by transport rates Gp and Gm for the pump and maser bulbs,

respectively) and assumes that polarization is lost when it leaves either bulb (i.e.,

Γxe > Gp, Gm). For 3He, Gp and Gm are much greater than all sources of polariza-

tion relaxation. Thus 3He polarization is not lost through inter-bulb exchange (in

the absence of masing), and Gp and Gm do not contribute to Γhe. Section 4.4 de-

scribes measurements of T1,m. The parameters T1,p, Gp, and Gm have been measured

by our collaborators at the University of Michigan [36] in cells and under operating

conditions almost identical to those in our laboratory.

One way noble gas atoms may become depolarized is through interactions (spin-

exchange and dipole-dipole) with other atoms in the cell volume. In the maser

chamber the Rb density is approximately 8 × 1010 cm−3, and there is effectively

no relaxation of noble gas polarization through spin-exchange with polarized Rb

atoms: i.e., 1/T1 = Γng. For 129Xe the measured depolarization rate Γxe in the

maser chamber is thus due largely to wall relaxation effects, as described in Section

3.1 and references [20, 21], with lesser contributions from escape from the maser
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bulb and other processes. The OTS coating used in DNGM cells increases the 129Xe

relaxation time from tens of seconds on bare borosilicate glasses [20] to the value

of T1,m ∼ 1000 seconds observed under typical running conditions with properly

coated cells. Assuming only a slight temperature dependence of the wall relaxation

time, the typical observed 129Xe T1,p of ∼ 500 seconds indicates that 129Xe-Rb spin-

exchange and perhaps transport mechanisms contribute an amount ∼ 0.001 s−1 to

the overall relaxation rate 1/T1,p in the pump chamber.

For 3He Romalis [40] reports that the rate of 3He-3He dipole relaxation is given

by

Γhe,dipole =
[3He]

744
hrs−1, (2.16)

where [3He] is in amagats. Because the typical measured 3He polarization lifetime

is ∼ 8 hours, the above dipole-dipole relaxation mechanism is clearly not a limiting

factor in the DNGM. The 129Xe-129Xe dipole relaxation rate is even smaller and

is not a contributor to 129Xe spin-destruction in the DNGM [21]. The limiting

relaxation rate for 3He in both chambers is thus due to wall interactions, which are

poorly understood [21].6

It bears mentioning that noble gas atoms can also become depolarized through

interactions with magnetic field inhomogeneities of the form ∇B⊥, where B⊥ is the

component of the static magnetic field transverse to the DNGM Zeeman field Bz ∼ 1

G [21]:

Γ∇B,ng =
Dng |∇B⊥|2

B2
z

. (2.17)

The noble gas diffusion constants Dng are largest in the hot pump chamber, with

rough values Dxe ∼ 0.2 and Dhe ∼ 1.0 cm2/sec. Even in the presence of polarization-

6It should be noted that wall relaxation times scale as volume/(surface area). Thus in large
cells such as those used for polarized 3He target work and biomedical imaging, 3He dipole-dipole
relaxation can become the dominant 3He spin-destruction mechanism [40].
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induced field gradients, the homogeneity of ∇Bz is of order 10 µG/cm (Sections

3.5.3 and 3.5.6). Suppose the gradients in the static transverse field were 10x as

large (an extremely conservative estimate). The resulting relaxation rates would

be Γ∇B,xe ∼ 10−7/s and Γ∇B,he ∼ 10−8/s. As we have seen, these values are much

smaller than the contributions to Γng from other sources.

2.3 Transverse Spin Relaxation

Longitudinal noble gas polarization Pz is created in the DNGM pump chamber,

as described in Section 2.2, and diffuses through the transfer tube into the inter-

action region (maser chamber). Atomic polarization which is tipped away from

the quantization axis will precess about the static magnetic field B0 that splits the

noble gas Zeeman sublevels: h̄ωzeeman = 2µngB0. The voltage induced across the

DNGM pickup coil (Section 3.7.3) by precessing transverse polarization P⊥ is used

to search for signatures of possible new physics (Lorentz symmetry violation and a

129Xe EDM). In this section we summarize the mechanisms that deplete transverse

polarization in the DNGM maser chamber.

The dominant mechanism for transverse spin relaxation in the maser bulb arises

from interactions of the noble gas atoms with axial magnetic field inhomogeneities

of the form ∇Bz. The detected magnetization signal is actually the weighted vol-

ume average of signals produced by individually precessing noble gas dipoles in the

interaction region. Dipoles at different locations will experience slightly different

magnetic fields Bz, and will thus precess at slightly different rates. Motional aver-

aging (i.e., diffusion) of the dipoles about the maser chamber will tend to reduce

the effective inhomogeneity of Bz sampled by individual atoms. Nevertheless, phase

differences in P⊥,i among the dipoles accumulate, and the bulk transverse magne-
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tization will relax with a phenomenological decay time T2 as e−t/T2 [1, 22, 43]. In a

cylindrical cell the dephasing rate takes the form [44]

1

T2,∇Bz
=

L4γ2
ng

120Dng

∣∣∣∣∣∂Bz

∂z

∣∣∣∣∣
2

+
7a4γ2

ng

96Dng

∣∣∣∣∣∂Bz

∂x

∣∣∣∣∣
2

+

∣∣∣∣∣∂Bz

∂y

∣∣∣∣∣
2
 , (2.18)

where Dng is the total diffusion constant, γng is the gyromagnetic ratio, L is the cell

length, and a is the cell radius (in typical EDM cells, 2 cm and .64 cm respectively).

The components of ∇Bz include contributions from the solenoid field, from residual

magnetization of the µ-metal shields, and from fields produced by the polarized

noble gas atoms. Section 3.5 describes and quantifies these effects further.

To obtain a complete expression for T2, we must add to Equation 2.18 terms

to account for escape of noble gas atoms from the interaction region, and also to

account for the polarization loss mechanisms described in Section 2.2.3. T2 is then

given by

1

T2

=
1

T2,∇Bz
+

1

Tstorage
+

1

T1

, (2.19)

where Tstorage = G−1
m is the noble gas storage time in the maser chamber. Typical

DNGM values for the parameters in Equation 2.19 are given in Table 2.2. For 3He

measured T2 values are ∼ 150 seconds, and T1 relaxation is clearly not a significant

contributor. For 129Xe, typical T2 values are ∼ 300 seconds, which indicates that the

T1 relaxation time of ∼ 1000 seconds contributes at the ∼ 25 % level. As indicated

by the values in Table 2.2, the T2 of the more rapidly diffusing 3He species is field-

gradient and escape-time limited (estimated Tstorage ∼ 390 s), whereas atom escape

contributes only about 15% to the 129Xe T2, a sub-optimal condition discussed more

in Section 3.1.

The transverse coherence time establishes a threshold condition for active maser
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parameter 3He (s) 129Xe (s)

T1 (measured) 2.8× 104 1000
T2 (measured) 150 300

Tstorage (estimated) 390 2000
T2,∇Bz (inferred) 245 545

Table 2.2: Typical DNGM values for the maser bulb parameters in Equation 2.19.
The value of T2,∇Bz is inferred using Equation 2.19 and the other values in the table.

oscillation and figures prominently in determining the total maser output power

(Section 2.4). It also places fundamental limits on the optimal frequency resolution

of the DNGM in a measurement interval τ (Section 2.6.1). Subsequent sections in

this thesis describe this impact of T2 on DNGM performance in some detail, and also

provide methods for improving the T2 of both species. The experimental procedure

for determining T2 is presented in Section 4.2.

2.4 Bloch Equations and Masing

Combining Equations 2.5 and 2.6 with the phenomenological relaxation times T1

and T2 introduced in the previous sections, we can write the well-known Bloch

equations [22,43] for noble gas polarization dynamics in the maser chamber:

Ṗx = γng(PyBz − PzBy)−
Px
T2

Ṗy = γng(PzBx − PxBz)−
Py
T2

Ṗz = γng(PxBy − PyBx)−
Pz
T1

(2.20)

If B = B0ẑ only, initial components of transverse polarization will precess about

the z-axis and decay exponentially with a 1/e time T2 (Section 2.3). Similarly, in
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the absence of a source of longitudinal polarization, Pz will decay at a rate of 1/T1

from its initial value.

In the DNGM, however, Pz is replenished by a flux of polarized atoms from the

pump bulb, and the magnetic field has a transverse component due to current flow

in the pickup coil induced by the precessing spins. Under conditions of sufficient po-

larization influx and sufficient coupling of the DNGM dual resonator (Section 3.7.3)

to the transverse polarization P⊥, steady-state maser oscillation can occur for each

species. Appendix A describes in detail an extended Bloch theory of dual Zeeman

masers,7 modified to incorporate the effects of inter-bulb polarization transport and

off-resonant spin-circuit coupling. Here we present a summary. Experimental verifi-

cation of the basic Bloch theory for small perturbations and on-resonant spin-circuit

coupling is presented in Section 4.7.

2.4.1 Modified Bloch Equations

As detailed in Appendix A and described in References [1, 2], the modified Bloch

equations for each noble gas species take the form

Ṗ⊥ =
PzP⊥
Poτrd

ρ(ω)

Q
sinα− P⊥

T2

Ṗz = − P 2
⊥

Poτrd

ρ(ω)

Q
− Pz
T1

+Gm(βPp − Pz)

Ṗp = Prbγse − Pp
(

1

T1,p

+ γse

)
+Gp(βPz − Pp)

ω = γngBz −
Pz
Poτrd

ρ(ω)

Q
cos(α), (2.21)

where Pp refers to longitudinal polarization in the pump bulb, Pz refers to longi-

tudinal polarization in the maser bulb, ω is the frequency of the voltage induced

7I am extremely grateful to Richard Stoner for writing the paper included in Appendix A.
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across the resonator by the coupled noble gas/resonant circuit system, and we have

switched from Cartesian to polar coordinates via the equations

Px = P⊥ cos(Φ(t))

Py = P⊥ sin(Φ(t))

ω = Φ̇(t). (2.22)

Gm and Gp are transport rates from the maser and pump bulbs, respectively; β is

a parameter to account for noble gas depolarization in the transfer tube; T1,p is the

polarization lifetime in the pump chamber; and Po is the equilibrium value of noble

gas polarization in the maser chamber in the absence of spin-circuit coupling. We

have assumed that the resonator acts for each noble gas species as if it is a simple

R − L− C series circuit with resonant frequency ωo = (LC)−1/2 and quality factor

Q = ωoL/R. The resonator response is described in terms of an amplitude function

ρ(ω) and a phase function α(ω) (Appendix A):

ρ(ω) =
Q√

Q2 (1− (ωo/ω)2)2 + (ωo/ω)2

cosα = ρ(ω)
(
1− (ωo/ω)2

)
sinα =

ωo
ω

ρ(ω)

Q
(2.23)

Here, π/2−α is the phase angle between the resonator voltage and current, so that

the resonance condition ω = ωo implies sinα = 1, cosα = 0, and ρ(ω) = Q. Note

that although the frequency ω is a dynamical variable (of great interest) in this

theory, it may be treated as a constant ω ≈ γngB0 in all but the last of Equations

2.21.

Note also that in the actual DNGM resonator system, the pickup coil is part of
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a dual resonance circuit, described in detail in Section 3.7.3 and Appendix A. The

Bloch equations as written above still hold, but Q must be replaced by the effective

quality factorQeff , as discussed in Appendix A (Equation E5). This effective quality

factor measures the current gain provided by the DNGM resonator system, and of

course reduces to Qeff = ωoL/R when the dual resonator is replaced by a simple

R−L−C series circuit. Section 3.7.1 outlines methods for measuring Q and Qeff .

Radiation Damping Time

The radiation damping time τrd is defined as

1

τrd
=

1

2

h̄γ2
ng

2
µoηQ[ng]Po, (2.24)

where µo is the permeability of free space, η is the so-called “filling factor,” which

quantifies the average geometrical coupling between the pickup coil and the maser

cell volume, and [ng]Po is the maser chamber noble gas magnetization in the absence

of any spin-circuit coupling. The radiation damping time is an easily measured

quantity. With the resonator tuned far off the noble gas Zeeman frequency, Ṗ⊥ =

−P⊥/T2. With the resonator tuned to the Zeeman frequency, ω = ωo = γngBo,

|Pz| = Po at early times, and the first of Equations 2.21 becomes

Ṗ⊥ = P⊥

(±1

τrd
− 1

T2

)
, (2.25)

where the +/− refers to whether the noble gas atoms have been pumped into the

positive/negative energy state. (The positive energy state, i.e., and a population

inversion, is needed for active maser oscillation.) The difference of the transverse

decay times with and without the resonator tuned to the Zeeman frequency thus
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yields the value of τrd, as described further in Section 4.3.

Estimating Polarization Loss in the Transfer Tube

In writing Equations 2.21, we have made the simplifying approximation (see Ap-

pendix A for the complete theory) that transport effects can be accounted for solely

by a transfer tube loss-parameter β. The probability that an atom diffusing down

the transfer tube becomes depolarized is proportional to τ , the time spent in the

transfer tube, multiplied by the wall relaxation rate in the transfer tube. This trans-

fer tube wall relaxation rate can be estimated by multiplying the maser chamber

relaxation rate by the ratio of the wall collision rates in the transfer tube and maser

chamber. β is then given by

β = exp

[
− γw,tubeτ

T1,wallγw,maser

]

≈ exp

[
− L2 · l2m

2DT1,wall · l2t

]
, (2.26)

Here, T1,wall is the wall depolarization time in the maser chamber and γw is the wall

collision rate in the region of interest. The collision rate is given by γw = 2D/l2,

where D is the diffusion coefficient of the noble gas species under consideration and

l is the mean wall spacing in the region of interest. τ , the time spent by an atom in

the transfer tube, can be approximated from the first diffusion mode as τ ≈ L2/2D,

where L is the length of the transfer tube. For 3He, the T1,wall time is so long that

βhe ≈ 1. For 129Xe, inserting typical values of L = 4.1 cm, lm = 1.5 cm, lt = .4 cm,

T1,wall ≈ 800 sec, and Dxe ≈ .17 cm2/sec yields β ≈ 0.42.
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Schematic Illustration of Zeeman Maser Dynamics

Figure 2.2 summarizes the different dynamical effects acting on the noble gas polar-

ization vector and magnetization vectors in the maser chamber, as seen in the frame

rotating at the Larmor precession frequency. For 129Xe and 3He the magnetization

and polarization vectors are oppositely directed. Pz is replenished by diffusive load-

ing and dissipated by wall loss, escape from the bulb and radiation damping. P⊥

is replenished by radiation damping and destroyed by magnetic field gradients, wall

loss, and escape from the interaction region.

2.4.2 Equilibrium Solutions and Near Equilibrium Oscillations

To obtain the equilibrium solutions of the modified Bloch equations for the DNGM

(Equations 2.21), we set all time derivatives to zero. For the steady-state maser

frequency and longitudinal polarizations, the results are

ωss = γngBz −
cotα

T2

Pz,o =
Poτrd
T2

Q

ρ sinα
. (2.27)

For both noble gas species Q ¿ ωssT2. Defining the line quality factor as Qline =

γngBzT2, and assuming the resonator is tuned close to the atomic Zeeman frequency,

we can rewrite the expression for the steady-state maser frequency as

ωss = γngBz −
Q

Qline

(γngBz − ωo), (2.28)

which is clearly the cavity-pulling frequency shift present in any generic active atomic

oscillator [22]. Because Pz,0 ≤ Po, the second of Equations 2.27 defines a threshold
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Figure 2.2: Zeeman maser polarization and magnetization vectors as seen in the
frame rotating at the Larmor precession frequency. For both 129Xe and 3He the
magnetization and polarization vectors are oppositely directed. Pz is replenished
by diffusive loading and dissipated by wall loss, escape from the maser chamber,
and radiation damping. P⊥ is replenished by radiation damping and destroyed by
magnetic field gradients, wall loss, and escape from the interaction region. Also
indicated is the cavity-pulling torque described in Equation 3.20.
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condition for maser oscillation:

τrd ≤ T2

(
ρ sinα

Q

)
. (2.29)

If the maser is operated with the resonator tuned to ωo = ωss, this condition reduces

to the familiar form τrd ≤ T2 [1].

Solving Equations 2.21 for P⊥,o and Pp,o is done in Appendix A. The values

are obtained easily but are somewhat unwieldy; also, linearized solutions for the

coupled near-equilibrium oscillations of Pp(t), Pz(t), and P⊥(t) cannot be expressed

in closed, analytic form. A great deal of insight into DNGM behavior can be gained,

however, by ignoring polarization transport effects and proceeding as though the

maser dynamics all occurred in a single bulb cell. As will be shown in Section 4.7,

this approximation is quite good for the slowly diffusing 129Xe species (transfer tube

loss parameter β ≈ .4; T1, T2 < Tstorage) and quite poor for the rapidly diffusing 3He

species (β ≈ 1; T2 ≈ Tstorage ¿ T1). Without loss of insight we will also assume

ωss = ωo until Section 2.6, in which we discuss frequency shift mechanisms in the

DNGM. Under these approximations, the modified Bloch Equations 2.21 become [1]

Ṗ⊥ =
PzP⊥
Poτrd

− P⊥
T2

Ṗz = − P 2
⊥

Poτrd
+ γsePrb −

(
γse +

1

T1

)
Pz. (2.30)

The equilibrium values for the polarizations are given by

Pz,o =
Poτrd
T2

P⊥,o =

√√√√Poτrd
(
γsePrb −

Poτrd
T2

1

γse + 1/T1

)
(2.31)

33



The second of these equations illustrates that all other parameters being held con-

stant, increasing T2 always increases the equilibrium maser amplitude (and hence

output power). It should also be noted that with T2 fixed, decreasing the radiation

damping time τrd does not necessarily increase the maser output power.

Because many of the subsequent sections in this thesis refer to the near-equilibrium

behavior of the maser polarizations, it is useful at this point to linearize Equations

2.30 about their equilibrium values. Before doing so, however, we can make some

general statements about the relationships between near-equilibrium oscillations of

the more complete set of Equations 2.21. Let us define small deviations of the

dynamical variables from their equilibrium values via

ω = ωss + δω(t)

P⊥ = P⊥,o + δP⊥(t)

Pz = Pz,o + δPz(t). (2.32)

Plugging into Equations 2.21, neglecting terms higher than first order in the devia-

tions, and using the steady state solutions, it is easy to show that

δω = − δPz
Poτrd

(
ρ

Q
cosα

)

δṖ⊥ =

(
P⊥,o
Poτrd

ρ

Q
sinα

)
· δPz(t). (2.33)

We will return to Equations 2.33 in Section 2.6.

Linearization of the simplified Bloch Equations 2.30 yields

δṖ⊥ =
(
P⊥,o
Poτrd

)
· δPz(t)
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δṖz = −
(

2
P⊥,o
Poτrd

)
δP⊥ −

δPz
γse + 1/T1

. (2.34)

The solutions for δP⊥ and δPz for the simplified Bloch equations are thus expo-

nentially damped sinusoids. The decay time and oscillation frequency are given

by

τdecay =
1

γse + 1/T1

ωosc =
√

2
P⊥,o
Poτrd

. (2.35)

In Chapter 4 we will experimentally probe the predictions of the simplified Bloch

equations.

2.5 Characterizations of Stability

Section 2.6 presents frequency shift mechanisms in the DNGM; and most sections

that follow describe the implementation and performance of maser subsystems in

reference to how they affect the fundamental performance of the DNGM as a sta-

ble oscillator. It thus seems sensible to give at this point a brief summary of the

laboratory realization of the DNGM data collection scheme (described in Section

3.7.7), and then develop in some detail the methodology by which DNGM phase

and frequency data are used to characterize maser performance.

2.5.1 Extraction of Phase and Frequency Data

The maser output signals from an inductive pickup coil are buffered, amplified and

sent to a pair of digital lockin detectors. Typical raw signal levels are ∼ 3 to 5 µV.

All reference signals used in the DNGM are derived from the same hydrogen maser
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clock, thus eliminating concerns about unmeasurable electronic phase shifts between

the reference oscillators. Active feedback to the solenoid’s magnetic field locks the

phase of one of the masers to that of a reference signal to isolate the experiment from

common-mode systematic effects (such as stray magnetic field fluctuations) which

would otherwise shift the frequencies of the noble gas masers. The effectiveness

of the phase-lock loop and co-magnetometer system will be discussed in Section

3.6. Because both the LLI and EDM measurements performed with the DNGM

are differential in nature, it is in principal possible to lock the solenoidal field using

either species. In practice, the greater signal-to-noise of the 129Xe channel favors

locking this species and letting the 3He free-run. Without loss of generality, the

discussion that follows assumes this to be the case.

The in-quadrature and out-of-quadrature portions of each maser signal are recorded

at regular intervals, typically once every four seconds. As with most heterodyne de-

tection methods [45], these traces take the form

x(t) = R cos(2πνbt+ φ0)

y(t) = R sin(2πνbt+ φ0) (2.36)

where the maser amplitude is given by R(t) =
√
x(t)2 + y(t)2, and νb(t) = νng(t)−

νref represents the beat frequency between the detected maser signal and the signal

from the ultra-stable reference oscillator. Implicit in the time-dependence of the

parameter R(t) are the effects of noise and systematic drift. These effects are also

implicit in νng(t), whose time evolution is to be analyzed for evidence of signatures

arising from EDM and LLI-violating interactions. The effects of noise processes and

drift will be quantified in Section 2.6.1.
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Figure 2.3: Phase evolution of the free-running 3He maser over a 40,000 second
timescale. The 25 mHz beat-note evolution makes noise and systematic fluctuations,
as well as possible new physics, visually unresolvable. Cell SE3, May 2000.

The phase evolution of each maser, from which its frequency dependence can be

derived,8 is given by

φ(t) = arctangent

(
y(t)

x(t)

)
= 2πνbt+ φ0 (2.37)

The beat frequency of the free-running 3He maser is typically adjusted to be ' 25

mHz. Because variations in the free-running frequency are ≤ 1 µHz on timescales ≥

1000 seconds, visual inspection of maser phase traces is most instructive following a

linear regression which removes the (relatively) rapid beat-note evolution. Figures

2.3 and 2.4 show the phase evolution of the free-running 3He maser over a 40,000

second timescale.

8In [46] Stein writes: “It has been suggested that measurement techniques for frequency and
time constitute a hierarchy (Allan and Daams, 1975), with the measurement of the total phase
of the oscillator at the peak . . . The total phase has this status owing to the fact that all other
quantities can be derived from it.”
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Figure 2.4: Linear regression has removed the (relatively) rapid linear evolution
from the free-running 3He phase trace shown in Figure 2.3. Clearly visible now are
manifestations of phase noise, frequency noise, and other systematic drift effects.
Cell SE3, May 2000.

Short-term maser phase noise is assessed by computing the RMS deviation of the

residual phase data after least-squares regression has removed the dominant, linear

evolution (see Figure 2.5). This figure of merit is typically established on timescales

between 500 and 1,000 seconds, and will be written as σφ in subsequent sections and

chapters.

From oscillator phase data (Equation 2.37), it is possible to produce over a time

interval τ a minimum variance estimate of the oscillator frequency. Reference [47]

explores several different frequency estimation methods. The method applied to

the DNGM phase data is perhaps the most common. All detected phase points are

assumed to have the same error σφ, and the phase data are fit to a function of a

form

φ(t) = c0 + c1t (2.38)
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Figure 2.5: Typical short-term 3He phase residuals after least squares regression has
removed the linear beat-note evolution. The 3He phase noise is given by σφ ≈ 10
mrad. Data taken from cell SE3, May 2000.

In the limit N À 1, the maser frequency over the interval τ is given by

ν(τ) =
c1

2π
=

12

2πτ 2N2

(
N

N∑
i=1

φiti −
N∑
i=1

φi
N∑
i=1

ti

)
. (2.39)

The statistical error in the estimated value of c1 reflects the contribution of phase

noise to the uncertainty in frequency, and is given by

σ2
ν(τ) =

12σ2
φ

(2π)2Nτ 2
(2.40)

where N À 1 is the number of points in the fitting range. For a constant data

sampling rate, N ∼ τ , and for a fixed level of white phase noise σ(φ) = σφ (see

Section 2.6.1 and Table 2.3), σ(τ) ∝ τ−3/2, and uncertainties due to phase noise

average away rapidly with increasing τ .
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A proper measure of the frequency stability of a clock or oscillator must incor-

porate the effects of frequency as well as phase noise processes [46]. We used the

Allan (or two-sample) deviation, one of two measures recommended by the IEEE,

to assess the quality of DNGM frequency data. To compute the Allan deviation, a

stream of phase data of total duration T0 is divided into m adjacent intervals, each

of length τ = T0

m
. The best frequency estimate νi is extracted for each interval, and

a set of (m− 1) difference frequencies is formed:

yi(τ) = νi+1(τ)− νi(τ) (2.41)

The Allan deviation is then the RMS spread in the points {yi}, divided by
√

2 to

correct for cross-correlations between adjacent {yi} :

σAllan(τ) =
σy(τ)√

2
(2.42)

2.6 Frequency Stability of the DNGM

In [22] Jacques Vanier and Claude Audoin present a thorough discussion of noise

processes that affect the frequency measurement precision of devices such as the

DNGM. We now describe the primary sources of frequency and phase noise in the

DNGM, typical measurements of the DNGM’s frequency stability, and likely causes

of systematic frequency variations.

2.6.1 Thermal Noise Limits to Frequency Stability

Even under ideal operating conditions, the DNGM frequency resolution is fundamen-

tally limited by two independent manifestations of thermal noise: white frequency
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noise, and added white phase noise.

White frequency noise is caused by thermal radiation inducing a random walk in

time of the phase of the coherent electromagnetic field produced by each noble gas

maser.9 The limit on frequency stability arising from the effects of white frequency

noise is given by:

∆νfreq =
1

πT2

√√√√ kBT

2Wngτ
∝ τ−1/2, (2.43)

where T2 is the transverse decoherence time of the atomic ensemble in the absence

of masing, T is the temperature of the masing region in degrees Kelvin, and Wng is

the steady state radiated maser power.

The second form of thermal noise, added white phase noise, arises from the

external amplification of the maser signals. The signal amplifiers multiply thermal

noise present in the resonant signal detection circuits, and also add noise due to

their own finite temperature. The frequency deviation due to this added white

phase noise is given by

∆νphase =
1

2πτ

√√√√kB(Tcoil + Tamp)B

Wng

∝ τ−3/2, (2.44)

where B ≈ (πτ)−1 is the measurement bandwidth and Tcoil and Tamp are the pickup

coil and amplifier noise temperatures, respectively.

For typical operational parameters (listed in Tables 1.1, 1.2, and 1.3), the cal-

culated limits on DNGM performance due to these two thermal noise processes are

given by

3He : ∆νfreq ≈ 9× 10−7τ−1/2

9Other intrinsic frequency noise processes in the DNGM arise from unstable collisional and
wall-induced shifts as well as imperfect operation of the magnetic field lock loop [1]. An accurate
model that predicts the size of such effects has not yet been completed.
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∆νphase ≈ 4× 10−4τ−3/2

129Xe : ∆νfreq ≈ 2× 10−7τ−1/2

∆νphase ≈ 2× 10−4τ−3/2 (2.45)

For the phase measurement technique we employ with the DNGM,10 B = (πτ)−1

is given by the data analysis software, and thus the “cross-over” time at which the

contributions of thermal white phase and white frequency noise become equal is a

function of T2 only:

τcross = T2/
√
π, (2.46)

where we have assumed Tcoil = Tamp.

These thermal noise sources place intrinsic limits on the sensitivity of any fre-

quency measurement made with the DNGM. For example, using the stability num-

bers given in Equations 2.44 and 2.45 (instability in the phase-locked species also

affects the measured free-running frequency), a 60 day search for sidereal varia-

tions in the frequency of the free-running 3He maser would yield a sensitivity to

LLI-violating interactions of the neutron corresponding to ∆νhe ≈ 1 nHz; this is

approximately 40× better than the limit of ∼ 40 nHz reported in this thesis. For

an EDM search in 129Xe, the two above thermal noise sources limit the net 129Xe

maser frequency measurement precision in a 10,000 second observation interval to

be ∆νxe ≈ 3.8 nHz. Making two consecutive such measurements with the applied

electric field set at values of ±2.5 kV/cm, the two-standard-deviation sensitivity to

a 129Xe EDM would be ≈ 3.2 × 10−27 e-cm, in 2 × 104 seconds of data taking. If

250 of these EDM measurements were made, one would have ∆νxe ≈ 480 pHz and

10The frequency stability of atomic clocks and other stable oscillators is often determined by
measuring the beat period (= ν−1

b ) as a function of time [22]. This technique uses a fixed bandwidth
≥ νb, implying that ∆νphase ∼ τ−1.
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µ Designation

−1.5 White noise of phase
−1 Flicker noise of phase
−.5 White noise of frequency

0 Flicker noise of frequency
.5 Random walk of frequency

Table 2.3: Common designations for the noise processes associated with values of µ
in the expression σ(τ) ∝ τµ. In systems like the DNGM, the software bandwidth
scales inversely with averaging time τ , which allows differentiation between white
noise of phase and flicker noise of phase.

a two-standard-deviation 129Xe EDM sensitivity ≈ 2× 10−28 e-cm, in 1400 hours of

data taking. From these estimates one concludes that the DNGM has not yet been

developed to the point where its performance is limited by fundamental thermal

noise.

2.6.2 Measured DNGM Frequency Stability

Figure 2.6 shows a plot of the Allan deviation of a generic precision oscillator as a

function of measurement interval: σ(τ) ∝ τµ. Shown for each regime are typical

values of the exponent µ. Table 2.3 associates with each value of µ its common

designation in the literature [22,46].

A typical plot of the measured Allan deviation for an early and current configu-

ration of the DNGM is shown in Figure 2.7. System engineering has improved the

frequency stability of the DNGM by an order of magnitude over the past three years

for measurement intervals ∼ 1 − 3 hours [3]; nevertheless, the frequency resolution

of the DNGM is still limited by systematic sources of phase and frequency noise

that are not thermal in origin. In the next section we outline leading candidates for

such systematic effects. In Chapter 3 we describe the optical, thermal and magnetic
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Figure 2.6: The Allan deviation of a generic precision oscillator as a function of
τ [22]. Shown are typical values of the exponent µ in the expression σ(τ) ∝ τµ.

field control systems we have implemented to minimize these sources of frequency

instability.

2.6.3 Systematic Limits to Frequency Stability

Calculations and measurements indicate that the three most important sources of

systematic maser frequency deviation are: (i) variation of the magnetic fields created

by longitudinal 3He and 129Xe magnetizations; (ii) imperfect co-magnetometry due

to changes in the transverse polarization distributions of the maser ensembles; and

(iii) blown-air induced noise, which contributes measurably to maser phase noise
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Figure 2.8: Figure showing the cumulative effect of short-term polarization depen-
dent frequency shifts. The 129Xe maser was perturbed with an on-resonant Rabi
pulse at t = 0 to create an unmistakably observable variation in both the 129Xe
maser amplitude and 3He maser frequency. Note that the displayed 129Xe P⊥ oscil-
lations are related to 129Xe Pz oscillations as described by Equations 2.33.

and hence to short-term frequency instability. In particular, we have observed maser

frequency variations that are strongly correlated to maser amplitude changes. These

can result from Pz-proportional dipolar field shifts and and imperfect magnetometry

as described below. Sorting out the individual contributions has thus far proven

intractable. We present two figures illustrating the cumulative effect, both for short-

term oscillations of P⊥ (Figure 2.8), which in turn is related to Pz oscillations as

described by the Bloch model of Chapter 2, and long-term drift of P⊥ (Figure 2.9).

We also discuss below four additional frequency shift mechanisms that are com-

monly addressed in the literature [20, 36] and thus merit consideration. We will

show, however, that these effects do not limit the frequency stability of the DNGM

as it is currently configured. Note that in order to keep this chapter generally ap-

plicable to the DNGM, we have deferred to Section 3.6 discussion of leakage current

46



4

2

0

-2

H
e 

fr
eq

ue
nc

y 
de

vi
at

io
n 

fr
om

 m
ea

n 
( 

µH
z)

22.922.822.722.622.5
Xenon Amplitude (mV)

 Helium frequency
 Best-fit line

(32ks scan)

Figure 2.9: Figure showing the cumulative effect of long-term polarization dependent
frequency drift. Note that the displayed 129Xe maser amplitude drift (i.e., 129Xe P⊥
drift) is related to Pz drift as described by Equations 2.33.
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frequency shifts, which are important only for the search for a 129Xe permanent

electric dipole moment (EDM).

Polarized Rb frequency shifts

Schaefer [48] describes the shift of noble gas Zeeman frequencies induced by polarized

Rb atoms (the collisional contact shift and the bulk Rb magnetization shift). In a

spherical cell (we will use this approximation for the cylindrical maser chamber) this

shift takes the form

2π · δνng = (κng − 1)γng ·
8π

3
h̄γrb[Rb]Prb, (2.47)

where [Rb] is the Rb number density in the maser bulb, γrb and γng are the Rb

and noble gas gyromagnetic ratios, Prb is the average longitudinal Rb polarization

in the maser bulb, and κng is the contact shift enhancement factor: κxe ≈ 726 and

κhe ≈ 5.0 [48].

In the maser bulb Tm ≈ 41 C̊, and [Rb] ≈ 8 × 1010 cm−3. This yields shifts in

the maser bulb given by δνhe ≈ (190 µHz)Prb and δνxe ≈ (10 mHz)Prb. Prb in the

maser chamber is due almost entirely to Rb repolarization via spin-exchange with

polarized 129Xe atoms [20, 36]. Numerical estimates performed in our laboratory

indicate Prb < .0001 in the maser chamber. Limits on noble gas frequency shifts are

thus given by δνhe < 19 nHz and δνxe < 1 µHz. Assuming an RMS temperature

stability of ∼ 10 mK in the maser chamber, [Rb] will have a fractional stability of

∼ .1%. Similarly, the noble gas polarizations in the maser bulb which contribute

to Prb are stable to ∼ .1% over a typical DNGM run. The estimated bounds on

DNGM frequency instability due to polarized Rb atoms in the maser bulb are thus

δνhe < 19 pHz and δνxe < 1 nHz, or well below the limits set by other sources of
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frequency instability.

Off-resonant magnetic field frequency shifts

In [49] Ramsey shows that the Larmor precession frequency of an atom may be

shifted in the presence of a magnetic field rotating a rate different from the Larmor

precession frequency. Therefore, in the DNGM, the 3He maser’s magnetic field can

shift the 129Xe maser frequency and vice versa. This shift takes the form

δνng ≈
(γngB⊥)2

8π2(νng − ν⊥)
, (2.48)

where γng is the noble gas gyromagnetic ratio, νng is the Larmor precession frequency

of that same species, and B⊥ and ν⊥ are the magnitude and frequency of the non-

resonant magnetic field created by the other species.

In the DNGM, numerical estimates for B⊥ are B⊥,he ∼ 100 nG and B⊥,xe ∼ 1000

nG. In its present configuration, the DNGM is operated with νxe ∼ 1.7 kHz and

νhe ∼ 4.7 kHz. This results in frequency shifts of |δνxe| ∼ 2× 10−9 Hz and |δνhe| ∼

2 × 10−12 Hz. The temporal stability of such shifts is clearly not a concern for the

measurements reported in this thesis.

Static magnetic field gradient frequency shifts

In [50] Cates et al. show that Zeeman frequency shifts can arise from the presence of

static magnetic field gradients. To approximate the size of such shifts in the DNGM,

we take the expression for a spherical cell:

δν ≈ γnga
2

20π

|∇Bx|2 + |∇By|2
Bz

, (2.49)
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where γng is the noble gas gyromagnetic ratio and a is the cell radius. In Section 3.5.3

we estimate ∇Bz ∼ 20 µG/cm. The gradients appearing in Equation 2.49 must also

include the effects of noble gas induced field gradients (Section 3.5.6). Assuming

that |∇Bx| ∼ |∇By| ∼ 20 µG/cm, we obtain δνxe ∼ 34 nHz and δνhe ∼ 94 nHz for

a ≈ 2 cm.

If we conservatively assume a temporal stability of 1% for the ratio of magnetic

field quantities in Equation 2.49, the resultant maser frequency instabilities are

δνxe ∼ .34 nHz and δνhe ∼ .94 nHz, which are well below the present performance

of the DNGM. We note further that the above shifts scale as γng and thus should

be largely nulled-out by the magnetic field phase-lock loop.

Cavity-pulling frequency shifts

Good temperature control of the DNGM signal detection circuits is needed to pre-

vent significant variations in the cavity pulling of the the maser frequencies (see

Equation 3.20). As will be shown in Section 3.7.5, the present level of resonator

temperature control is sufficient to prevent cavity-pulling from being an appreciable

source of frequency instability in the DNGM.

Pz-proportional frequency shifts

The noble gas maser frequencies are shifted by the static magnetic fields created by

longitudinal magnetizations of the 3He and 129Xe ensembles, which are proportional

to their longitudinal polarizations (Pz). The magnitudes of the magnetic fields due

to the longitudinal 3He and 129Xe magnetizations are ∼ 100 nG for the present

configuration of the DNGM. A 1% change in Pz can thus shift the 129Xe frequency

by ∼ 4 µHz and the 3He frequency by ∼ 11 µHz. For active maser oscillation, the

steady-state longitudinal magnetizations of the atomic ensembles depend directly
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on system parameters such as the characteristics of the dual resonator system and

the flux of polarized atoms into the interaction region, as set by the pump laser

power, atomic densities, and system temperature and geometry.

Thus stabilization of the longitudinal 3He and 129Xe magnetizations translates

practically into: (i) stabilization of the DNGM’s resonator circuitry by proper con-

struction techniques, choice of components, and temperature control (see Section

3.7.5); (ii) stabilization of the gas densities and diffusion via good design and con-

struction of the oven assembly and blown air system (see Sections 3.2 and 3.3); and

(iii) control of the on- and off-resonant power of the laser diode array (see Section

3.4.3). In practice, the various control systems in the DNGM do not operate ideally.

We estimate there are Pz variations of ∼ 1 – 5 parts in 104 over timescales ∼ 1

hour, which will induce free-running 3He maser frequency instability of ∼ 100− 500

nHz. Data analysis can account partially but not entirely for these drift effects (see

Chapters 5 and 6), because Pz-induced drifts that have a component parallel to

the exotic physics under consideration cannot be subtracted from DNGM phase (or

frequency) data.

P⊥-proportional frequency shifts

Variations in the transverse polarization distributions of the masing ensembles can

affect the DNGM’s co-magnetometry and thereby induce frequency instability in the

free-running maser. This effect is described in detail in Section 3.6 and Appendix

A. We summarize the discussion here.

The effective Larmor frequency of a noble gas maser is given by

2πνng =

∫
γngη(r)Bz(r)P⊥(r)dV∫

η(r)P⊥(r)dV
, (2.50)
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which is proportional to the volume average of the total longitudinal magnetic field

(from all sources), weighted by the transverse polarization distribution of the mas-

ing ensemble and the pickup coil filling factor. Even a small change of 2 µm in

the “center of ensemble” position of the P⊥ distribution would induce a ∼ 1 µHz

frequency shift for typical DNGM parameters and Bz gradients. Such “center of

ensemble” shifts occur in a 2-bulb noble gas maser system when there is a change

in the flux of polarized noble gas atoms into the interaction region. The shifts are

larger for a smaller diffusion constant and a larger wall loss rate, so that they would

be larger for a 129Xe maser than for a 3He maser. Nevertheless, shifts on either

species will induce frequency instability on the free-running maser.

Blown-air induced noise

Temperature control of the DNGM is maintained by a blown-air heating system, as

described in Section 3.3. A minimum total flow rate of ≈ 45 - 50 slm is required to

maintain reasonable (≈ 10 mK) temperature control of the pump, maser, and exter-

nal resonator regions. Increasing the flow rate decreases the thermal time constants

and permits better temperature control, but vibrational excitations of the pickup

coil, external resonator, and oven and cell components increase the phase noise and

hence degrade the frequency stability of the DNGM. Table 2.4 gives measured RMS

phase noise residuals for the phase-locked 129Xe maser and free-running 3He maser at

three different total flow rates (DNGM-15, page 20). A careful study of the DNGM

frequency stability as a function of air flow rates has not yet been performed.
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Flow rate (slm) σφ,xe rad σφ,he rad

60 .000320 .00836
50 .000296 .008188
40 .0002397 .00682

Table 2.4: RMS phase noise residuals for the phase-locked 129Xe maser and free-
running 3He maser at three different total flow rates (DNGM-15, page 20).
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Chapter 3

Experimental Realization

Chapters 1 and 2 of this thesis have provided an overview of the DNGM experiment

as well as a description of the theory of two-species Zeeman masers. This chapter

describes the fabrication and experimental implementation of the major DNGM

subsystems, depicted schematically in Figure 3.1. A photograph of the DNGM

laboratory is shown in Figure 3.2.

3.1 Cells

The mixture of 129Xe, 3He, and N2 gases and Rb metal used in the DNGM is

contained in a two-chambered cell (Figure 3.3) blown from Corning 7056 borosilicate

glass.1 Each cell consists of a roughly spherical pump chamber (optical pumping

region) joined by a straight transfer tube to a roughly cylindrical maser chamber

(interaction region). In EDM cells, molybdenum discs epoxied to the ends of the

maser chamber seal the cell and serve as the high voltage electrodes used in the

EDM measurement described in Chapter 6 of this thesis. This section describes

1Good cells have also been produced from Corning 7052 glass.
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Figure 3.1: Schematic diagram of the dual noble gas maser used to make the mea-
surements reported in this thesis.
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Figure 3.2: A photograph of the DNGM laboratory, circa 1997. Pictured are the
magnetic shield and solenoid assembly, the heavily insulated external resonator as-
sembly, many of the lockin amplifiers and function generators used in the experi-
ment, and custom-built control electronics.

the cell making process and concludes with a brief discussion on cell aging. Table

3.1 lists the gas fill pressures (at 298 K) for the cells used to make measurements

reported in this thesis. Table 3.2 lists the cell dimensions.

3.1.1 Cell cleaning, coating and endplate attachment

Cells are generally prepared in groups of three from a manifold such as that shown in

Figure 3.3. In order to reduce the rate of nuclear spin relaxation caused by interac-

tions of the 129Xe nuclei with magnetic impurity sites on the glass walls, the cells are

coated with CH3–(CH2)17–SiCl3, otherwise referred to as octadecyltrichorosilane, or
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Cell Pxe (Torr) Phe (Torr) Pnit (Torr)

37 – glass 186 2059 77
S1 – glass 99 1158 80
S3 – glass 107 1265 59
E9 – EDM 210 2411 97
SE3 – EDM 110 1100 80

Table 3.1: Gas fill pressures (at 298 K) for the cells used to make measurements
reported in this thesis.

Cell t-tube t-tube maser bulb maser bulb
length (in.) i.d. (in.) length (in.) i.d. (in.)

37 – glass 1.62 .133 .890 .468
S1 – glass 1.66 .093 .820 .468
S3 – glass 1.66 .093 .870 ..468
E9 – EDM 1.60 .133 .880 .468
SE3 – EDM 1.53 .093 .890 .468

Table 3.2: Dimensions of the cells used to make measurements reported in this
thesis. Each cell had a cylindrical maser chamber and a spherical pump bulb with
outer diameter 3/4 inches.

OTS. A properly formed coating consists of a covalently bonded monolayer of OTS

molecules, each oriented perpendicular to the glass surface. The coating decreases

the mean sticking time of the 129Xe atoms to the cell walls and also increases the

mean distance of closest approach of the atoms to paramagnetic impurities on the

borosilicate surface [51, 52]. A good coating will last indefinitely as long the cell is

run at temperatures below 190 C̊ [20], a limit which is safely removed from the ∼

114 C̊ operating temperature of the DNGM. The longitudinal relaxation time T1

of the 3He atoms is unchanged by the presence (or absence) of the OTS coating,

although a burned or damaged coating will negatively impact the T1 of both noble

gas species. The cell coating procedure which follows is based in large part upon
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Figure 3.3: Typical manifold used to make three EDM-capable cells. The pieces
are blown from annular stock of Corning 7056 borosilicate glass, which has a he-
lium permeability of 1.8 x 10−11 (cm3 mm)/(sec cm2 torr) at 130 C̊ and a volume
resistivity of ∼ 6 x 1018 Ω cm at 40 C̊. The glass-blowing for this experiment was
performed by Harold W. Eberhardt, Scientific Master Glassblower, University of
Michigan, Ann Arbor.

the work outlined in references [20,36,53].

Before the cells are coated, surface contaminants are removed from the glass by

immersing the cells in a “piranha” mixture of 30% H2O2 (hydrogen peroxide) stock

solution and 97% H2SO4 (sulfuric acid) stock solution (3:7 ratio by volume). After

soaking in the piranha mixture for ∼ 1 hour, the cells are removed and rinsed three

times each with distilled water and then three times each with methanol. They are

then rinsed once more with distilled water and allowed to air dry for one hour.
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Once dry, each cell is dipped into a silane coating solution consisting of five drops

(about 200 µL) of OTS mixed with a base solution of C6H14 (hexane) and C-H-Cl3

(chloroform, 9:1 ratio by volume). After soaking in the solution for five minutes,

each cell is allowed to air dry for five minutes before unreacted OTS is removed

using a rinse of pure chloroform. Finally, the cells are each rinsed with methanol

and baked at 180 C̊ for ∼ 12 hours in order to drive residual hexanes from the glass

surface.

In EDM cells, the high voltage endplates used to seal the maser chamber are

fabricated from .020” thick molybdenum sheet.2 To ensure good surface preparation,

the endplates are sanded with oiled 600 grade sandpaper, polished with Brasso,

dipped in piranha solution for 30 seconds, rinsed with distilled water, and then

polished with methanol soaked wipes. The ends of the maser chamber are sanded

with an emery board to remove OTS coating, which is known to prevent proper

adhesion of metal plates to the glass surface. The components are then joined using

EPO-TEK 35ND3 epoxy and cured according to schedule. Before filling with noble

gases is undertaken, the cells are placed on the vacuum system and thermally cycled

to liquid nitrogen temperatures. They are also filled with nitrogen gas to a higher

pressure than that to which they will be subjected under actual running conditions.4

3.1.2 Cell filling

Cells that demonstrate helium leak test integrity following the above procedures

are ready to be filled. First, the manifold is removed from the vacuum system. A

2Available from Alfa Aesar Metals, War Hill, Massachusetts, www.alfa.com.
310 parts A and 1 part B (hardener) by weight, available from Epoxy Technology, Inc. Billerica,

Massachusetts.
4These thermal cycling and overpressure tests are performed to ensure that the cells will not

fail during the filling procedures described in the following section. Cells which leak at this stage
in the process can generally be repaired, re-cleaned, and re-coated. Such is not the case after Rb
has been chased into the cells (Section 3.1.2).
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sealed glass ampule containing 1 gram of naturally occurring Rb (72% 85Rb and

28% 87Rb) is chilled in liquid nitrogen5, cracked open, and placed in the sidearm of

the cell manifold. The sidearm is sealed off using a dual propane/oxygen torch, and

the manifold is placed under vacuum and baked at 120 C̊ for 48 hours. The pressure

in the manifold should be ∼ 2× 10−7 Torr at the end of the bakeout process.

After baking, Rb is chased from the sidearm into the pump chamber of each

cell using a cool propane flame. Care is taken to avoid damaging the OTS by

inadvertently applying heat to the coated glass surfaces. To reduce this risk, each

cell is wrapped with damp strips of cloth and covered in aluminum foil. Toward

the end of the chasing process, the protective wrapping must be removed in order

to verify that Rb has been chased successfully into the pump chamber. After the

chasing is complete, the manifold is pumped on until the pressure returns to its value

before Rb was driven into the cells. This usually takes ∼ 24 hours, at which time

the cells are ready for gas filling. The gases (loaded in the order 129Xe, N2, and 3He)

consist of mixtures of 90% isotopically enriched 129Xe (99.999% purity), 99.95% CP

grade enriched 3He, and 99.9999% pure N2, each of which is gettered [54] before

loading into the cells. After loading is complete and the N2 and 3He are allowed

to mix for ∼ 30 minutes, the glass cells are pulled off and sealed using a dual

oxygen/propane flame while the pump bulb and everything below it are immersed

in liquid nitrogen. The LN2 freezes the 129Xe into the cells and keeps the total

N2 and 3He gas pressures below 1 atmosphere, an essential condition for the glass

to collapse inward and form a vacuum seal when the cell is pulled away from the

manifold. At room temperature, typical partial pressures of the gases used in recent

DNGM cells are PXe ≈ 150 Torr, PHe ≈ 1100 Torr, and PN2 ≈ 80 Torr. Section

3.5.6 describes some important considerations in choosing noble gas fill pressures.

5Cooling reduces the rate of Rb oxidation while the unsealed ampoule is exposed to air.
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New cells are installed in the maser system and tested by measuring the longitu-

dinal polarization of 129Xe, 3He, and Rb gases under canonical operating conditions

(see Table 1.1). A new cell generally needs to sit under heat for ∼ 2 days before it is

ready for use. Over longer periods of time, it has been found that the attainable lev-

els of Rb, 3He, and 129Xe polarizations within a particular cell slowly decrease, with

other operational parameters being kept constant. Although this loss mechanism

is not well understood, it is believed that over long timescales Rb is driven from

the hot pump chamber and plates out in the much cooler transfer tube and maser

chamber, thus causing cells which are used for ≥ 6 months to suffer irreversible

deterioration in performance.

3.2 DNGM Oven Assembly: Design and Illustra-

tions

The double bulb cells used in the DNGM reside in an oven assembly fabricated from

Nylatron GS, an easily machined nylon-molybdenumdisulfide composite material

whose salient properties are given in Table 3.3, below. The DNGM oven consists

of a “pump block” joined to a “maser block” by an annular Nylatron spacer. The

assembly is designed to provide structural support for the double bulb cell as well as

for the maser chamber pickup coil (Section 3.7.3) and pump chamber Zeeman drive

coil (Section 3.4.2). Optical access to the pump bulb is provided by anti-reflective

coated optical flats (Section 3.4) glued into detents cut in the pump block. The

multi-block design allows the necessary thermal isolation of the hot pump chamber

(∼ 110 C̊) from the cooler maser chamber (∼ 40 C̊); and blown air access to each

chamber provides a means of achieving the temperature control required for stable
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property value

continuous service
temperature in air 120 C̊

(maximum)

coeff. of linear
thermal expansion 3.5× 10−5

(inch/inch-◦F)

volume resistivity 2.5× 1013Ω−cm

melting point 260 C̊

Table 3.3: Properties of Nylatron GS, available from AIN Plastics, Norwood, MA.

maser operation.

Figures 3.4 and 3.5 give detailed machine drawings of the pump and maser

blocks, and Figure 3.6 shows a machine drawing of the connecting Nylatron spacer.

1/4” NPT holes are tapped in both the pump and maser blocks to accommodate

compressed air fittings. Also note that the bore of the maser block is designed to

accommodate the resonant pickup coil form depicted in Figure 3.30. Small, 1 inch

diameter detents on the pump block provide recesses for the forms on which are

wound the Zeeman depumping drive coils (Section 3.4.2). Figure 3.7 shows a view

of the assembled oven components, as viewed along the direction traveled by the

optical pumping laser beam.

The assembled oven rests inside a Nylatron “shroud,” machined to fit snugly

inside the bore of the DNGM solenoid (Section 3.5). A machine drawing of the

shroud is given in Figure 3.8. The gradient trim coils described in Section 3.5.4 are

wound in grooves cut into the surface of the shroud, as shown. A photograph of the

oven and shroud assembly is given in Figure 3.9, and front and side views of the

oven, shroud, and solenoid assembly are provided in Figures 3.10 and 3.11. Note
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Figure 3.4: Machine drawing of the DNGM pump block, fabricated from 2” thick
Nylatron GS sheet.

that the ends of the shroud are sealed by 1/4” thick Nylatron plates. The plates

have optical access holes cut into them, as well as holes and strain relief points for

compressed air tubing, electrical wires, etc. A machine drawing of the front plate

downstream from the optical pumping laser is shown in Figure 3.12.
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Figure 3.5: Machine drawing of the DNGM maser block, fabricated from 2” thick
Nylatron GS sheet.
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Figure 3.6: Machine drawing of the spacer connecting the pump and maser blocks,
fabricated from 3” diameter Nylatron rod stock.
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Figure 3.7: View of the assembled DNGM oven components, as viewed along the
direction traveled by the optical pumping laser beam.
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Figure 3.8: A design drawing of the DNGM shroud assembly. Notice the grooves
for gradient trim coils cut on the outer surface.
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Figure 3.9: A photograph of the DNGM shroud and oven block assembly.
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Figure 3.10: End-on view of DNGM oven, shroud, and solenoid assembly.
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Figure 3.11: Side view of DNGM oven, shroud, and solenoid assembly.
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Figure 3.12: Drawing of the plate sealing the downstream (from the optical pumping
LDA) end of the DNGM shroud assembly. Notice the large square hole at the height
of the pump chamber for optical access, as well as the various holes and strain relief
points for compressed air tubing, electrical wires, etc.
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3.3 Blown Air Temperature Control

Stable frequency operation of the DNGM requires precise temperature control of

the optical pumping and masing regions, and also of the double resonator circuit

components (Section 3.7.3). Cell temperature instability causes changes in Rb mag-

netization in the optical pumping region (Section 3.4.2) as well as changes in the

density distributions of the noble gases ensembles, thereby affecting 129Xe and 3He

magnetization levels throughout the cell. Temperature fluctuations also affect the

noble gas polarization lifetimes T1 and T2 and the DNGM’s co-magnetometry, both

by changing the interactions between the atoms and the cell walls [55], and by

changing the noble gas diffusion constants (Section 2.3). Temperature fluctua-

tions in the double resonator circuit components degrade the performance of the

DNGM by changing the cavity pull frequency shift (Equation 3.20). The effects

of temperature-dependent frequency shifts on the measurement resolution of the

DNGM are discussed thoroughly in Sections 2.6 and 3.7.5. We describe now the

implementation of the DNGM’s blown air temperature control systems. Note that

the temperature environment of the DNGM laboratory is maintained at ≈ 24 C̊,

with characteristic oscillations of ≈ ±0.1 C̊ (due to the on–off nature of the air

conditioning unit) at 1.6 mHz, as shown in Figure 3.13.

The DNGM pump bulb and maser bulb are contained in thermally separated

pump and maser blocks, as described in Section 3.2. Temperature control of these

regions, as well as of the external resonator,6 is achieved using standard bridge

measurement techniques, combined with PID feedback control to a heated airflow

system (Figure 3.14). As the methodology for controlling temperature is the same in

each region, we first discuss the general aspects of the control system, and afterward

6The external resonator is contained in separate, thermally and electrically isolated enclosure,
as described in Section 3.7.3.
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Figure 3.13: Temperature of the DNGM laboratory environment over a typical 24
hour period. The thermal sensor (RTD) was located near the maser signal processing
pre-amplifier. The room’s air conditioning unit induces temperature oscillations of
≈ ±0.1 ◦C at 1.6 mHz.

comment briefly on issues distinct to each individual region. Table 3.4 summarizes

salient characteristics of the temperature control systems in each region. Note that

an excellent description of how to measure and control temperature can be found

in [56].

Figure 3.14 shows a schematic of the DNGM temperature control system. The

temperature sensors are three-lead, 100 Ω non-magnetic, platinum resistance ther-

mometers (RTDs7), with lead-resistances r shown in the diagram. The resistance of

each sensor is a linear function of temperature: R = 100 + .384 · T , where R is in Ω

and T is in C̊. In order to allow sensitive temperature resolution (∼ .1 mK) with

small bridge currents8(∼ 2 × 10−5 A), each RTD is part of a standard, balanced

7Available from Omega Engineering, www.omega.com.
8Larger currents produce self-heating of the RTDs and, more important, produce associated

noise fields which are picked up by the maser detection coils in proximity to the RTDs.
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Figure 3.14: General schematic of the DNGM’s blown air temperature control sys-
tems. The input voltage lockin detector, Vin, is the bridge output voltage multiplied
by the pre-amplifier gain G.

temperature bridge energized by an AC drive voltage (typically 4 mV RMS at 950

Hz) provided by the internal reference of an SRS 830 digital lockin amplifier. The

buffered and pre-amplified bridge output voltage is given by

Vin = G · Vdrive
(

R

R +Rs

− 1

2

)
, (3.1)

where G is the amplifier gain, Vdrive is the drive voltage provided by the lockin, R is

the resistance of the temperature sensor, Rs establishes the temperature setpoint of

the control loop, and the lead resistances r (approximately equal for each lead) are

assumed to be much smaller than R, with one lead resistance on each arm of the

bridge. Bridge resistors Ro and Rs have temperature coefficients smaller than 10
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ppm/ C̊.9 Typical values for these resistors are: Ro = 120 Ω, Rs = 144.2 Ω (pump

bulb), Rs = 115.9 Ω (maser bulb), Rs = 111.3 Ω (external resonator).

Lockin detection of the voltage Vin produces a DC error signal which is passed to

a high performance PID (proportional-integral-differential) temperature controller.

The output voltage from the PID controller (Vctrl) is amplified by a voltage controlled

power relay and then passed to an air process heater. (Vctrl typically includes a DC

offset to maintain rough temperature control, plus a variable correction voltage to

account for system temperature deviations.) A precisely regulated flow10 of air

through the process heater and into the region to be controlled supplies the variable

heating power required to maintain temperature control. A higher flow rate into the

control region reduces the thermal time constant11 of the temperature lock loop and

thus permits more stable control of the temperature [56]; but as detailed in Section

2.6, phase and frequency noise on the maser increase with larger air flow rates,

primarily because of mechanical jitter induced on resonant circuit elements. The

DNGM is presently operated with a total of 100 slm (standard liters per minute) of

air flowing through all three chambers, with approximately 55% going to the pump

block, 27% going to the maser block, and 18% going to the external resonator (see

Table 3.4 for typical thermal time constants and other important parameters).

We now enumerate important aspects of the DNGM blown-air temperature con-

trol system that have not yet been discussed, and summarize in a concluding table

parameters that may be of interest to the reader.

• Pump chamber: Absorption of near-infrared light from the optical pump-

9Vishay type S102K .1% resistors, available from Vishay Precision Resistors, 63 Lincoln High-
way, Malvern, PA 19355.

10The air flow is regulated by an MKS Type 1500 Series Mass-Flow Controller, 200 slm maximum
capacity. MKS Industries, 6 Shattuck Road, Andoover, MA 01810.

11The thermal time constant is measured by setting the integration and differentiation times of
the PID loop to zero, while setting the DC gain to as high a value as possible. The system will
then exhibit an oscillatory temperature with period τthermal.
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ing laser contributes substantially to heating of the pump chamber. Feedback

control to the total output power of the laser stabilizes this contribution (Sec-

tion 3.4). Romalis estimates in [40] that for a thermal configuration similar to

that of the DNGM, gas temperature inside the target cell may be as much as

10 C̊ warmer than the air temperature sensed ∼ 1 cm outside the cell. The

pump chamber RTD is located in the top cap of the pump block, shielded from

optical pumping light. Estimates of thermal gradients across the interior of

the pump block, but outside the pump bulb, are ∇T ∼ .1 C̊/cm. In spite of

these large gradients, the RMS fluctuations on a monitor RTD placed in the

pump chamber ∼ 10 cm from the control RTD are approximately the same as

the RMS fluctuations of the control thermometer (∼ 20 mK, see Table 3.4).

The operational temperature of 114 C̊ is essentially the maximum temperature

attainable in the pump chamber with the present system configuration and a

pump block air flow rate of 55 slm. The dependence of maser amplitudes and

frequency performance on pump bulb operating temperature have not been

carefully studied.

• Maser chamber: The control RTD is heat-sunk to the pickup coil. It is

found that the temperature of the coil, in the presence of pump chamber

heating only, is ≈ 37 C̊. A temperature setpoint of ≈ 41 C̊ provides ample

dynamic range for the feedback loop.

• External resonator: The control RTD is heat-sunk directly to the outer

layer of the external resonator coil. As described in Section 3.7.3, the coil

is contained in a separate blown air oven which is placed inside thermally

insulated metallic shields. Because of the large thermal mass of the copper

coil and the relatively modest air flow rate to the oven, the thermal time
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constant for this region is quite large (∼ 200 sec).

parameter pump block maser block external resonator

air flow rate (slm) 55 27 18
thermal time constant 30 s 100 s 200 s
operating temperature 114 C̊ 41 C̊ 29 C̊

RMS temp. fluctuations 20 mK 11 mK 3 mK
sidereal temp. variations – .8 mK .04 mK

Table 3.4: Typical parameters for the three DNGM blown-air temperature control
subsystems. The integration time constant of each PID loop is set as close as possible
to the measured intrinsic thermal time constant of the system.

3.4 Optical Pumping System

As described in Section 2.2, the 129Xe and 3He nuclei are polarized by spin-exchange

interactions with optically pumped Rb vapor. This section describes the lasers,

optical components, and control systems used to produce stable σ+ light resonant

with the pressure-broadened Rb D1 line (794.8 nm).

3.4.1 Overview

We first note that all DNGM data gathered before December, 1999 were obtained

while using an Optopower12 OPC-A015-FCPS laser diode array (LDA). A detailed

characterization of the properties of eleven such Optopower arrays, including pre-

sentation of a method for stabilizing the spectral output of the particular unit used

to take DNGM data, is presented in our group’s paper [57]. In December, 1999 the

Optopower array was replaced with a higher-power Coherent13 FAP-I array. The

12Optopower Corporation, 3321 E. Global Loop, Tucson, AZ 85706.
13Coherent, Semiconductor Group, 5100 Patrick Henry Drive, Santa Clara, CA 95054-1112.
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Figure 3.15: A photograph of the LDA optical fiber, collimating lenses, λ/4 plates,
and polarizing beam splitter cube used in the DNGM experiment. The optical setup
is situated approximately 1 foot from the end of the outer µ-metal shield.

operational principles of both LDA models are similar. The Coherent unit, however,

has twice the total on- (and off-) resonant output power and has exhibited better

intrinsic stability than the Optopower arrays. We thus describe the DNGM optical

pumping system as it is presently configured, with the Coherent unit as the source

of optical pumping light.

Table 3.5 gives operational parameters for the Coherent (and Optopower) LDA

under typical conditions. The line-shape and total power of the LDA spectrum

are adjusted by controlling the injected current to the diode bar and the operating

temperature of the bar. Light emitted from the LDA is coupled to an optical

fiber bundle (5 m in length), and then passed through a pair of collimating lenses

to produce a spot size roughly the same diameter as the target pump cell. The
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Operating parameter Optopower LDA Coherent LDA

total broadband power 15 W 30 W
spectral width 1.8 nm 1.5 nm

operating current 25 Amps 38 Amps
diode bar temperature 24.5 C̊ 18 C̊
length of fiber bundle 3 m 5 m

Table 3.5: Typical operational parameters for the Optopower and Coherent LDAs
used in the DNGM experiment.

initially unpolarized beam is imparted σ+ helicity by passage through a polarizing

beam splitter cube followed by passage through a λ/4-plate plate.14 AR coated

windows (reflection coefficient for resonant light ≤ 1%) provide optical access to

the DNGM oven assembly and DNGM pump bulb. Figure 3.16 shows a schematic

diagram of the optical components described above.

3.4.2 Measuring the Relative Rb Magnetization in the Pump

Bulb

In this section we describe a method for measuring the relative level of Rb mag-

netization (Mrb = [Rb] · Prb) in the pump bulb. Knowledge of Mrb is extremely

important, as it provides a real-time diagnostic used to optimize laser steering, laser

fiber orientation, and the operating temperature of the laser diode bar. The rela-

tive value of Mrb also provides one of the two signals used to stabilize (indirectly)

the noble gas polarization in the pump bulb (Section 3.4.3). The techniques de-

scribed in these sections can be generally applied to monitor and stabilize the Rb

magnetization in any cell being optically pumped by a tunable, broadband LDA.

To monitor the relative level of Rb magnetization, a weak, transverse oscillating

14The use of a wave plate with variable retardance (LCVR) will be discussed in Section 3.4.3.
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Figure 3.16: (a) A schematic of the optical components used in the DNGM ex-
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(Rabi) magnetic field is applied to the cell at the Rb Zeeman frequency, ∼ 700 kHz

under typical running conditions (Section 2.2.1). In the absence of such a field, the

Rb polarization is given by

Prb,off =
γopt

γopt + 1/T1

, (3.2)

where γopt is the optical pumping rate (Equation 2.8), T1 is the polarization lifetime

of the Rb atoms (Section 2.2.1), and the subscript “off” indicates the Zeeman drive

is inactive. If the Zeeman drive is turned on, however, the Rb polarization takes the

form [34,37,43]

Prb,on =
γopt

γopt + 1/T1 +
(
γ1B1

2

)2
T2

, (3.3)

where
(
γ1B1

2

)
measures the average strength of the co-rotating component of the

Zeeman drive. (Note that the Rb polarization reaches equilibrium with the Zeeman

drive in ∼ 1 msec, a timescale much shorter than all dynamic processes of interest

in the DNGM.)

The applied Zeeman field thus reduces the Rb magnetization, assuming the Rb

density (a function of the pump bulb temperature) is stable. In the DNGM we

typically use a Zeeman drive that reduces Mrb by ≤ 5%, which in turn proportion-

ally increases the absorption of the LDA optical pumping light. The LDA light

transmitted through the pump bulb passes through a ground-glass diffuser and is

then incident upon a photodiode detector (PDD).15 The diffuser both reduces the

beam intensity (to prevent potential saturation of the photodetector) and performs

15We stabilize the temperature of all photodetectors used in the DNGM experiment to approxi-
mately 50 mK RMS. The fractional temperature coefficient of each photodetector’s output voltage
has been measured to be approximately 10−4/ C̊. Temperature stability of 50 mK thus yields frac-
tional optical detection resolution of ∼ 5 × 10−6, well below the limitations imposed by intrinsic
noise sources in the detection system.
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Figure 3.17: Plot of the relative value of Mrb versus temperature in the diode bar
of the Coherent LDA, for fixed I = 37 amperes. DNMG 17, page 119.

a spatial average over the light from various fibers of the LDA and over refractive

distortions introduced by the glass cell. The amplitude of the Zeeman drive is mod-

ulated slowly16 (νmod ∼ 400 Hz). Lock–in detection at νmod permits extraction from

the photodiode detector a signal proportional to the Rb magnetization in the pump

bulb.

Knowledge of the relative value of Mrb provides several means for improving the

optical pumping rate γopt (Equation 2.8). Most simply, fine adjustments to the LDA

steering and fiber-bundle orientation can be carried out to increase the detected Rb

signal. For the Coherent LDA, the total optical pumping power increases mono-

tonically with the value of the current through the diode bar; hence the laser is

typically operated with I very near its maximum value. To tune the light to the

Rb D1 transition (794.8 nm), the temperature of the diode bar is adjusted until the

Rb magnetization signal is maximized. For example, figure 3.17 shows a plot of the

relative value of Mrb versus diode bar temperature for fixed I = 37 amperes.

16“Slow” being in comparison to the Rb polarization lifetime, which is typically ∼ 1 msec.
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3.4.3 Stabilizing the Optical Pumping Light

Temporal drifts in the resonant LDA optical pumping power can lead to significant

changes in the Rb polarization (Prb). Changes in the total LDA power incident

upon the cell can also affect the cell temperature and thus the Rb vapor density

([Rb], see Equation 3.5). These two parameters determine the noble gas nuclear

spin polarization (Png) induced by spin exchange collisions with the Rb vapor. Png

is given approximately by (Section 2.2.2)

Png =
Prbγse

γse + 1/T1

, (3.4)

where T1 is the polarization lifetime of the noble gas set by interactions with cell

walls, etc., and γse is the Rb–noble gas spin–exchange rate, which is proportional to

[Rb]. Drifts in both the resonant and total LDA power can thus lead to significant

changes in the noble gas polarization. This polarization drift will also change the

net magnetic field created by the noble gas spin ensembles and the functioning of the

two-species magnetometry, thereby affecting the frequency stability of the DNGM,

as described in Section 2.6. To reduce these sources of frequency instability, we

employ a two–loop feedback technique to stabilize both the total output power of

the LDA and the power on the Rb D1 resonance. A schematic depiction of the

feedback system is shown in Figure 3.16.

The first feedback loop monitors the total power from the LDA with a chopper,

a temperature–stabilized photodetector, a lockin amplifier, and a PID controller. A

small portion of the laser beam is picked off using a microscope slide, and a ground-

glass diffuser in the light path between the chopper and photodetector reduces the

sensitivity of the measured LDA power to beam steering drifts. The current injected

into the LDA is adjusted by the feedback loop to maintain constant power on the
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photo-diode. By this technique we control the total emission power of the LDA

with a fractional stability of a few parts in 104, roughly an order of magnitude more

stable than in free-running operation. This feedback loop maintains a constant heat

load on the Rb/noble gas sample cell due to illumination by the LDA, reducing

fluctuations in the cell temperature and thus the Rb density.

A second feedback loop directly controls the Rb magnetization in the pump bulb,

thereby indirectly controlling the LDA power on the Rb D1 resonance, and hence

Prb. The Rb magnetization is measured with the Zeeman drive technique described

in Section 3.4.2. With a slight sacrifice in total Rb magnetization, the feedback

loop stabilizes the Rb magnetization by adjusting the degree of circular polariza-

tion imparted to the LDA light by the waveplate bearing the moniker “LCVR” in

Figure 3.16. The LCVR is a Liquid Crystal Variable Retarder, manufactured by

Meadowlark Optics (www.meadowlark.com). The LCVR functions as a standard

birefringent waveplate over a wide wavelength range (∼ 200 nm), with the added

property that the refractive indices of the fast and slow optical axes can be changed

by applying an electrical waveform at frequency ν = 2 kHz. For example, for light

at λ = 850 nm, the retardance can be tuned over the range λ/20 to λ, thus enabling

easy production of right- or left-circularly polarized light. If the LCVR is initially

set such that its retardance results in ≈ 10% less Rb magnetization than maximally

possible, the second lock loop can correct for all reasonable temporal variations in

Mrb.

This two–loop feedback technique produces a fractional stability of the Rb mag-

netization of ∼ 1 × 10−3 as measured by a monitor lockin amplifier sensing Mrb in

parallel with the control lockin. This is an improvement in Rb magnetization sta-

bility of roughly a factor of 10 over the free running LDA. Figure 3.18 compares the

relative Rb magnetization levels without and with the two feedback loops engaged.
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With the loops engaged, there is no discernible drift on the magnetization trace over

timescales of several days.

Independent confirmation of stable Rb magnetization is provided by the im-

proved amplitude stability of the DNGM 129Xe and 3He amplitudes. Figure 3.16

shows the typical observed improvement in maser amplitude stability of more than

an order of magnitude when the LDA stabilization technique is employed. As a

reminder, the importance of maser amplitude stability to DNGM performance is

discussed in Section 2.6.

3.4.4 Future Work

While the optical control systems implemented to date have improved the amplitude

and frequency stability of the DNGM substantially (Section 3.4.3), the addition of

a spectrally stable, narrow-band probe laser (with requisite optical isolator) could

improve the stability of the DNGM even further.

Recall that the level of longitudinal noble gas polarization in the DNGM pump

bulb depends on both the Rb density, [Rb]; and the Rb polarization, Prb (Equation

3.4). A single mode diode laser at the D1 resonance of Rb has a typical linewidth of≤

4 MHz [57], much less than the 16-18 GHz pressure-broadened Rb line in a typical

DNGM cell. The beam from such a laser could be split into a linearly polarized

portion and a circularly polarized portion, each optically chopped at different rates,

passed through the DNGM cell, and detected with a photodiode. The linearly and

circularly polarized beams would probe in real-time the density and polarization,

respectively, of Rb in the pump chamber. Both signals could then be normalized

by the total output power (now entirely on resonance) of the narrowband laser.

Feedback to the pump chamber temperature control system would lock the Rb
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Figure 3.18: Measured variation in the pump bulb Rb magnetization (Mrb) with and
without the two optical feedback loops engaged. The mean value of the photodiode
detector output voltage (≈ 1 mV) has been subtracted from both traces. The
1.4 mHz oscillations correlate with room temperature cycling of ∼ 300 mK RMS,
although the causality is not well understood. DNMG 17, page 120-138.
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density, and feedback to the LCVR would lock the Rb polarization. This scheme

has the additional benefit of providing knowledge of the mean temperature inside

the pump bulb, via the formula:

[Rb] =
10(9.318− 4040

T )

1.38× 10−17 · T , (3.5)

where [Rb] is the Rb number density in cm−3 and T is the temperature in Kelvin [58].

3.5 Magnetic Field Environment

In this section we describe the implementation of the magnetic shields, solenoid and

gradient trim coils used to produce the homogeneous magnetic field required for

operation of the DNGM. For an excellent reference on some of the topics discussed

here, the reader is referred to Hanson and Pipkin’s paper of 1964 [59]. Note that a

thorough discussion of the effectiveness of the 129Xe co-magnetometer is presented

in Section 3.6.

3.5.1 Magnetic Shielding

To provide isolation from inhomogeneous DC magnetic fields and ambient audio-

frequency noise, the DNGM oven and solenoid assembly are housed inside three

concentric, cylindrical magnetic shields (Figure 3.19). The shields are rolled from

.062 inch thick µ-metal17, which was shaped, seam-welded and annealed prior to

delivery.18 The effectiveness of the shields in screening out quasi-static magnetic

fields was assessed in March, 1999. A fluxgate magnetometer probe [61] (∼ 1 µG

17The skin depth of µ-metal is .019” at 60 Hz and .003” at 1 kHz [60].
18CoNetic AA Alloy, available from Magnetic Shield Corp. 740 North Thomas Drive, Bensenville,

Illinois.
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Figure 3.19: Scale drawing of the µ-metal shields used in the DNGM experiment.
The ends of each shield feature 5.0 inch diameter holes to provide electrical, optical
and blown air access to the DNGM oven assembly. The shields are oriented east-
west in the laboratory frame, with the removable endcaps at the end farther from
the optical pumping laser.
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sensitivity) was placed in the center of the three nested shields. A hexagonal coil

with a circumference of 25 feet was placed on each side the shield setup. The coil

centers were separated by a distance of 90” and had area moments which were par-

allel to each other but perpendicular to the shield symmetry (z) axis. A current of 2

Amperes was passed through each coil and the z-component of the magnetic field at

the probe location was recorded. The shields were then removed, and the measure-

ment was repeated. The ratio of the measured field values Bnoshields/Bshields yielded

a transverse shielding factor of ≈ 20,000. To measure the longitudinal shielding

factor, a similar measurement was carried out using a single square coil of circum-

ference 25 feet, centered on the shield symmetry axis. The longitudinal shielding

factor was measured to be ≈ 900. To estimate the spatial dependence of shielding

factors, the above measurements were performed with the probe at several different

z-positions inside the shields, with the result that the transverse and longitudinal

shielding factors varied by less than 10% when the probe was moved ± 10 inches

along the z-axis.

After prolonged exposure to an ambient magnetic field (∼ 1 gauss for both

the DNGM solenoid field and the earth’s field in the laboratory), µ-metal may

acquire a degree of magnetization which degrades its ability to screen out external

magnetic fields. To restore shielding effectiveness, a de-gaussing procedure was

implemented following every re-assembly of the DNGM and after every reversal

of the solenoidal magnetic field. De-gaussing was always done with the solenoid

field on and with the system at its expected operating temperature. A large 60 Hz

axial current (Iz ≈ 200 cos(2π · 60 · t) A) was passed along a copper cable through

the center of the shields, thereby saturating the magnetic domains in the µ-metal.

Such a current reverses the field direction 60 times per second, forming a hysteresis

loop. By increasing and then reducing the amplitude of the applied current to zero
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in ∼ 30 seconds, the area enclosed by such a loop shrinks to zero adiabatically,

effectively demagnetizing the µ-metal. It should be noted that as of the writing

of this thesis, the demagnetization procedure outlined above has produced only

minimal improvements in the best-attainable values of the noble gas transverse

coherence times (T2). Because the skin depth of µ-metal is .019” at 60 Hz, it is

likely that only the innermost annular portion of the inner shield (thickness .062”)

was de-gaussed effectively using available 60 Hz wall current. An alternating current

source of frequency .5 Hz would produce a magnetic field with skin-depth ≈ .20”,

which should be large enough to allow effective de-gaussing of all three shield layers

at currents substantially less the 200 A, albeit with a very slow ramp-up/ramp-down

cycle. Future work on the DNGM should incorporate such a current source.

3.5.2 Main Solenoid

The static field used to split the 129Xe and 3He nuclear Zeeman sublevels is produced

by a single layer solenoid magnet wound from 25 AWG copper wire.19 The magnet

was wound on an a hollow aluminum cylinder which was turned at approximately

10 rpm by one person while a second person laid wire with great precision onto the

aluminum surface. The completed layer was painted with marine spar varnish (lac-

quer) to prevent small excursions of the windings due to vibrations and mechanical

stress. Table 3.6 summarizes salient properties of the completed solenoid.

It should be mentioned that the first DNGM magnet (circa 1997) was a two-layer

solenoid, designed primarily to reduce the effects of unpaired line-currents flowing to

and from the ends of a single-layer solenoid. Laying wire on the surface of the first

layer proved quite difficult, resulting in a systematic irregularity in the windings of

1925 HAPT polyester-amide wire, available from MWS Wire Industries, 31200 Cedar Valley
Drive, Westlake Village, CA 91362, (818) 991-8553. Wire thickness = .020”, including insulation.
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solenoid parameter value

diameter of windings 9.375 ”
wall thickness .060”

length 44.5”
turns density 50/inch
DC resistance 182.2 Ω

in-situ inductance 287 mH
vacuum inductance ≈ 250 mH

Table 3.6: Characteristics of the solenoid used in the DNGM experiment. The DC
resistance was measured at room temperature. The in-situ inductance value refers
to the measured inductance with the solenoid installed in its canonical location
(in proximity to the magnetic shields and other metallic objects). The vacuum
inductance is the rough estimated value for an isolated solenoid with the same
geometry and turns density as the DNGM solenoid.

the second layer. Not surprisingly, the resultant field homogeneity when both layers

were energized was ∼ 3 times worse than when only the inner layer was energized

(based on measurements of the best-attainable 129Xe T2, logbook DNGM-3). The

solenoid described in Table 3.6 (fabricated in 1999) was thus crafted with only one

layer. Adverse effects on the maser T2 arising from axial end-currents have not been

observed, even when the current-carrying end leads (one lead at each end of the

solenoid) are deformed and flexed during FID measurements. This is perhaps not

surprising, as the DNGM cell resides approximately 5 solenoid diameters from either

end of the magnet.

3.5.3 Estimate of Solenoid Bz Homogeneity

The presence of axial magnetic field gradients inside the DNGM, from any source,

will reduce the transverse coherence times T2 of the 129Xe and 3He ensembles and

thus degrade the frequency measurement precision of the DNGM. Transport effects

between pump and maser bulbs, as well as contributions from noble gas dipolar
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fields to the dephasing time, made it unfeasible to use a standard two-bulb DNGM

cell to assess the basic performance capabilities of the completed solenoid. Instead,

such tests were performed (without shim coils) using a single bulb near-spherical

cell which contained a mixture of 266 Torr of 3He, 228 Torr of 21Ne, and 31 Torr of

N2 buffer gas. The expression for T2 in a spherical cell of radius R is given by [20]

1

T2

=
8R4 |γ∇Bz|2

175D
(3.6)

where γ is the gyromagnetic ratio and D is the total diffusion constant, which under

our operating conditions was given by

Dhe =

(
1

Dhe−he
+

1

Dhe−he
+

1

Dhe−n2

)−1

=
(

1

6.96
+

1

4.936
+

1

27.51

)−1

= 2.61 cm2sec−1

With this test set-up γhe = 2π·3243.4 Hz/G,R = .290 inches, and we measured a 3He

T−1
2 = 8.2×10−4sec−1 at a field of 1.5 Gauss. We thus determined a volume average

estimate for the field inhomogeneity produced by the solenoid: |∇Bz| ≈ 20 µG/cm.

It should be noted that the laser was turned off during this measurement to eliminate

the effect of Rb magnetization fields on the measured value of T2.
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3.5.4 Gradient Trim Coils

To first order, axial magnetic field gradients induce the following relaxation rate for

transverse noble polarization in a cylindrical cell [20]:

1

T2

=
L4γ2

120D

∣∣∣∣∣∂Bz

∂z

∣∣∣∣∣
2

+
7a4γ2

96D

∣∣∣∣∣∂Bz

∂x

∣∣∣∣∣
2

+

∣∣∣∣∣∂Bz

∂y

∣∣∣∣∣
2
 , (3.7)

where D is the total diffusion constant, γ is the gyromagnetic ratio, L is the cell

length, and a is the cell radius (in DNGM cells, ≈ 2 cm and .64 cm respectively).

Recall that in our geometry ẑ points along the applied static magnetic field (quan-

tization) axis and ŷ points along the direction of the transfer tube.

To provide a means for reducing the size of the components of ∇Bz, trim (also

called “shim”) coils were laid into grooves on the DNGM oven shroud (Figures 3.8

and 3.9). Reference [59] discusses in some detail the theory and design of gradient

trim coils. In the DNGM, the ∂Bz/∂x and ∂Bz/∂y coil pairs each have diameter

7.75”, center to center spacing 3.80”, and are wound from 25 AWG single-strand

wire in a Golay (saddle) configuration. Figure 3.20 shows a schematic of the coil

used to trim ∂Bz/∂y. The x-trim coil is identical, but rotated by π/2. ∂Bz/∂z is of

course trimmed by using a Maxwell pair,20 with diameter 7.75” and center to center

spacing 3.80 inches.

20A Maxwell pair coil has only odd powers of z in the Taylor expansion of Bz(z), thus producing
no net field at z = 0. When separated by the anti-Helmholtz spacing (center to center spacing

√
3

times the coil radii), the coefficient of z3 vanishes at z = 0. Clearly future work with the DNGM
should incorporate properly spaced grooves for the Maxwell pair, as the present configuration
yields a non-vanishing coefficient of z3 at z = 0.
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Figure 3.20: Schematic drawing of the y-trim coil used in the DNGM experiment.
The x-coil is identical, but rotated by π/2. The trims are wound of 25 AWG wire
in grooves whose dimensions are shown in Figure 3.8.

3.5.5 Maximization of the Transverse Coherence Time in

the Absence of Masing

Maximization of T2 for both 3He and 129Xe in a double-bulb cell consists of mini-

mizing the components of the gradient of Bz (Equation 3.7). To do this, the oven

is initially placed in the center of the solenoid. With both species fully polarized,

the 129Xe T2 is measured from a free induction decay (FID, Section 4.2) using a

small tip angle, θtip ≈ 100 (129Xe is used because of its more rapid polarization. We

generally found similar results if 3He was used.) For recent cells, raw detected signal

levels have been ∼ .2 µV just after the tip was applied. The oven is then moved ∼

1 cm in the ± z-direction and the measurement repeated. After four or five data at

different z-positions are gathered, a curve fit to the function T−1
2 = γ0 +k(z−z0)2 is

performed. The oven is then placed at z0, the empirically determined “sweet-spot”

of the solenoid, i.e., the position of maximum 129Xe T2 . Figure 3.21 shows a plot

of the 129Xe T2 vs. z for an installation of cell SE3 (lab book DNGM-18, page).
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Figure 3.21: Plot of the measured 129Xe T2 vs. z (the distance in cm of the maser
cell center from the geometrical center of the solenoid; +ẑ points away from the
optical components and toward the cell). Cell SE3, DNGM-18, page 30.

After locating the oven at its optimal z-position, the current through each of the

gradient trim coils (Section 3.5.4) is adjusted independently to further increase the

measured 129Xe T2 (i.e., to reduce the size of the gradient terms in Equation 3.7).

The procedure followed is almost always the same for each installation. The trims

are generally adjusted in the order y, z, x, corresponding to the fact that the y-trim

generally has the largest effect on improving T2 because of the dominant effect of

field gradients created by noble gas magnetization in the transfer tube. Figure 3.22

shows a plot of the increased 129Xe T2 as a function of the current in each gradient

trim coil for a recent installation of cell SE3.

After adjustment of the gradient trim coils is complete, a final FID measurement

extracts the optimized 129Xe and 3He T2 values. For example, results from the

trimming effort shown in Figure 3.22 were 129Xe T2 ≈ 330 seconds, and 3He T2 ≈

170 seconds.
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Figure 3.22: Example of the measured 129Xe T2 as a function of the current in each
gradient trim coil for a recent installation of cell SE3. Note that after the first trim
is adjusted, its current is left at the optimum value and the second trim is optimized,
and so forth. The trims were adjusted in the order y, z, x. DNGM-18 page 29.
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3.5.6 Bz Inhomogeneity Induced by Noble Gas Magnetiza-

tions

It is well-know that the field inside a sphere of uniform magnetization is itself uni-

form.21 In a double-bulb maser cell, however, the noble gas magnetizations are

non-uniform because of wall relaxation and spatially asymmetric input of magneti-

zation into the maser chamber. In addition, the double-bulb geometry is far from

spherical. The presence of noble gas magnetization can thus contribute to measur-

able inhomogeneities in the Zeeman field Bz. Here we describe a method (assuming

a spherical maser cell geometry and ignoring inter-bulb transport as well as T1 ef-

fects) which estimates the relative size of such noble gas-induced field gradients.

We also describe how reduction of noble gas fill pressures since the fall of 1998 has

largely eliminated the contribution of magnetization-induced field gradients to the

observed noble gas T2s.

Effect of Noble Gas Induced Field Gradients in Early DNGM Cells

The transverse coherence time for an ensemble of noble gas atoms in a spherical

cell is given by Equation 3.6. Let us write ∇Bz = α∇Bng + ∇B0, where Bng

is the z-component of the dipolar field produced by the noble gas species under

consideration at maximum polarization, and α ranges from 1 to -1, depending on

the polarization.22 B0 is the axial field from all other sources. Equation 3.6 can

then be re-written as a quadratic function of α:

1

T2

= f(α) =
8R4γ2

175D

[
|∇B0|2 + 2 cos(θrel)|∇Bng|| ∇B0|α + |∇Bng|2α2

]
, (3.8)

21This result actually holds for any ellipsoid of revolution with a uniform magnetization.
22We mean by α = 1 that polarization is at its maximum practical value for the current system

configuration, not that the polarization level is 100%.
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where θrel is the mean angle between the gradient fields. If data are taken for several

values of α and a curvefit is performed to extract the coefficients from the expression

f(α) = c0 + c1α + c2α
2, the ratio of the size of the noble gas induced field gradient

to other system gradients can be extracted:

|∇Bng|
|∇B0|

=

√
c2

c0

(3.9)

Figure 3.23 shows plots of the measured 129Xe T2 as a function of the relative

levels of 3He and 129Xe polarizations for an older, “full-pressure” DNGM cell (Pxe

= 200 Torr and Phe = 2300 Torr). Notice the change in the value of T2 as the

longitudinal polarization level of either species varies. Figure 3.24 shows data from

the same measurement, plotting the 129Xe T2
−1 as a function of the relative 129Xe

polarization (i.e., α). An analogous result holds when the 3He polarization is varied.

Shown also in Figure 3.24 is the best fit parabola used to extract the coefficients cj

from Equation 3.9. For these gas pressures (typical for all early DNGM cells), the

relative strength of the 129Xe magnetic field gradient to gradients from other sources

was
√

c2
c0
≈ 1.24.

Amplitude-Based Trimming of the Transverse Coherence Time

Recall from Section 2.4 that the equilibrium values for P⊥ and Pz of a noble gas

maser ensemble depend strongly on the transverse coherence time T2. But as shown

above, the value of T2 is itself a potentially strong function of noble gas longitudinal

polarization, which is altered by active maser oscillation. The optimized settings of

the gradient trim coils obtained by the FID methods of Section 3.5.5 are thus not

necessarily the optimal values for operation under masing conditions. To improve

system performance, it was necessary when using older, full-pressure DNGM cells
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Figure 3.23: Measured 129Xe T2 as a function of the relative levels of 3He and 129Xe
polarization. These data were gathered using an older, “full-pressure” cell, with a
129Xe pressure of 200 Torr and and 3He pressure of 2300 Torr.

to implement also a program of maser-amplitude based T2 trimming.

Under all operating conditions, the equilibrium maser amplitude is an increasing

function of T2, all other parameters being held constant (Section 2.4). Amplitude-

based T2 trimming consists of making discrete adjustments to the current pass-

ing through each gradient trim coil until the 129Xe maser amplitude is maximized,

thereby implicitly improving the value of T2 under masing conditions, while also

explicitly increasing the maser output signal. Re-equilibration times for a slightly

perturbed 129Xe maser are typically ∼ 2500 seconds. Adjusting all three gradient

coils (done independently) typically required 12 hours; and in full pressure DNGM

cells (pre-1999) this procedure increased both the 129Xe and 3He maser amplitudes

by ∼ 5 - 10%.
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Shown also is the best fit parabola used to extract the coefficients c2 and c0 from
Equation 3.9. These data were gathered using an older, “full-pressure” cell, with a
129Xe pressure of 200 Torr and and 3He pressure of 2300 Torr.

Reduction of Noble Gas Fill Pressures

Although amplitude-based trimming was used to improve maser coherence times

and output power, it was decided in the fall of 1998 to make a series of cells filled

with lower noble gas pressures than had been used historically. Estimates indicated

that the reduction of noble gas densities would result in smaller levels of steady-

state noble gas magnetization (reducing the size of Bng), while more rapid gas

diffusion would leave the magnetization flux (and thus the maser power) effectively

unchanged and would also reduce the spatial variation of the magnetization (and

hence the gradient of Bng).

For example, much of the symmetry test data presented in this thesis were
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taken using such a cell, SE3, which was filled with noble gas at reduced pressures:

150 Torr 129Xe and 1100 Torr 3He. As desired, the measured T2 for the 129Xe

and 3He ensembles in cell SE3 was not a strong function of the polarization level

of either species. For example, the best-attainable 129Xe T2 varied by less then

10% when α of both species was varied from 0 to 1 (compare with Figure 3.24).

Given this insensitivity of T2 to noble gas magnetization levels, it was not surprising

that amplitude-based trimming for cell SE3 did not result in any increase of maser

amplitudes. As a further test of the insensitivity of T2 to magnetization levels in the

reduced-pressure cells, the 129Xe T2 of cell SE3 was trimmed using the FID methods

of Section 3.5.5. The resonator was next turned on to resonance, and the system

allowed to attain maser equilibrium. The resonator was then disengaged and the

T2 of the subsequent 129Xe ringdown was measured to be 299 seconds, essentially

unchanged from the initial FID value with both species fully polarized and the

resonator off.

Although lower gas fill pressures appear to have reduced greatly the contribution

of magnetization-induced field gradients to the transverse dephasing rate, we are

considering lowering the 129Xe pressure even further for future work. In current

cells, the 129Xe storage time in the maser bulb (> 2,000 sec) is substantially longer

than the 129Xe T2 (∼ 300 sec). This difference between storage time and T2 is not

ideal, as depolarized 129Xe atoms contribute nothing to the maser output power, but

do impede the flux (energy transport) of polarized atoms into the interaction region,

and may degrade the DNGM’s co-magnetometry by inhibiting motional averaging of

atoms in the maser bulb. Increasing the diffusion rate of noble gas polarization from

the pump chamber to the maser chamber by lowering the 129Xe pressure could result

in greater maser powers for both species, and improved co-magnetometry. Future

work on the DNGM should include a thorough test of cells with 129Xe pressures in
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the range 20 - 150 Torr.

3.5.7 Choke Coils

Good solenoid design and proper use of the gradient trim coils were crucial for

producing the long transverse coherence times T2 required for stable 129Xe and 3He

maser oscillation. To further improve T2, and also to improve the effectiveness of the

129Xe co-magnetometer (Section 3.6), a simple attempt has been made to improve

the spatial uniformity of the masing (and freely precessing) noble gas ensembles.

The lowest portion of the transfer tube of each DNGM cell is wrapped with a series

of four adjacent “choke coils,” each one consisting of six turns of 25 AWG copper

magnet wire wound in a single layer, as shown in Figure 3.25. The segmented design

allows the reactive magnetic fields produced by the choke coils to adopt (to some

extent) a profiled spatial dependence, thus providing more effective flux exclusion.

Although a quantitative theoretical description of the interaction of the choke

coils with the noble gas spins and with the resonant pickup coil has not been car-

ried out, the qualitative effect is clear. Reactive back-currents (due to Lenz’s Law)

are induced in the choke coils by the time varying magnetic fields produced by the

resonant pickup coil and also by the precessing noble gas magnetizations. The mag-

netic fields produced by these choke coil currents tend to reduce the net transverse

tipping field B⊥ in the transfer tube. This reactive field also tends to reduce the

contribution of precessing magnetization in the transfer tube to the mean magneti-

zation signal sensed by the detection coil. Reducing contributions from atoms in the

transfer tube should improve the effective homogeneity of Bz, and hence T2, of the

masing ensembles. It should also improve the spatial uniformity of of both maser

ensembles, thereby improving the DNGM co-magnetometry. Table 3.7 shows the
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Figure 3.25: Photograph of a typical DNGM EDM cell, with “choke coils” installed,
as described in Section 3.5.7.

best attainable values of T2 for a typical full-pressure DNGM cell, with and without

choke coils installed. A direct comparison of co-magnetometer effectiveness with

and without choke coils has not been carried out.

3.5.8 Magnetic Field Stabilization

The solenoid and gradient trim coils are driven by a four-channel, homemade current

controller box. The output current on each channel is stable to approximately 10

ppm when free-running. In order to further stabilize the magnetic field environment

and provide real-time co-magnetometry, the solenoid field is controlled by phase-
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Species T2 without choke coils (s) T2 with choke coils (s)

129Xe 146 185
3He 99 132

Table 3.7: The best attainable values of T2 for DNGM cell 37, with and without
choke coils installed, DNGM 10, pages 117, 124, and 127.

locking the higher SNR 129Xe maser to an ultra-stable reference oscillator, as shown

in Fig. 3.1. For example, in the recent data runs of May 2000, the 129Xe maser was

locked at a frequency νxe = 1709.42 Hz. Section 3.7 describes in detail the signal

detection and processing systems in the DNGM. Here we focus on the operation of

the phase-lock loop (PLL), assuming other components are properly implemented.

After being buffered and multiplied 5000x by a low noise pre-amplifier (Sec. 3.7),

the 129Xe maser signal is sent to a Stanford Research System (SRS) digital lockin-

amplifier. This control lockin serves as a low-pass filter as well as a a phase-sensitive

detector (PSD) used in the operation of the loop, with an output of 10 Volts per

180 degrees of phase difference between the measured 129Xe signal and the stable

reference oscillator (a Wavetek model synthesizer phase-locked to a 5 MHz signal

derived from a hydrogen maser in our laboratory) . The output signal from the

PSD is then processed by a high-performance Linear Research 130 (LR130) PID

(Proportional-Integral-Differential) controller, the output of which is used as the

feedback adjustment to the solenoid current.

The performance of the magfield PLL is assessed and optimized by examining

129Xe phase-residuals (Sec. 2.5) over a 500 second interval, and then adjusting loop

parameters until the 129Xe phase data acquired with the monitor lockin amplifier

(Sec. 3.7) are as stable as possible. In practice, three parameters are adjusted in

order to improve lock loop performance. The low-pass filter on the PSD is always op-
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erated with a roll-off of 12 db/octave, while the high-frequency cutoff on the LR130

output is always set to a frequency of 333 Hz. The differentiation time constant is

kept at one-third the value of the integration time, as specified in the instrument

documentation. The remaining adjustable parameters are thus the time constant

of the PSD low-pass filter, and the integration time and DC gain of the LR130

PID controller. Table 3.8 shows example measurements of the standard deviation

of the 129Xe phase residuals (σφ) for several different settings of the adjustable loop

parameters. The DNGM is generally operated using the loop parameters that yield

the smallest value for σφ. If two sets of parameters yield roughly the same value

for σφ over 500 second intervals, then longer (∼ 6, 000 seconds) scans are compared

to determine the parameter set that results in the smallest Allan deviation in νhe.

Typically, proper trimming of the PLL improves the short-term phase stability of

the 129Xe maser by ∼ 50% after initial installation of the DNGM, although it is

not uncommon for PLL trimming to result in ten-fold improvements in 129Xe maser

phase noise. The frequency stability of the free-running 3He maser can be improved

by a a factor of ∼ 2 through proper lock loop optimization.

3.6 Co-magnetometer Effectiveness

The average z-component of the magnetic field seen by each maser is not static

in time. Fluctuations in Bz can result from changes in polarization distributions,

from the penetration of slowly-varying ambient magnetic fields into the interaction

region, or from the presence of small DC currents flowing through the high voltage

leads in an EDM cell (as described in Chapter 6). This section quantifies the the

effectiveness of the phase-locked maser in nulling out free-running maser frequency

shifts due to such magnetic field fluctuations.
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σφ (mrad) PID Gain PID integration time constant (sec) PSD time constant (msec)

.257 .1 .1 3

.251 .1 .1 10

.248 .1 .1 30
no capture .1 .1 100

4.40 .1 .3 1
2.5 .1 .3 3
.944 .1 .3 10
.280 .1 .3 30
.357 .1 .3 100
.350 .3 .1 3
.246 .3 .1 10
2.61 .3 .1 30

no capture .3 .1 100

Table 3.8: Example measurements of the standard deviation of 129Xe maser phase
residuals over a 500 second interval as a function of adjustable magnetic field lock-
loop parameters (lab book DNGM-16, p. 73). The data were sampled at 1 Hz with
a lockin filter bandwidth of 125 mHz and a roll-off of 12 dB/octave.

3.6.1 Theoretical Description

For a noble gas species with gyromagnetic ratio γng, the instantaneous detected

maser frequency23 takes the form

2πνng =

∫
γngη(r)Bz(r)P⊥(r)dV∫

η(r)P⊥(r)dV
, (3.10)

where Bz(r) is the z-component of the magnetic field, P⊥(r) is the noble gas trans-

verse polarization, and η(r) is a geometry-dependent factor which accounts for the

relative degree of magnetic flux coupling between atomic spins at position r and the

resonant detection coil.

Suppose the DNGM is initially operating in a magnetic field Bz(r) = B0(r),

23We are only considering the contributions to the maser frequency that are magnetic in origin.

106



with average maser frequencies νxe and νhe given by Eqn. 3.10. Suppose further

that the z-component of the magnetic field changes by a small amount ∆B(r).

With the 129Xe maser phase-locked, the PID servo will adjust the solenoid current

to produce a change ∆Bsol in the z-component of the solenoid field such that the

average detected 129Xe maser frequency does not change:

∆νxe =
γxe

∫
η(r)P⊥,xe(r)(∆B(r) + ∆Bsol(r))dV∫

η(r)P⊥,xe(r)dV
= 0 (3.11)

The change in the mean detected 3He frequency is then given by

∆νhe =
γhe

∫
η(r)P⊥,he(r)(∆B(r) + ∆Bsol(r))dV∫

η(r)P⊥,he(r)dV
(3.12)

If the 3He and 129Xe polarization ensembles have identical spatial distributions,

P⊥,he(r) ∝ P⊥,xe(r), then the 3He maser frequency shift is also zero. In reality, 129Xe

and 3He have quite different physical and chemical properties (see Table 1.1), hence

the masing ensembles for each species are distributed differently through the cell

and the 129Xe maser co-magnetometer will not function perfectly to isolate the 3He

maser frequency from variations in Bz.

3.6.2 Experimental Measurements

We now describe a series of measurements24 done to estimate the effectiveness of

the 129Xe maser co-magnetometer in response to different types of magnetic field

changes ∆B(r). In the first set of measurements, the gradient trim coils described

in section 3.5.4 were used to generate magnetic fields with three different spatial

24Lab books DNGM-14 and DNGM-15
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δνhe/δItrim (Hz/A) δνhe/δItrim (Hz/A)
gradient coil 129Xe maser 129Xe maser nulling ratio

free-running phase-locked

x-trim 290 .034 8520
y-trim 236 .275 859
z-trim 110 .192 572

Table 3.9: Results of co-magnetometer measurements carried out in April, 1999.

dependencies:25

z − trim : ∆B1z(x, y, z) ≈ ∆B1z(z) ≈ B1z(0) + z · ∂B1z(0)/∂z + . . .

y − trim : ∆B2z(x, y, z) ≈ ∆B2z(y) ≈ B2z(0) + y · ∂B2z(0)/∂y + . . .

x− trim : ∆B3z(x, y, z) ≈ ∆B3z(x) ≈ B3z(0) + x · ∂B3z(0)/∂x+ . . . (3.13)

With both masers free-running, a single trim coil was turned on to induce a mea-

surable frequency shift in both species. The 129Xe maser was then phase-locked,

and the measurement was repeated. The results shown in Table 3.9 reveal that the

129Xe maser co-magnetometer is not perfect, likely due to different spatial distribu-

tions of the 129Xe and 3He masing ensembles. Subsequent measurements were thus

performed to assess the potential impact of imperfect co-magnetometry on the LLI

and EDM tests reported in this thesis.

The sensitivity of the CPT and Lorentz symmetry tests detailed in Chapter 5

would be most compromised by magnetic field fluctuations with diurnal (sidereal)

periodicity. Because the longitudinal shielding ratio (see Sec. 3.5.1) of the µ-metal

shields is approximately 20 times worse than the transverse shielding ratio, the

25Recall that in our coordinate system the z-axis (quantization axis) points along the maser
chamber symmetry axis; the y-axis points along the direction of the transfer tube; and the x-axis
points in the direction of ŷ × ẑ.
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co-magnetometer response of the DNGM to an applied longitudinal external field

would set a strong upper bound on the systematic error caused by all ambient field

fluctuations. With both masers free-running, current was passed through a square

coil (circumference = 25 feet) looped around the center of the shield and solenoid

setup, resulting in a .510 Hz shift in the 3He frequency. The measurement was re-

peated with the 129Xe maser phase-locked, resulting in a 3He maser frequency shift

of 4.1 µHz. The co-magnetometer nulling ratio for longitudinal (east-west) fluctu-

ating fields in the laboratory was thus determined to be ≈ 124, 000. The typical

measured drift in the laboratory magnetic field over a day is ∼ 1 mG. Assuming a

longitudinal shielding ratio of 900 (Sec. 3.5.1) and a co-magnetometer nulling ratio

of 124,000, the 3He frequency drift over a day would be ∼ 26 nHz. The diurnal

components of such drift effects are typically much less than 10% of the total drift,

resulting in a conservative bound of 3 nHz on a co-magnetometer systematic error

in the LLI measurement reported in Chapter 5. This error is well below the present

sensitivity of the DNGM to CPT and Lorentz violation.

For the 129Xe EDM search, the most serious systematic maser frequency shift

would be one whose signature correlated linearly with the applied electric field.

A magnetic field resulting from current flow through the high voltage leads and

across the surface of an EDM cell could cause such a shift. We now describe a

measurement to assess the effectiveness of the 129Xe maser co-magnetometer at

nulling out frequency shifts due to leakage currents.

Six strands of 25 AWG copper wire were spaced equally and then laid longi-

tudinally along the maser chamber surface of cell S3 (see Fig. 3.26). The wires

were brought to a point at the ends of the maser chamber and braided to form a

multi-strand single wire which was then attached to the high voltage leads typically

used in the EDM measurements described in Chapter 6. With the 129Xe maser
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Figure 3.26: A photograph of DNGM cell S3, wired in such as way as to permit
generation of a magnetic field at least as inhomogeneous as that which would result
from the flow of leakage currents from the high voltage supply.
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phase-locked, a current was passed through the leads, thus simulating the magnetic

field shape that could result from the flow of leakage currents across the cell surface.

The result was a normalized frequency shift ∆νhe/∆Ileak ≈ 1.14 Hz/Amp. Using a

Keithley electrometer, the electrical resistance of several EDM cells was measured

to be ∼ 5 × 1013 Ω. Assuming a potential difference of 10 kV across an EDM cell,

the resulting systematic frequency shift from likely leakage currents was thus esti-

mated to be ∼ 0.20 nHz, which is well below the current frequency sensitivity of the

experiment.

3.7 Signal Detection System

Figure 3.27 shows a schematic of the DNGM signal detection system. Time-varying

magnetic fields produced by precessing noble gas atoms are detected by an inductive

pickup coil (L2, R2) located in proximity to the DNGM maser bulb. When doing

FID measurements, the system is operated off-resonance, with switch S1 open.26

Closing switch S1 provides positive feedback to both noble gas species via a dual-

resonance tank circuit, formed by an external inductor coil (L1, R1) and ultra-stable

tuning capacitors (C1, C2). Transverse Rabi pulses are applied to the system by

closing switch S2 and introducing a programmable function generator into the cir-

cuit. Detected atomic signals are taken as sinusoidally varying voltages across the

capacitor C2.27 The following sections describe in detail the design and operation

of components of the DNGM signal detection system introduced above.

26C2 is sufficiently small that the single resonance formed when S1 is opened is ≥ 15 kHz, well
above the operating frequencies of either maser.

27Although the signal is now read across C2, it could in principle be taken across C1 or L1. The
choice is determined by matching the circuit output impedance to the low-noise preamplifier. At
present, good matching is obtained at the atomic resonances when extracting the signal across C2.
Simultaneous comparison of signals taken across L1 and C2 has not yielded significant differences
for the SNR of either noble gas species.
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Figure 3.27: A schematic of the DNGM signal detection system. L2, R2 are from
the inductive pickup coil inside the maser oven, while C1, L1, R1 are contained in a
smaller set of magnetic shields separate from the maser oven. C2 is a fine-tuning
capacitor which resides in the external aluminum junction box. The pulse coil is
coupled into the circuit by closing switch S2, and is driven by inductive coupling
between Ls (secondary) and Lp (primary), as shown.
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3.7.1 Measuring Coil Q,L, and Rac

Design and implementation of resonant circuitry for the DNGM experiment involved

the fabrication of several home-made inductive coils. Here we describe the procedure

used to measure the inductance, quality factor, and AC resistance of such coils.28

Consider a simple R−L−C series circuit where R and L are distributed together,

as in an inductive coil of the type used in the DNGM. C is an adjustable, low-loss

capacitor whose value is known with good precision. An AC voltage is induced across

L by bringing into proximity a low-inductance broadcast coil driven by a variable

frequency function generator. In order to measure the maximum current passing

through the R− L− C circuit as a function of drive frequency, it is usually easiest

(when possessing only voltage-sensing lockin amplifiers) to measure the voltage Vmon

across a very small monitor resistor r ∼ 0.5 Ω inserted in series with the capacitor

C.29

The value of the drive frequency at which |Vmon| attains its maximum value |Vmax|

is the resonant frequency ν0 of the circuit. Knowing C, the value of L is obtained

from the relationship L−1 = 6π2ν0C. The quality factor Qcoil of the inductor is

measured by locating the “half-power” points of the circuit:

Qcoil =
ν0

ν+ − ν−
, (3.14)

where ν± are the frequencies at which |Vmon| = |Vmax|/
√

2. Recalling the expression

Qcoil =
2πν0L

Reff

, (3.15)

28During these measurements, we kept the inductor several coil diameters away from metallic
objects with which it might experience substantial inductive or capacitive coupling.

29In general, all system measurements should be performed for several values of the monitor
resistor r and then extrapolated to zero r. In practice, corrections for small, finite r were found
to be insignificant.
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we can write the AC resistance of the circuit as

Rac =
2πν0L

Qcoil

−Rdc, (3.16)

where Rdc is the simple DC resistance of the circuit (Rdc À r). Figure 3.28 shows

a plot of Qcoil and Rac as a function of frequency for the external resonator coil

(L = 104 mH) presently in use (Section 3.7.3).

It should be mentioned that measuring Qcoil is not equivalent to measuring the

effective coupling ηQeff of the noble gas polarization vector P⊥ to the resonant

tank circuit. In practice, the strength of the effective coupling of P⊥ to the dual

resonator is assessed by measuring the radiation damping time τrd of each noble gas

species (Section 4.3). A measurement of ηQeff could, however, be performed by

fabricating a small drive coil whose free current distribution duplicated the bound

current distribution of the precessing noble gas ensembles, and then measuring the

drive coil’s coupling to the pickup coil/resonator circuit.

Qeff is defined in Appendix A as the modulus of the pickup coil inductor

impedance over the total impedance of the dual resonator circuit, as seen by the

atoms. Measurement of the on-resonance Qeff (and hence η, once ηQeff has been

measured as described above) is straightforward. To determine its value, one must:

(i) drive the resonator at resonance with a drive coil in proximity to the pickup

coil; (ii) measure the current in both the drive coil and in the pickup coil (using

small witness resistors); (iii) measure the mutual inductance of the coils; and (iv)

measure the self-inductance of the pickup coil. Knowing the mutual inductance and

the drive coil current determines the voltage induced in the pickup coil. Knowing

the induced voltage and the induced current determines the total circuit impedance

at resonance. Knowing the pickup coil self-inductance determines its impedance at

114



20

15

10

5

0

 e
xt

er
na

l r
es

on
at

or
 R

_a
c

500040003000200010000

frequency (Hz)

70

60

50

40

30

20

10

0

 e
xt

er
na

l r
es

on
at

or
 Q

500040003000200010000

frequency (Hz)

Figure 3.28: Plot ofQcoil andRac as a function of frequency for the external resonator
coil (L = 104 mH, Rdc = 21.4Ω) presently in use (Section 3.7.3). DNGM-15, page
108.
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resonance, thus determining Qeff is now determined.

3.7.2 Cabling and Grounding

The DNGM cabling and grounding schemes follow standard principles laid out in the

literature (for example, [60]). Electronic instruments used in the DNGM experiment

are mounted in three steel equipment racks, each of which has its own six outlet

surge/power strip which is in turn plugged into one of four outputs on a 110 VAC

Ferrups Uninterruptable Power Supply (UPS). Each output of the UPS is ground-

cheated, with 4 AWG copper welding cable connecting the power strip ground on

each rack directly to the nearest earth ground. All maser signals are measured

differentially, and are routed between points by shielded, twisted-pair or semi-rigid

coaxial cable. The shield of each cable is connected to signal ground, which is floated

via a 10 kΩ resistor to earth ground. The 10 kΩ resistor was added in 1997 to break

ground loops, and has greatly reduced the presence of small bleedthrough signals

on the maser traces.

The signal from the the maser pickup coil (L2, R2) is carried by a low capacitance

(≤ 20 pF/foot) semi-rigid coaxial copper cable from the interaction region to a home-

made aluminum junction box located just outside of the DNGM’s magnetic shields.

The cable is housed inside 5/8” inner diameter hollow copper tubing, which provides

mechanical rigidity as well as electrical shielding. The junction box (shown in Figure

3.29) houses the tuning capacitors (C2) and also serves as a shielded environment

wherein electrical connections between the external resonator, signal processing pre-

amplifier, and maser pickup coil are made to achieve the circuit topology depicted

in Figure 3.27. The A and B differential inputs on a low-noise, voltage pre-amplifier

(Ithaco model 1201) mate directly to BNC bulkhead fittings on the junction box,
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Figure 3.29: A photograph of the aluminum junction box described in Section 3.7.2.
The lid has been removed to provide a view of the tuning capacitors C2. Notice
the connections to the pre-amplifier, external resonator, and maser chamber pickup
coil.

while the semi-rigid coaxial from the external resonator (L1, R1) is attached to the

junction box via a standard bulkhead SMA fitting. The magnetic shields housing

the DNGM oven and solenoid are of course connected to signal ground, as are the

junction box case and the shielding on all signal-carrying cables including the 5/8”

copper tubing. Also connected to signal ground are a smaller set of µ-metal shields

(wrapped in fiberglass insulation), in which reside the external resonator coil and

its associated tuning capacitor (C1). The shields help isolate the external resonator

from electromagnetic noise and thermal fluctuations in the DNGM laboratory.
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3.7.3 Design and Construction of Pickup Coil and External

Resonator Circuit

The DNGM pickup coil and double-tuned resonant circuit are comprised of three

parallel elements, as shown in Figures 3.1 and 3.27: the pickup coil inductance

L2 and its associated DC resistance R2; a tuning capacitor C2; and an external

inductor coil L1 and its associated DC resistance R1, connected in series with another

tuning capacitor C1. Previous experiments in dual noble gas magnetometry [20,

36] have detected the 129Xe and 3He signals using separate, orthogonally-oriented

pickup coils whose resonances could be trimmed independently. In this section we

present the rationale for using a single, double-resonance pickup coil and describe

its implementation. Table 3.10 lists important characteristics of the pickup coil and

external resonator presently in use in the DNGM system.

One purpose of the single pickup coil resonator configuration is to ensure a cell-

pickup coil magnetic field distribution and resulting fill factor η (Equation 2.24)

that are as similar as possible for both noble gas species. As shown in Section 3.6,

this is very important for effective co-magnetometer operation. A second purpose

is to maintain as large a fill factor as possible while also attaining the furthest

proximity possible of the pickup coil to the high voltage electrodes used in the EDM

experiments described in Chapter 6. A third purpose is to simplify the electrical

and mechanical design of the DNGM oven (Section 3.2), and also limit equipment

overhead by requiring only one low-noise preamplifier to buffer and pre-process both

maser signals. It should be noted that for given frequencies it is impossible to achieve

Qeff -values in a double-resonance circuit which are as large as Qeff -values in single-

resonance R− L− C circuits. In applications where the masing threshold τrd ≤ T2

is difficult to attain, the approach described here is not advised. For our dual 129Xe
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and 3He masers, however, the masing threshold is easily attained for a variety of

operating temperatures and gas pressures.

Design of the DNGM resonator subsystem begins with the pickup coil, whose

shape and size are dictated by fill factor and cell proximity considerations. The wire

gauge must then be determined, balancing competing effects. Smaller gauge wire

wound on a form of fixed size results in a larger number of turns and inductance,

and a correspondingly larger raw signal. Unfortunately, more turns and a larger

resistance also cause the pickup and Johnson noise signals to be larger, respectively.

Because smaller wire gauge has a larger fractional content of AC lossy insulation to

copper, the ratio of a coil’s AC resistance to its DC resistance increases with de-

creasing wire size for a fixed frequency. This effect is potentially important because

the AC resistance appears to be more temperature sensitive than the DC resistance

of the copper windings, potentially affecting the DNGM’s long-term frequency sta-

bility. Finally, a practical concern is mechanical strength of the wire. Excessively

fine wire is hard to work and difficult to lay down with precision. Because so many

considerations go into a choice of wire gauge, a detailed optimization may only be

achieved by direct comparison of a series of pickup coils in a range of wire gauges.

Such studies have not yet been conducted. Nevertheless, using our best estimates,

all pickup coils used thus far in the DNGM experiment have been wound of 32 AWG

wire on a Nylatron form such as that depicted in Figure 3.30. Note the pickup coil

is oriented with its normal vector pointing along the direction of the cell transfer

tube, referred to as the ŷ direction in this thesis.

Other components of the DNGM resonator system are designed around the

pickup coil and its inductance (L2) and DC resistance (R2). Table 3.10 gives impor-

tant characteristics of the external resonator coil which has been used since 1999 in

the DNGM. The coil is wound of 25 AWG copper magnet wire on the Nylatron form
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Figure 3.30: A design drawing of the pickup coil form, fabricated from Nylatron
GSM. Notice the split coil design, required for passage of the 4-40 plastic screws
which secure the high voltage electrodes against the cell endplates.

parameter pickup coil external resonator

wire gauge 32 25
inductance 145 mH 103.9 mH

DC resistance 140.1 Ω 21.4 Ω
Qcoil at 1.7 kHz 11.5 46
Qcoil at 4.7 kHz 29 73

AC resistance at 1.7 kHz 144.6 Ω 2.7 Ω
AC resistance at 4.7 kHz 149.6 Ω 21.1 Ω

Table 3.10: Room-temperature characteristics of the pickup and external resonator
coils presently used in the DNGM, depicted in Figures 3.30 and 3.31.
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shown in Figure 3.31. Once the value for the external inductor L1 is established,

the values of the tuning capacitors C1 and C2 are chosen to establish resonances at

the 129Xe and 3He Zeeman frequencies (Appendix A):

1

C1

= 2L1

(
ω2
he + ω2

xe −
√

(ω2
he + ω2

xe)
2 − 4ω2

heω
2
xe (1 + L2/L1)

)
1

C2

= 2L2

(
1 + L2/L1

(
ω2
he + ω2

xe −
√

(ω2
he + ω2

xe)
2 + 4ω2

heω
2
xe (1 + L2/L1)

))
(3.17)

C1 and C2 are each the equivalent capacitance of an array of individual ultra-stable

capacitors (fractional temperature sensitivity ≤ 30 ppm) soldered to copper circuit

boards.30 C1 resides in a temperature stabilized and noise shielded environment

with the external resonator L1, R1, while the bank of C2 capacitors resides in the

external junction box, permitting easy and accurate tuning of the resonator peaks,

as described in Section 3.7.4. Typical values of the capacitances presently in use are

C1 ≈ 2.6× 104 pf and C2 ≈ 2.7× 104 pf.

The ratio L1/L2 establishes the relative strength of the effective Q at the two

resonances, with a larger ratio corresponding to a larger effective Q for the higher 3He

resonance. The Q of the lower resonance is determined largely by the properties of

the pickup coil only. The present values of the effective quality factors (see Appendix

A) are Qeff,xe = 9.9 and Qeff,he = 9.3. Requiring that the capacitances in Equation

3.17 be real establishes a condition required for the existence of a double resonance:

L2

L1

≤ 1

4
·
[
ωxe
ωhe

+
ωhe
ωxe

]2

− 1. (3.18)

30We have a selection of ∼ 20 capacitor values in the range 20 pF to 1 µF, enabling precise
trimming of the values C1 and C2.
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Figure 3.31: A design drawing of the external resonator form, fabricated from Ny-
latron GSM. A small circuit board fastened to the bottom of the coil incorporates
the capacitance C1 into the circuit.
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3.7.4 Resonator Tuning

Fine tuning of the upper and lower double resonator peaks is achieved by modifying

the value of the capacitance C2. In the discussion that follows, we will refer to the

upper and lower resonances as νu and νl, respectively, while the noble gas frequencies

will continue to be written as νng. It should be noted that operating either maser

at a frequency which is a multiple of 60 Hz must be avoided at all costs.

The first step in resonator trimming is to choose the desired detuning (δng ≡

νng − νres) of each maser’s operating frequency from the nearest resonator peak. To

achieve maximal coupling between the precessing spins and the feedback field, the

DNGM is presently operated with the detuning of both species as close to zero as

possible. Next, the double resonator is scanned using the methods of Section 3.7.1,

and the measured values of the upper and lower resonator peaks νu, νl are recorded.

The value of the tuning capacitance is then changed by an amount ∆C2 (typically ∼

100 pf), and the resonator is scanned again. The new resonances, desired detunings,

and coefficients βu,l = ∆νu,l/∆C2 are used to select the next iterative change in the

capacitance C2:

∆C2 =
gνl − νu + gδxe − δhe

βu − gβl
, (3.19)

where g = γhe/γxe ≈ 2.75408. Typical values of the β are βu = −2.67 Hz/pF and

βl = −.224 Hz/pF. After C2 is changed according to Equation 3.19, the resonator is

re-scanned, the coefficients βu,l re-computed, and the next calculated change in C2

implemented. It is typically requires ∼ 5 changes in the value of C2 to converge to

resonator frequencies within .5 Hz of zero detuning from the 129Xe and 3He Zeeman

frequencies.

Note that the above tuning procedure locates the peaks of the dual resonator cir-

cuit by finding the frequency where the current across a small monitor resistor (≤ 1
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Ω) placed in series with the pickup coil is a maximum. However, our goal is to tune

the resonator to the frequencies of maximum coupling to the noble gas magnetiza-

tions. Such “maximum coupling” is determined by measuring the radiation damping

time (Section 4.3) for each species as a function of resonator peak frequency. In the

case of no deviation from the nominal π/2 phase difference between the noble gas

transverse magnetizations and the magnetic fields created by current flow in the

pickup coil resonant circuit, maximum radiation damping would occur at the same

resonator frequencies as given by the “maximum current” technique. Figure 3.32

shows a plot31 of typical measured τrd as a function of resonator detuning. The

129Xe and 3He “maximum damping frequencies” are displaced by ∆xe = 1.33 Hz

and ∆he = −1.52 Hz, respectively, from the resonator tunings given by the “maxi-

mum current” technique. Because these frequency displacements are approximately

constant over a wide range of C2 values, resonator fine-tuning to achieve maximal

coupling can be performed by measuring the displacements ∆ng once, incorporat-

ing them into Equation 3.19, and then following the tuning procedure based on

maximizing current flow through the pickup coil. Of course, changes in the pickup

coil or external resonator would necessitate re-measuring of the maximum damping

frequency displacements ∆ng.

3.7.5 Effect of Temperature Fluctuations on the Double Resonator

The temperature control systems for the pickup coil and external resonator are de-

scribed in detail in Section 3.3. Good temperature stability of both coils is impor-

tant, as variations in the properties of the double resonator system can change the

31See logbook DNGM-17, p.86.
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Figure 3.32: A plot of the radiation damping rate τ−1
rd for the 129Xe and 3He species

as a function of detuning from the associated resonator peaks where the current
through the pickup coil is maximized. See logbook DNGM-17, pages 77-93.
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contribution of cavity pulling (Equation 2.28) to the noble gas Zeeman frequencies:

∆νng ≈ ν0 + (νcoil − ν0)
[
Qeff

πν0

] [
1

T2

]
. (3.20)

With the 129Xe maser phase-locked, controlled temperature changes were applied

separately to the DNGM pickup coil, external resonator, coaxial cables, and junction

box.32 The resulting normalized 3He maser frequency shifts ∆νhe/∆T are given in

Table 3.11. Under normal operating conditions, and over timescales of several hours,

component ∆νhe
∆T

(
µHz
◦C

)
pickup coil -3.9

external resonator -18
semi-rigid coax ≤ .2
junction box ≤ .2

Table 3.11: Normalized 3He maser frequency shifts ∆νhe/∆T when controlled tem-
perature changes were applied to the DNGM pickup coil, external resonator, coaxial
cables, and junction box.

the temperatures of the junction box and coaxial cables exhibit fluctuations ∼ 100

mK RMS, with typical sidereal variations of ∼ .4 mK. Temperature fluctuations

in L1 and L2 are 3 mK and 11 mK, respectively, with sidereal variations of .04

mK and .8 mK. Resulting estimates of the effects of resonant circuit temperature

instability on DNGM frequency resolution are given in Table 3.12. None of the

systematic temperature shifts are correlated with the applied electric field, and all

are substantially smaller than the Allan deviation of the 3He maser over a typical

5000 second EDM dwell or over a day. We thus conclude that thermal fluctuations

32The coil temperatures were changed by increasing the setpoint temperatures of the thermal
control systems described in Section 3.3. Temperature changes of the coaxial cables and junction
box were achieved by applying a heater tape covered in aluminum foil (to distribute the heat as
evenly as possible), and measuring the temperature change with temporarily attached RTDs.
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in the DNGM dual resonator system do not limit the sensitivity of the symmetry

tests described in this thesis.

component δνLLI nHz δνedm nHz

pickup coil 3.1 43
external resonator .72 54

semi-rigid coax .08 20
junction box .08 20

Table 3.12: Upper bounds on the limitations imposed by thermal fluctuations of
the resonator system on the LLI and EDM tests described in this thesis. Note that
the RMS fluctuations are not correlated with the applied electric field and will thus
average away as τ−1/2. Note that diurnal variations in temperature are not phase-
coherent over periods of several days, and the upper bounds in the table for δνLLI
are thus approximate bounds on the single-day LLI measurement resolution of the
DNGM.

3.7.6 Pulse Coil Operation and an Estimate of B1 Homogeneity

Many of the measurements required to characterize and optimize performance of the

DNGM (see Chapter 4) require application of a resonant transverse tipping (Rabi)

field to the noble gas atoms (Figure 2.2). Depending on the measurement being

performed, the double-resonator may or may not be engaged. Closing switch S2

(see Figure 3.29) places the voltage output of a Wavetek33 programmable function

generator across the pickup coil L2, which serves also as the DNGM pulse coil. Note

that the Wavetek is actually coupled into the circuit inductively, as shown in Figure

3.27. The pre-amplifier is gated off during pulsing. A pulse consists of a gated

sinusoidal waveform at the 129Xe or 3He Zeeman resonance frequency, typically of

duration 80 ms and amplitude ∼ 1 Volt RMS. Section 4.6 describes in detail the

33Wavetek Model 29, 10 MHz DDS Programmable Function Generator. Wavetek Corporation,
9045 Balboa Avenue, San Diego, CA 92123, (619) 279-2200.
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method for calibrating the effective magnetization tip angle for a pulse of a particular

duration and voltage. A numerical estimate of the tipping field (B1) homogeneity

for the typical DNGM parameters was carried out in June, 2000, by computing34

the volume average over the maser bulb of the RMS deviation of the tipping field

from its value at the coil center, B1(0, 0, 0):

1

V ·B1(0, 0, 0)
·
√∫

V
(B1(x, y, z)−B1(0, 0, 0))2 dV ≈ .21 (3.21)

Note that in the lab frame the B1 field field is oriented in the ŷ direction (in the

direction of the cell transfer tube) because of the orientation of the pickup/pulse

coil (see Section 3.7.3).

3.7.7 Signal Processing and Data Storage

The detected maser signals are read as sinusoidally varying voltages across the ca-

pacitor C2. Typical raw signal levels are 3 µV for 3He and 5 µV for 129Xe. The

signals are buffered and pre-processed by an Ithaco35 1201 low-noise, voltage pream-

plifier. The amplifier is set with a wide frequency passband (30 Hz - 100 kHz) and

a gain of 5000.

The amplified signals are sent to three separate SRS digital lockin amplifiers. An

SRS-830 lockin serves as a prefilter and phase-sensitive detector for the magnetic

field phase-lock loop (Section 3.5.8). Two SRS-850 lockins monitor and record the

phase and amplitude of the 129Xe and 3He masers. The data are typically sampled

at 1/4 Hz, as triggered by an ultra-stable signal derived from a reference hydrogen

maser. The SRS-850 digital low-pass filters are set with bandwidth = 125 mHz and

34Thanks to Marius Popa for performing the calculation.
35Ithaco 1201 Low Noise Voltage Preamplifier. Now made by DL Instruments, PO Box 1086,

176 Lake Road, Dryden, NY 13053, (607) 844-3725.
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12 db/octave roll-off. Varying the bandwidth and sampling rate of the detection

lockins in regimes near their present values has never yielded improvement in the

frequency stability of DNGM data (see Section 2.5). All timebase and reference sig-

nals used in the DNGM experiment are derived from the same hydrogen maser clock,

thus eliminating concerns about unstable phase and frequency differences between

the reference oscillators. Finally, data stored in the lockin buffers are downloaded

via a GPIB interface to a computer for analysis (Section 2.5) and archiving, typically

once every 24 hours.

3.8 Appendix to Chapter 3: Assembly and Optimization

The preceding sections of Chapter 3 have described the fabrication and experimental

realization of all noble gas maser subsystems. The data contained in graphs and

tables in those sections reflect typical parameter values and behavior for the DNGM

as it is presently configured. We also note that graphs of the Allan deviation and

free-running 3He maser phase for the optimized DNGM are presented at the end of

Section 2.5. Chapter 4 presents methods not described in Chapter 3 for measuring

various operational parameters of the DNGM.

The present section is intended to serve as a concise resource for scientists who

are continuing the DNGM research program at the Smithsonian Astrophysical Ob-

servatory. Here we describe our procedure for assembling the DNGM and achieving

maser oscillations with good frequency stability. These steps may (and undoubt-

edly will) be modified as development and improvement of the DNGM continues.

For now, however, we hope that the list that follows, as well as the tables of typ-

ical instrument settings, serve as a good starting point for new researchers in our

laboratory.
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• Assemble oven. Make sure all glass windows are clean, tubing is well-insulated.

Place in center of shields. Check continuity of all cables. Check for shorts

between leads and to the solenoid core.

• Check 5 MHz signal and operation of timebase system.

• Set mass flow controller (MFC) ≈ 70%. Turn on pump chamber heat. Verify

with HP spectrum analyzer that noise profile looks normal after attaching all

grounding clips. Make sure pump heater interlock box is working and actively

in use.

• After pump chamber is heated up, turn on LDA. Steer LDA by eye. Make sure

LCVR is set for maximal pumping into σ+ state (LCVR drive voltage depends

on solenoid magfield direction). For Coherent LDA, set I = 37 Amperes,

T = 19 C̊.

• Set up photodetectors. Find Rb Zeeman resonance.

• Use Rb magnetization signal to steer laser better. Adjust collection mirror to

maximize detected signal. Be sure to record DC signal out of Rb detector.

• De-Gauss shields. Let system spin up overnight into σ+ state. The dual

resonator should not be engaged, and the current in each trim coil should be

zero.

• Find 129Xe FID signal. Set main magfield value so that νxe is roughly where

you plan to operate. SRS 850s will be set with fs = 10 mV, 12 db/octave,

bandwidth = 1.2 Hz.

• Trim z-position of oven.
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• Adjust trim 2, trim 3, and trim 1 (i.e., y-trim, z-trim, and x-trim).

• Reduce air flow rate to the value you will use when running. Turn on maser

chamber and external resonator heaters.

• Reduce the LCVR voltage so that the Rb signal is approximately 10% less

than its maximum value.

• Lock LDA broadband power. Make sure photodiode (PDD) temperature con-

trol systems are functioning.

• Let system spin up until 129Xe and 3He are fully polarized. Apply small tips

(with double resonator not engaged) to 129Xe and 3He. Record T2 of each

species as well as initial amplitudes of the FIDs.

• Turn on double resonator. When 129Xe maser is alive and well, engage the

magnetic field lock loop.

• Set SRS 850s for maser detection: fs = 50 mV, 12 db/octave, bandwidth =

125 mHz, display and store only x and y traces. Sample rate is set by the

trigger from the pulse-per-second box.

• Let masers equilibrate. Re-scan Rb Zeeman resonance, make sure that LCVR

is driven at 10% below maximum magnetization value. Lock Rb magnetization

using the LCVR feedback loop

• The system is driftier in the first few days of operation. Thus you will need

to re-lock the LCVR every ∼ 24 hours.

• Assess system performance by looking at short term phase noise and Allan

deviation as a function of τ . Decide whether to re-optimize any settings:
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magnetic field lock loop parameters, flow rate (competing effects of reduced

phase noise versus poorer temperature control), temperature control circuits,

and the like.

description GPIB fs (mV) tc (sec) Ch. 1 Ch. 2 νref

maser temp 1 1 1 X - 850 Hz
resonator temp 2 1 1 X - 950 Hz Hz

pump temp 3 5 0.3 X - 1000 Hz
3He monitor 4 1 1 X Y 4343.27 Hz

129Xe monitor 5 1 1 X Y 1709.40 Hz
magfield PLL ctrl 6 50 1 - θ 1709.42 Hz

room temp 7 1 1 X - 1000 Hz
Rb magnetization ctrl 8 2 0.3 R - 450 Hz
LDA bband pwr ctrl 9 500 30 R - 100 Hz

Table 3.13: Table of typical settings for SRS 830 and 850 lockin amplifiers, as of
June 2000.

description Gain Tint (sec) Tdiff (sec) THF (sec) Rout (kΩ)

maser temp 10 220 100 .01 5.1
resonator temp 3 300 .003 100 0.0

pump temp 10 10 10 0.1 0.062
Magn. field PLL 0.01 0.1 0.003 0.1 0.0
Laser power PLL 10 .3 0.003 0.3 3.3

LCVR PLL 30 30 0.01 0.0 1000

Table 3.14: Table of typical settings for PID boxes, as of June 2000.
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description DC gain Rset (Ω) Tset (◦C)

maser temp 81.8 115.9 41
resonator temp 92.1 111.3 29

pump temp 83.6 144.2 115
room temp** 1 111.3 29

Table 3.15: Settings for the temperature monitor/control bridges depicted in Figure
3.14. The ** indicates monitor function only, no control.
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Chapter 4

Measurement of Operational

Parameters and Verification of the

Bloch Theory

In this chapter we present methods for measuring the primary operational parame-

ters of the dual noble gas maser. In Section 4.7 we use data from near equilibrium

oscillations to verify the correctness of the Bloch theory for the 129Xe maser.

4.1 Rb Frequency Shift Measurement of 129Xe

Polarization in the Pump Bulb

Section 2.6 describes the shift of the noble gas Zeeman frequencies induced by po-

larized Rb atoms (the collisional contact shift and the bulk Rb magnetization shift).

There is also a reciprocal shift induced on the Rb Zeeman frequency by the presence

134



of polarized noble gas atoms. In a spherical cell this shift takes the form

2π · δνrb = (κng − 1)γrb ·
8π

3
h̄γng[ng]Png, (4.1)

where [ng] is the noble gas number density in the pump bulb, γrb and γng are

the Rb and noble gas gyromagnetic ratios, Png is the average longitudinal noble gas

polarization, and κng is the Rb contact shift enhancement factor due to the presence

of noble gas [48].

In the pump bulb, estimating Png by measuring δνrb is straightforward in prin-

ciple. First, the center frequency of the Rb Zeeman transition is measured (Section

3.4) with the pump bulb noble gas polarization at its canonical operating value. For

typical DNGM cells, the SNR of the Rb magnetization diagnostic permits determi-

nation of the center line (≈ 700 kHz at 1.5 G) to within ∼ 100 Hz. A very strong

depumping drive tuned to the noble gas Zeeman resonance is then applied to the

pump bulb, rapidly bringing the noble gas polarization to zero in ∼ 10 seconds. The

Rb Zeeman frequency is then measured again. From these measurements, the mean

noble gas polarization under normal operating conditions is given by

Png = 2π · δνrb
(

(κng − 1)γrb ·
8π

3
h̄γng[ng]

)−1

. (4.2)

In practice, the largest uncertainty in determining Png using this technique comes

from uncertainty in the value of [ng]. For a cell in which the pump and maser

chambers have the same volume and the volume of the transfer tube is negligible,

[ng] =
2[ng]room

1 + Tp/Tm
, (4.3)

where [ng]room is the noble gas number density at 293 K (determined during cell
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filling), and Tp and Tm are the pump and maser bulb temperatures, respectively.

Because the sensors that measure Tp and Tm are located outside the cell volume,

with resultant inaccuracies of ∼ 10 K in the determination of the gas temperature

for each chamber, the true value of Tp/Tm is probably certain to no better than 5%.

In July, 1999 we used the above technique to determine Pxe ≈ .0835 from a

frequency shift of δνrb = 2.76 kHz in cell S3, filled at room temperature (298 K)

with 106.9 Torr of 129Xe and operated with Tp = 373 K and Tm = 306 K (DNGM-

15, p. 138). In practice, the much smaller contact shift enhancement factor for

3He (κhe ≈ 5, κxe ≈ 726 [20]) and the estimated small values of Phe ≈ 2% make

it impractical to measure the level of 3He polarization in the pump bulb using the

methods described in this section.

4.2 Measurement of Noble Gas Decoherence

Decoherence of the noble gas ensembles is measured with the DNGM detection

coil off-resonance (i.e., with no active maser oscillation). A transverse Rabi field

is applied to the maser bulb using the pulse/pickup coil described in Section 3.7.6,

creating a transverse noble gas magnetization that undergoes free induction decay

(FID). The induced voltage across the pickup coil is amplified, buffered, and sent to

a phase-sensitive lockin amplifier for detection and digitization. The stored voltage

traces are then downloaded to a computer for analysis. Figure 4.2 shows a typical

FID ringdown for the 129Xe species after application of a θ ≈ 10◦ Rabi field tipping

pulse. Curvefitting to a function of the form

Vxe(t) = c0 + c1 cos(c2 · t+ c3) · e−c4·t (4.4)
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Figure 4.1: A typical free-induction-decay (FID) ringdown for the 129Xe species in
EDM cell SE3. The oscillation beat frequency is the difference between the noble
gas Zeeman frequency (≈ 1700 Hz) and the frequency of the ultra-stable oscillator
used as a reference for the lockin detector.

yields the noble gas ensemble decoherence time T2 = 1/c4, and the noble gas Zeeman

frequency νng = νref + c2/(2π).

Section 3.5.5 describes the method for maximizing T2 by adjusting the z−position

of the DNGM oven assembly (with respect to the solenoid) and the current through

each of the gradient trim coils. Section 3.5.6 details the effects of noble gas magnetization-

induced field gradients on the 3He and 129Xe decoherence times. As a reminder,

typical optimized T2 values for the most recent DNGM cell SE3 are 330 seconds for

129Xe and 170 seconds for 3He.
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4.3 Measurement of the Radiation Damping Time

and Estimation of the Resonator Fill Factor

Measurement of the radiation damping time τrd (Equation 2.24) is performed with

the noble gas atoms pumped into the negative energy state and with both species

maximally polarized. The damping time is obtained by measuring the free-induction

decay rate T−1
2 with the dual resonator tuned both on and off the noble gas Zeeman

frequencies (Section 2.4.1). From Equation 2.25, τrd for each species can be deduced

from the difference of these two measurements:

1

τrd
=

1

T2,on

− 1

T2,off

. (4.5)

For example, the most recent measurements of τrd for cell SE3 yield damping times

of τrd,xe = 76 seconds and τrd,he = 15.9 seconds.1

4.4 Measurement of the Longitudinal Polariza-

tion Lifetime in the Maser Chamber

Measurement of the effective lifetime of the noble gas longitudinal polarization (Pz)

in the maser chamber is performed with the double resonator tuned far above the

noble as Zeeman frequencies. In the absence of spin-circuit coupling, Pz(t) after the

optical pumping laser is turned off is given approximately2 by

Pz(t) ≈ Po · e−t/T
∗
1 (4.6)

1DNGM-18, 5/30/00).
2See Appendix A for the full theory.
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where T ∗1 is the effective longitudinal polarization lifetime, incorporating wall relax-

ation, bulk relaxation, and inter-bulb transport effects.

Figure 4.2 shows plots of the ratio Pz(t)/Pz,max for typical 129Xe and 3He T ∗1 mea-

surements, made with glass cell S1. The measurements were performed by turning

off the optical pumping laser at t = 0, applying small tips to the spinning-down

polarization ensembles at time intervals tn, and measuring the initial amplitude of

the detected NMR FID ∝ Pz(tn) sin θtip. Each tip was of the same size and suf-

ficiently small (θtip ≤ 5◦) that pulsing did not contribute significantly to the rate

of longitudinal polarization depletion. The values of T ∗1 were obtained by fitting a

decaying exponential to the ratio Pz(t)/Pz,max for each ensemble. It should be noted

that the T ∗1 values of 532 seconds for 129Xe and 7.12 hours for 3He are typical for

all-glass cells. Our EDM cells had a smaller surface area to volume ratio and thus

generally longer decay times because of the reduced rate of wall collisions: T ∗1 ∼ 800

– 1000 seconds for 129Xe and 8 – 12 hours for 3He.

4.5 Measurement of the Ratio Pz,o/Po

A key operational parameter for a Zeeman maser is the ratio of the steady state

longitudinal polarization with active maser oscillation (Pz,o) to that without active

maser oscillation (Po). When the maser is operated at zero resonant circuit detuning

(ωng = ωo), Pz,o/Po is given by the simplified Bloch equations (see the first of

Equations 2.31):

Pz,o
Po

=
τrd
T2

. (4.7)

Comparison of measured values of τrd and T2 (Sections 4.2 and 4.3) to the measured

ratio Pz,o
Po

thus provides one test of the correctness of the Bloch theory.

139



1.0

0.9

0.8

0.7

0.6

0.5

N
or

m
al

iz
ed

 H
e 

P z
 

15x103 1050

t (sec)

T*
1 = 7.12 hours

1.0

0.8

0.6

0.4N
or

m
al

iz
ed

 X
e 

P z
 

6004002000

t (sec)

T*
1 = 532 seconds

Figure 4.2: Typical measurements of the ratio Pz(t)/Pz,max used to determine T ∗1
for 129Xe and 3He. Made with glass cell S1; DNGM-14, page 119.
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Measuring Pz,o/Po is straightforward. First, with the atoms fully polarized and

the dual resonator far detuned, a small tip angle is applied to the noble gas ensemble.

The resulting coefficient c1 from the FID (Section 4.2) is proportional to Po · sin θtip.

The second step is performed with the masers fully equilibrated. The resonator

is again far detuned, and a strong magnetic field gradient is applied to dephase

the atoms’ transverse polarization. (These manipulations leave the longitudinal

polarization largely unaffected if performed in less than ∼ one minute.) The same

tipping angle as used in the first step is then applied to the ensemble, and the

coefficient C1 ∝ Pz,o · sin θtip is extracted from the measured FID. Pz,o/Po is then

given by the ratio C1/c1. For example, table 4.1 shows a comparison of the ratios

Pz,o/Po and τrd/T2 for cell S1 data. The ratios agree remarkably well given the

inhomogeneity of the tipping field (Section 3.7.6), and support one of the major

predictions of the Bloch theory (see the first of Equations 2.31).

Species Pz,o/Po τrd/T2

129Xe .10 .12
3He .082 .071

Table 4.1: Comparison of the ratios Pz,o/Po and τrd/T2 for cell S1 data, DNGM-14,
pages 1, 19, 61, 66, and 67.

4.6 Measurement of the Equilibrium Orientation

Angle of the Maser Polarization

In this section we describe a method for measuring the equilibrium polarization (i.e.

Bloch vector) orientation angle θ0 of a noble gas masing ensemble. This angle is

defined by the relation tan θo ≡ P⊥,o/Pz,o, as shown in Figure 4.3. It might seem that
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θo could be measured easily as follows: first, take an equilibrated maser and turn off

the resonator coupling (i.e., detune the resonator far above the noble gas Zeeman

frequency). The initial amplitude of the resultant ringdown gives P⊥,o. After the

ringdown has decayed, the remaining polarization vector will be Pz,o. Applying a

π/2 pulse to the ensemble should thus produce an FID whose initial amplitude is Pz,o

(in the same relative units as P⊥,o). Unfortunately, the homogeneity of the tipping

magnetic field (Section 3.7.6) produced by the DNGM pulse coil is not adequate

for quantitative measurements using large tip angles. We now describe a method

for measuring θo that is based upon the application of small tips to the equilibrium

noble gas ensemble of the phase-locked species.

Referring to Figure 4.3, we assume that at t = 0 the transverse polarization of

the phase-locked maser points along the y-axis and that a resonant Rabi tipping

pulse, indicated as B in the drawing, is applied. The Rabi field is actually the co-

rotating component of a linearly oscillating magnetic field.3 The counter-rotating

term is far off-resonance and does not contribute to the tipping process [34, 37, 43].

The strength of the tipping field is characterized by a (small) tip angle α (to be

measured), and it is offset by a phase δ from P⊥, as shown.

If δ = π/2, the phase variable Φ(t) = tan (Py(t)/Px(t)) (Equation 2.22) of the

maser vector will not change4, but the orientation angle of the maser will increase

to (θo + α) at t = 0+. Such a tip is referred to in our laboratory as a “proper”

tip. However, because of electronic phase shifts δstray induced by various circuit

components and the proximity of metal shields to the pulsing coil, it is not possible

to produce a proper tip to the phase-locked maser simply by placing the phase of the

3ŷ ·Bo cosωt = .5× (ŷ ·Bo cosωt+ x̂ ·Bo sinωt) + .5× (ŷ ·Bo cosωt− x̂ ·Bo sinωt).
4Note that there is no requirement that the tipping pulse time be much shorter than a Larmor

period, as the tipping field is generated by the same synthesizer which references the phase-locked
maser, and is stationary with respect to the Bloch vector in the rotating frame.
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Figure 4.3: A figure depicting the maser polarization vector P. P⊥ (Pperp) is taken
to point along the y-axis at time t = 0. The equilibrium orientation angle is given
by tan θo ≡ P⊥,o/Pz,o. The angle δ gives the phase difference between a resonant
tipping field B and P⊥ in the x− y plane.

Rabi pulse generator in quadrature with the phase of the function generator that

references the magnetic field phase lock loop. Instead, one must perform several

small on-resonant tips and FID measurements at several different relative phase

settings δlab ≡ (δstray + δ). For each tip, the dynamical maser phase variable Φ(t)

will change by a different amount ∆Φ(0).5 For a proper tip (i.e., δlab = δstray + π
2
),

the phase of the maser will not change at all. We found that locating this zero-

crossing via linear interpolation is quite accurate, as long as one brackets the zero

phase change with at least two points on either side of the zero-crossing.

Once the δlab to achieve a proper tip is determined, the DNGM is allowed to

equilibrate. Then, a proper tip of a small angle α is applied; and the ratio P⊥,+/P⊥,o

of the transverse component of polarization after (P⊥,+) and before (P⊥,o) the tip

5We determine ∆Φ(0) as follows. For the ≈ 30 seconds before the tip is applied, we fit a line
Φ<(t) = m<t+ b< to the phase curve. For the ≈ 30 seconds after the tip is applied, we fit a line
Φ>(t) = m>t+ b> to the phase curve. We then have ∆Φ(0) = b> − b<.
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is determined from measurements of the maser amplitude after and before the tip.

P⊥,+ and P⊥,o are related to the orientation angles θo and α as follows:

P⊥,+
P⊥,o

=
sin θo cosα + cos θo sinα

sin θo

= cosα + cot θo sinα. (4.8)

For example, Figure 4.4 shows the R-trace (Equation 2.36) of the phase-locked

129Xe maser using cell S1 before and after a proper tip α was applied at t = 0.

Fitting a line R(t) = mt + b to the region t ≤ 0, and a decaying sinusoid R(t) =

A⊥e
−γringt sin(ωringt− φ) to the region t ≥ 0 gives the ratio P⊥,+/P⊥,o = A⊥/b. For

the data shown in Figure 4.4, the applied tip α was of duration τo = 80 msec.

To obtain the values of the parameters α and θo, we note that the size of the

tip angle is proportional to the duration of the pulse. By repeating the procedure

described above, but for several different pulse durations (and hence tip angles), it

is possible to extract α and θo. Figure 4.5 shows a plot of P⊥,+/P⊥,o as a function of

varying pulse durations τ (in msec) for fixed drive voltage 15 mV RMS. Curvefitting

the measured ratios P⊥,+/P⊥,o to the function

P⊥,+(τ)

P⊥,o(τ)
= cos

(
c1 ·

τ

80

)
+ c0 · sin

(
c1 ·

τ

80

)
(4.9)

yields the equilibrium orientation angle cot θo = c0 as well the value of the tip angle

α = c1 for an 80 ms pulse. A similar series of measurements was carried out with

the 3He maser phase-locked, also with cell S1. For both species, Table 4.2 lists the

values for θo (the equilibrium polarization orientation angle) and α, as well as the

near-equilibrium ringdown parameters γring and ωring, that were deduced from the

ensemble of measurements performed with cell S1 in December, 1998.
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Figure 4.4: The R-trace of the phase-locked 129Xe maser before and after a proper
tip α was applied at t = 0. Fitting a line R(t) = mt + b to the region t ≤ 0, and a
decaying sinusoid R(t) = A⊥e

−γringt sin(ωringt−φ) to the region t ≥ 0 gives the ratio
P⊥,+/P⊥,o = A⊥/b. For the data shown, the applied tip was of duration τo = 80 ms.
DNGM 14, page 50.

Parameter 129Xe 3He

θo 51.9◦ 28.52◦

α 10.5◦ 7.7◦

γring 9.2× 10−4 sec−1 4.31× 10−4 sec−1

ωring 10.84× 10−3 rad/sec 4.3× 10−3 rad/sec

Table 4.2: Summary of the values θo and α, as well as the near-equilibrium ringdown
parameters γring and ωring that were deduced from the ensemble of measurements
performed with cell S1 in December, 1998 (DNGM-14, pages 1 - 73). Recall that
the near-equilibrium oscillations of P⊥ are underdamped sinusoids, with 1/e decay
time given by 1/γring and oscillation period given by 2π/ωring (Equation 2.35).
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Figure 4.5: 129Xe plot of the measured ratio P⊥,+/P⊥,o as function of varying pulse
durations τ for fixed drive voltage 15 mV RMS. Curvefitting to the function in
Equation 4.8 yields the equilibrium orientation angle cot θo = c0 as well the value of
the tip angle α = c1 for an 80 ms pulse (see also Equation 4.9).

4.7 Verification of the Bloch Theory for Near-

Equilibrium Oscillations of the 129Xe Maser

In Section 2.4.2 we used the simplified Bloch theory of the DNGM to predict that the

near-equilibrium oscillations of the transverse and longitudinal polarization vectors

are related by

δṖ⊥ =
(
P⊥,o
Poτrd

)
· δPz(t), (4.10)

where we have assumed that the resonator is tuned to the noble gas Zeeman fre-

quency, ωng = ωo, and we have ignored polarization transport effects. Suppose that

the masers are well-equilibrated, and that at t = 0− we apply a “proper” tip (Sec-

tion 4.6) which increases the orientation angle of the maser polarization by a small
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amount α.

A near-equilibrium oscillation of the form δP⊥(t) = A⊥e
−γringt sin(ωringt−φ) will

ensue. If Equation 4.10 is correct, the oscillations in δPz(t) will be given by

δPz(t) =
Poτrd
P⊥,o

A⊥e
−γringt (−γring sin(ωringt− φ) + ωring cos(ωringt− φ)) . (4.11)

Just after the tip is applied, the above relations can be combined to give

δPz(0)

δP⊥(0)
= −Poτrd

P⊥,o
(γ + ω cotφ)

= − cot θo
Poτrd
Pz,o

(γ + ω cotφ)

≡ Rtheory, (4.12)

where θo is the maser polarization orientation angle before the pulse occurs, such

that tan θo =
P⊥,o
Pz,o

(see Figure 4.3).

But we can also say something about this ratio using geometry. If P is the

length of the polarization vector before the proper tip α is applied, then we can

write Pz,o = P cos θo and P⊥,o = P sin θo. Just after the small tip is applied we have

δPz(0) = P [cos(θo + α)− cos(θ0)]

δP⊥(0) = P [sin(θo + α)− sin(θ0)]. (4.13)

Expanding and keeping terms to order α2 only, we obtain

δPz(0)

δP⊥(0)
= − tan θo + α

2

1− α
2

tan θo

≡ Rexp. (4.14)
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In Section 4.6 we applied a proper tip with α = .184 (10.5◦) and measured for

the 129Xe maser in cell S1: θo = 51.9◦, ωring = .01084, and γring = .000920/sec.

Measurements of τrd and the ratio Pz,o/Po for the same cell (DNGM 13, pages 140-

150) yielded values of 27.9 seconds and .158, respectively. Plugging into Equations

4.12 and 4.14 gives Rtheory = −1.549 and Rexp = −1.512. These results show that

the simplified Bloch theory describes the near-equilibrium behavior of the 129Xe

maser quite well. Similar measurements were attempted for the 3He maser, but the

agreement between Rtheory and Rexp was poor. This failure was expected, as the

simplified Bloch equations (discussed in Section 2.4.2) neglect the coupling of the

maser and pump chamber polarization dynamics, an assumption that is very poor

for the rapidly diffusing 3He atoms (See Appendix A for a discussion of the extended

Bloch theory and polarization transport effects).
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Chapter 5

Testing Lorentz and CPT

Symmetry Using a Two-Species

Noble Gas Maser

5.1 Overview

The standard model of particle physics successfully describes known particle inter-

actions and has predicted a priori the existence of new particles, notably the W and

Z gauge bosons and the top quark. At the foundation of this successful theory is the

assertion that the physics of particles must be exactly invariant under simultaneous

application of charge conjugation, parity inversion, and time reversal (CPT). CPT

invariance is in turn based on the symmetry called local Lorentz invariance (LLI).

LLI states that the result of any local non-gravitational experiment is independent

of that (freely falling) experiment’s orientation or velocity. Not only does LLI lie at

the foundation of CPT and hence the standard model; but it also forms the basis

for most single-metric theories of gravitation, and, along with the weak equivalence
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principle, comprises the equivalence principle first stated by Einstein [62].

The fundamental nature of CPT and LLI symmetries provides motivation for

their being tested experimentally with increasing exactness. However, recent theo-

retical developments have provided additional impetus for new experimental tests of

LLI and CPT. Kostelecký and coworkers have devised the first comprehensive quan-

tum field theory that admits possible violations of CPT and LLI [6, 23–30, 63–66]

which are not countenanced by the minimal standard model. We used the 129Xe/3He

dual noble gas maser (DNGM) to test Lorentz symmetry by monitoring the relative

phases and Larmor frequencies of the co-located 3He and 129Xe masers as the labo-

ratory reference frame rotated with respect to the distant stars. A sidereally varying

frequency shift would be a signature of LLI violation, as emphasized pictorially in

Figure 5.1.

The minimal standard model is believed to be the low energy limit of a more

fundamental theory that may also incorporate gravity. This fundamental theory

could possess the properties of Lorentz and CPT symmetries, which could be spon-

taneously broken to yield apparent Lorentz and CPT violation at the level of the

standard model. (For example, a class of string theories has been shown to have

such spontaneous Lorentz and CPT violation [6].) The standard model extension

of Kostelecký et al. treats the effects of spontaneous Lorentz symmetry breaking in

the context of a low-energy effective theory, in which terms can be induced that vi-

olate Lorentz invariance explicitly [6,23–25,27–30,64]. Lorentz symmetry remains a

property of the underlying fundamental theory, because the breaking is spontaneous.

Thus the effective low energy theory possesses many desirable properties, such as

the usual SU(3)×SU(2)×U(1), microcausality, energy positivity, and momentum

and energy conservation. Also, standard quantization methods are retained, so that

Dirác and Schrödinger equations emerge at the appropriate limits.
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Figure 5.1: Bounds on CPT- and Lorentz-violation can be obtained by comparing
the frequencies of co-located clocks as they rotate with respect to the fixed stars.
The standard-model extension described in [6, 23–25, 27–30, 63, 64, 64, 66] admits
Lorentz-violating coupling of the unpaired neutron in both 129Xe and 3He nuclei
to expectation values of tensor fields. Each of these fields may have an unknown
magnitude and orientation in space, to be limited by experiment. The background
arrows in Figure 5.1 illustrate one such field.

A natural scale for a fundamental theory including gravity is the Planck mass

Mp, which is roughly 1017 times larger than the characteristic electroweak mass mw

of the low energy standard model. If the origin of spontaneous Lorentz violation

lies at the Planck scale, experimental signals resulting from the fundamental theory

could be strongly suppressed by some power of the ratio mw/Mp. Other substantial

suppressions could also be present, such as factors arising from Yukawa couplings

to the Higgs scalar field [6]. The calculable phenomenon predicted by the extended

theory are arrived at perturbatively, but no assumptions are made about the nature

of the Lorentz violating parameters, other than that they are are suppressed strongly

and hence are extremely small. Very sensitive experiments are thus required to
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observe such potential effects. Kostelecký et al. have studied several classes of

experiments which might eventually resolve these very small possible violations of

LLI and CPT, and determined that clock comparisons provide some of the most

sensitive probes. The beauty of their theory is to provide a single coherent framework

at the level of the standard model that can be used to analyze and compare a great

variety of experimental tests.

Application of the standard model extension to atoms, molecules, and ions is

stated in terms of an effective low-energy Lagrangian which includes small LLI-

violating interactions associated with the coupling of massive spin−1/2 Dirác fermions

to remnant vacuum fields [6,67]. All these couplings violate Lorentz symmetry; some

also violate CPT. The strengths of the couplings are stated in terms of parameters

which are in general different for each fermion type. Thus, couplings of the elec-

tron, neutron, and proton to these possible remnant fields must each be constrained

(or measured) separately by experiment. As a consequence, only certain linear

combinations of parameters, rather than individual parameters themselves, can be

constrained by clock tests. Kostelecký and Lane have derived a non-relativistic

Hamiltonian appropriate for perturbative calculations, and computed the net effect

of LLI-violating couplings of the electron, proton, and neutron on the energy levels

of selected atoms and ions. These calculations rely on simplifying assumptions, such

as the validity of Schmidt model descriptions of nuclei, but nevertheless provide an

approximate basis for comparing the sensitivities of various LLI/CPT tests.
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5.2 Limit on Lorentz and CPT Violation Using

the DNGM

We now present a paper1 which (i) provides an overview of, and context for, the

standard model extension developed by Kostelecký et al.; (ii) describes our experi-

mental search for LLI and CPT violation using the DNGM; and (iii) compares our

results on LLI violation to other noteworthy tests of LLI and CPT. Our paper is

rich in references - listed at the end of the thesis - and we particularly recommend

the paper by Kostelecký and Lane [6] as a starting point. This article describes

thoroughly the standard model extension and also provides an excellent survey and

interpretation of all completed and proposed clock-comparison tests of LLI and CPT

symmetries.

Note that Chapters 1 – 4 of this thesis contain a thorough discussion of the

theory and operation of the DNGM. Many of the sections in those chapters are

particularly germane to the test of Lorentz and CPT symmetry reported here. In

particular, we emphasize the following:

Section 2.5 Methodology of measuring maser phase and frequency.

Section 2.6 Phase and frequency shift mechanisms in the DNGM. Included are

discussions of drift extraction analysis methods for LLI and EDM experiments.

Section 3.4.3 Stabilization of Rb magnetization in pump bulb.

Section 3.6 Co-magnetometer experiments bound the size of potential sidereally

varying frequency shifts caused by magnetic field fluctuations.

1Our paper was recently submitted to Physical Review Letters, and is reproduced here with the
permission of all co-authors.
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Section 3.7.5 Resonator temperature coefficient measurements bound the size of

potential sidereally varying frequency shifts caused by temperature fluctua-

tions.

Section 3.7.7 Data acquisition, processing and storage.

Note also that Section 5.3 presents additional tables and graphs that are not included

in our paper of Section 5.2 but might be of interest to the reader.
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Limit on Lorentz and CPT Violation of the

Neutron Using a Two-Species Noble Gas Maser

D. Bear, R.E. Stoner, and R.L. Walsworth

Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138

V. Alan Kostelecký and Charles D. Lane

Physics Department, Indiana University, Bloomington, IN 47405

Abstract

A search for sidereal variations in the frequency difference between co-

located 129Xe and 3He Zeeman masers sets the most stringent limit to date

on leading-order Lorentz and CPT violation involving the neutron, consistent

with no effect at the level of 10−31 GeV.

Lorentz symmetry is a fundamental feature of modern descriptions of nature, in-

cluding both the standard model of particle physics and general relativity. However,

these realistic theories are believed to be the low-energy limit of a single fundamental

theory at the Planck scale. Even if the underlying theory is Lorentz invariant, spon-

taneous symmetry breaking might result in small apparent violations of Lorentz

invariance at an observable level. Experimental investigations of the validity of

Lorentz symmetry therefore provide valuable tests of the framework of modern the-

oretical physics.
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Clock-comparison experiments [7–10,68–70] serve as sensitive probes of rotation

invariance and hence of Lorentz symmetry, essentially by bounding the frequency

variation of a clock as its orientation changes. In practice, the most precise limits

are obtained by comparing the frequencies of two different co-located clocks as they

rotate with the Earth. Typically, the clocks are electromagnetic signals emitted or

absorbed on hyperfine or Zeeman transitions.

Here, we report on a search for sidereal variations in the frequency of co-located

129Xe and 3He masers, both operating on nuclear spin-1/2 Zeeman transitions. In

the context of a general standard-model extension allowing for the possibility of

Lorentz and CPT violation [23, 63, 66], the 129Xe/3He-maser experiment sets the

most stringent limit to date on leading order Lorentz and CPT violation of the

neutron: about 10−31 GeV, or more than six times better than the best previous

measurements [6].

The standard-model extension motivating this experiment emerges from any un-

derlying theory that generates the standard model and contains spontaneous Lorentz

violation [67]. For example, this might occur in string theory [71]. The standard-

model extension maintains theoretically desirable properties of the usual standard

model [66]. Its formulation at the level of the known elementary particles is a key

feature enabling quantitative comparison of a wide array of tests of Lorentz and CPT

symmetry. In this context, theoretical studies have been performed to investigate the

sensitivity of clock-comparison experiments [6], tests of QED in Penning traps [64],

experiments with a spin-polarized torsion pendulum [72], hydrogen-antihydrogen

spectroscopy [30], studies of photon birefringence in the vacuum [27, 66, 73], obser-

vations of muons [74], measurements of neutral-meson oscillations [23,24,63], studies

of the baryon asymmetry [29], and observations of cosmic rays [75].

In the context of the standard-model extension, the most sensitive prior clock-
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comparison experiment is the 199Hg/133Cs comparison of Hunter, Lamoreaux et

al. [6, 8, 9]. Recent experimental work motivated by the standard-model extension

includes Penning trap tests by Gabrielse et al. on the antiproton and the H− ion

[76] and by Dehmelt et al. on the electron and positron [77, 78]. A reanalysis by

Adelberger, Gundlach, Heckel, and co-workers of existing data from a spin-polarized

torsion pendulum experiment [79, 80] sets the most stringent bound to date on

Lorentz and CPT violation of the electron, at about 10−29 GeV [81]. A recent

Lorentz-symmetry test using hydrogen masers has searched for Zeeman-frequency

sidereal variations, placing a bound on Lorentz violation at the level of 10−27 GeV

[82]. Together with the results of Ref. [81], this implies an improved clean limit

of 10−27 GeV on Lorentz-violating couplings involving the proton. Also, the KTeV

experiment at Fermilab and the OPAL and DELPHI collaborations at CERN have

constrained possible Lorentz- and CPT-violating effects in the K and Bd systems

[83,84].

The standard-model extension predicts that the leading-order Lorentz- and CPT-

violating correction to the 3He-maser frequency, using the 129Xe maser as a co-

magnetometer, is [6]:

2π |δνJ | =
∣∣∣−3.5b̃nJ + 0.012d̃nJ + 0.012g̃nJ

∣∣∣ . (5.1)

Here, b̃nJ , d̃nJ , and g̃nJ are small parameters characterizing the strength of Lorentz-

violating couplings of the neutron to possible background tensor fields that may

arise from spontaneous symmetry breaking in a fundamental theory. The couplings

associated with b̃nJ and g̃nJ also violate CPT. All three parameters are linear com-

binations of more basic quantities in the underlying relativistic Lagrangian of the

standard-model extension [6].
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In the analysis leading to Eq. (1), the Lorentz-violating coupling of either the 3He

or 129Xe nucleus has been taken as that of a single 1S1/2 valence neutron in a Schmidt

model [6]. The parameters appearing in Eq. (1) are therefore associated only with

neutron couplings, as indicated by the superscript n on b̃nJ , d̃nJ , g̃nJ . Equation (1)

also assumes that the applied magnetic field, which sets the quantization axis of

the experiment, is directed east-west in the Earth’s reference frame. The subscript

J = X, Y indicates components in the sidereal reference frame that are orthogonal

to the Earth’s axis of rotation.

The design and operation of the two-species 129Xe/3He maser has been discussed

in recent publications [2,3]. Here, we give a brief review. The two-species maser con-

tains dense co-located ensembles of 3He and 129Xe atoms. Each ensemble performs

an active maser oscillation on its nuclear spin-1/2 Zeeman transition at approxi-

mately 4.9 kHz for 3He and 1.7 kHz for 129Xe in a static magnetic field of 1.5 gauss.

This two-species maser operation can be maintained indefinitely. The population in-

versions for the two maser ensembles are created by spin-exchange collisions between

the noble-gas atoms and optically pumped Rb vapor [18,19]. The 129Xe/3He maser

has two glass chambers, one acting as the spin exchange “pump bulb” and the other

serving as the “maser bulb.” This two chamber configuration permits the combi-

nation of physical conditions necessary for a high flux of spin-polarized noble gas

atoms into the maser bulb, while also maintaining 3He- and 129Xe-maser oscillations

with good frequency stability: stability of about 100 nHz is typical for measurement

intervals larger than about an hour [3]. Either noble-gas species can serve as a pre-

cision magnetometer to stabilize the system’s static magnetic field, while the other

species is employed as a sensitive probe for Lorentz- and CPT-violating interactions.

We used the 129Xe/3He maser to search for a Lorentz-violation signature by

monitoring the relative phases and Larmor frequencies of the co-located 3He and
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129Xe masers as the laboratory reference frame rotated with respect to the fixed

stars. The system was operated with the 129Xe maser as the co-magnetometer, the

3He maser free-running, and the quantization axis directed east-west in the Earth’s

reference frame. To leading order, the standard-model extension predicts that the

Lorentz-violating frequency shifts for the 3He and 129Xe maser are the same size and

sign. Hence, the resultant sidereal variation of the 3He maser frequency observed in

the laboratory frame takes the form

δνHe = δνX cos(Ωst) + δνY sin(Ωst), (5.2)

where Ωs is the angular frequency of the sidereal day [85], and the parameters δνJ

given by Eq. (1) represent the net effect of the Lorentz- and CPT-violating couplings

on the 3He maser frequency with the 129Xe maser acting as a co-magnetometer. The

time t was measured in seconds from the beginning of the sidereal day in Cambridge,

Massachusetts (longitude −71.11◦).

Data collection and analysis were performed as follows. The 129Xe- and 3He-

maser signals from an inductive pickup coil were buffered, amplified, and sent to

a pair of digital lock-in detectors. Typical raw-signal levels were about 3 to 5 µV.

All reference signals used in the experiment were derived from the same hydrogen-

maser clock, thus eliminating concerns about unmeasurable electronic phase shifts

between the reference oscillators. The hydrogen maser operated on the standard

hyperfine clock transition, and thus had no leading-order sensitivity to Lorentz and

CPT violation [6, 30]. Active feedback to the solenoid’s magnetic field locked the

phase of the 129Xe maser to that of a 1.7 kHz reference signal, and thereby isolated

the experiment from common-mode systematic effects (such as stray magnetic field

fluctuations) that would otherwise shift the frequencies of the noble-gas masers
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in proportion to the ratio of their magnetic moments. When phase locked, the

short- and long-term frequency stability [3] of the 129Xe maser was several orders

of magnitude better than that of the free-running 3He maser, so the 129Xe Zeeman

frequency was treated as constant in the data analysis.

The phase and amplitude of both maser signals were recorded at four-second

intervals by the lock-in amplifiers and downloaded for analysis every 23.93 hours. A

one-sidereal day run thus contained approximately 21,540 evenly spaced measure-

ments of the relative phases of the two masers. The values of the two coefficients

δνX , δνY were computed, providing a measure of potential Lorentz-violation for that

day’s run. Seven additional diagnostic signals were recorded, including the temper-

atures of the pump bulb, maser bulb, and external resonator; an optical monitor

of the Rb magnetization in the pump bulb; the broadband power emitted by the

optical-pumping laser-diode array; the ambient room temperature; and the east-

west component of the ambient magnetic field. Control loops stabilized the system

temperatures to about 10 mK. Two additional control loops were used, feeding back

to the optical-pumping laser to reduce systematic effects arising from variations in

the density and polarization of Rb in the pump bulb [57].

Small noble-gas polarization-induced frequency shifts were the dominant source

of instability (i.e., phase drift) in the free-running 3He maser. For a typical one-day

run, the linear-correlation coefficient between 3He phase data and the integrated

amplitude of either maser was in the range 0.95 - 0.99. We admitted terms to

our data-analysis model to account for this polarization-induced phase drift. The

effect of potential Lorentz-violating couplings on the evolution of the 3He phase

was expressed in terms of the coefficients δνJ via integration of Eq. (2), and initial
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reduction of each one-day run was performed using the minimal fit model

δφHe = φ0 + 2πν0t

+2πΩ−1
s [δνX sin(Ωst)− δνY cos(Ωst)], (5.3)

where the coefficients φ0 and ν0 account for absolute phase and frequency offsets

between the 3He maser and the ultra-stable reference oscillator. The reduced χ2

statistic for this fit model was determined, and then additional terms corresponding

to quadratic and maser amplitude-correlated phase drift were incorporated into the

model if they significantly improved the reduced χ2 [86]. The coefficients δνX and

δνY for each one-day run were extracted using a linear least-squares routine on

the best-fitting model for that day, which contained at most seven free parameters

and thus at least (21500 − 7) degrees of freedom. See Fig. 1 for an example of

the residuals from one day’s data. As a final check, a faux Lorentz-violating effect

of known phase and amplitude was added to the raw data and the analysis was

repeated. Data reduction for a given sidereal day was considered successful if the

synthetic physics was recovered and there was no change in the covariance matrix

generated by the fitting routine.

Data for this experiment were acquired with three different maser cells over a

period of 30 days in April 1999 (cell S3), 24 days in September 1999 (cell E9), and

60 days in February-May 2000 (cell SE3, runs 1 and 2). A total of 90 usable sidereal-

day values of δνX , δνY were obtained. The main magnetic field of the apparatus was

reversed about every 10 days to help distinguish possible Lorentz-violating effects

from diurnal systematic variations. Field reversal and subsequent re-equilibration

of the masers required approximately 24 hours.

Systematic effects resulting from possible diurnally varying ambient magnetic
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Figure 5.2: Typical residuals for the 3He phase data from one sidereal day, calculated
using the fit model given in Eq. (3).

fields would not average away with field reversals. Thus, the effectiveness of the 129Xe

co-magnetometer at eliminating such effects was carefully assessed before beginning

data acquisition. Since the two maser ensembles do not have perfect spatial overlap,

penetration of external magnetic fields through the nested magnetic shields and

into the interaction region could induce small frequency shifts in the free-running

3He maser despite the presence of the 129Xe co-magnetometer. Large coils (∼ 2.4

m diameter) surrounding the 129Xe/3He-maser apparatus were used to switch on

and off 0.5 G external magnetic fields in the north-south and east-west directions.

A bound on the ratio |δνHe/δBexternal| was obtained. The drifts in the ambient

magnetic field near the apparatus were measured to be about 0.2 mG over a typical

24-hour period, resulting in a worst-case shift on the free-running 3He maser of less

than 8 nHz, well below the present sensitivity of the experiment to Lorentz and

CPT violation. It should be noted that the relative phase between the solar and
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sidereal day evolved about 2π radians over the course of the experiment (April 1999

to May 2000). Hence, diurnal systematic effects from any source would tend to be

reduced by averaging results from all measurement sets.

The measured values of δνJ exhibited a small dependence on the direction of the

solenoidal magnetic field in the laboratory frame. This dependence was most likely

due to hysteresis and asymmetry in magnetic interactions between the solenoid and

the nested µ-metal shields under field reversal. For each cell, the data for the east

and west magnetic-field orientations were analyzed separately to determine mean

values and standard errors for δνJ , yielding the results in Table 1. As an example,

Fig. 2 shows the single-day values of δνX obtained in the first run with cell SE3 in

the east field orientation (SE3 E1).

Cell δνX (nHz) δνY (nHz)

S3 E 95± 118 197± 114
S3 W − 43± 138 88± 148
E9 E − 86± 234 −194± 207
E9 W −206± 186 − 60± 134
SE3 E1 100± 148 9± 141
SE3 W1 − 1± 88 62± 109
SE3 E2 − 2± 180 68± 107
SE3 W2 − 35± 118 197± 120

Table 5.1: Means and standard errors for δνX and δνY . Results are displayed for each
of the three cells (S3, E9, and SE3) with both east (E) and west (W) orientations
of the magnetic field. Two runs were performed for cell SE3.

The total weighted means and uncertainties for δνX and δνY were then formed

from all data sets. Finally, the results were used to extract the measured value of

R ≡
√
δν2

X + δν2
Y , giving 53± 45 nHz (1-σ level).

The size of the coefficients in Eq. (1) indicates that the 129Xe/3He-maser ex-

periment is most sensitive to the Lorentz- and CPT-violating coupling associated
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Figure 5.3: Values of the Lorentz-violating parameter δνX obtained with cell SE3 in
the E1 orientation. The horizontal line indicates the mean value for that data set.

with b̃nJ . Under the assumption of negligible d̃nJ and g̃nJ [6], the above experimental

result for R corresponds to a value for b̃n⊥ ≡
√

(b̃nX)2 + (b̃nY )2 = (4.0 ± 3.3) × 10−31

GeV. This result is consistent with no Lorentz- and CPT-violating effect, given

reasonable assumptions about the probability distribution for R [87]. It represents

the most stringent limit to date on possible Lorentz- and CPT-violating couplings

involving the neutron and is more than six times better than the best previous

measurements [6].

We are planning improved Lorentz and CPT tests using noble-gas masers. Up-

grading laser and temperature control and acquiring a larger data set could better

the present Lorentz and CPT constraint from the 129Xe/3He system by up to an or-

der of magnitude. Also, a new two-species Zeeman maser using 3He and 21Ne might

provide even greater improvements to constraints on neutron parameters [6, 88].

David Phillips, Mark Rosenberry, Federico Cané, Timothy Chupp, Robert Ves-

sot and Edward Mattison helped greatly with this project. Development of the

129Xe/3He Zeeman maser was supported by a NIST Precision Measurement Grant.
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5.3 Addendum to Chapter 5

In this section we present some additional tables and graphs that are not included

in the paper of Section 5.2 but might be of interest to the reader.

Comparison of Experimental Bounds on Lorentz Symmetry

Experiment b̃e
X,Y (GeV) b̃p

X,Y (GeV) b̃n
X,Y (GeV)

anomaly frequency of
electron in Penning trap 10−25 – –
(Dehmelt et. al.)

199Hg and 133Cs
precession frequencies 10−27 10−27 10−30

(Hunter, Lamoreaux et. al.)

spin-polarized
torsion pendulum 10−29 – –
(Adelberger et. al.)

Hydrogen maser
(Phillips, Humphrey, 10−27 10−27 –
Walsworth et. al.)

129Xe/3He
DNGM – – 10−31

(this work)

Table 5.2: Leading experimental bounds on Lorentz violation for the electron, proton
and neutron.
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Plot of R−distribution function

The probability distribution for R =
√
δν2

X + δν2
Y is formed by multiplying the

distributions for δνX and δνY , converting to polar coordinates, and integrating over

the polar angle. In the case where δνX and δνY have zero mean value and the

same standard deviation σ, the probability distribution takes the form P (R) =

σ−2R exp(−r2/2σ2), with the most probable value of R occurring at R = σ. Thus

our experimental result of R = 53 ± 45 nHz is consistent with no sidereal variation

of the 3He maser frequency, with R differing from the most probable value by less

than one standard deviation.
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Figure 5.4: A plot of the R−distribution probability function.
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Chapter 6

Toward a Test of Time Reversal

Symmetry Using the DNGM

In this chapter we describe a preliminary search for a permanent electric dipole mo-

ment (EDM) of the 129Xe atom, as evidence of time reversal (T ) symmetry violation

in elementary particle interactions. We emphasize that the EDM work presented

here is strictly preliminary in nature. The null result of dxe < 1 × 10−26 e-c.m. is

not yet competitive with the current best EDM limits [15] in atomic systems, and

thus does not provide new information on possible sources of T -violation posited

by extensions to the standard model (Equation 6.1). Nevertheless, we expect that

the capability of the DNGM for performing sensitive differential measurements of

the 129Xe and 3He nuclear Zeeman transition frequencies should permit a measure-

ment of the 129Xe EDM at a sensitivity of ∼ 1 × 10−28 e-c.m. within a few years.

Such a result would be the most sensitive absolute EDM search made in any system

to date and would provide a theory-dependent sensitivity to proposed T -violating

interactions that is roughly comparable to the recent 199Hg EDM search [15], but

with the important advantage of having a co-magnetometer. Here we provide moti-
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vation for performing an EDM search in 129Xe. We also describe the experimental

apparatus and procedures implemented thus far in obtaining our preliminary result

of dxe < 1× 10−26 e-c.m.

6.1 Theoretical Overview and Motivation

Time reversal was long assumed to be a fundamental, perfect symmetry of elemen-

tary particle interactions. In 1964, however, a single, indirect1 example of a violation

of T -symmetry was discovered in the decay of neutral K-mesons [31]. During the

past 30 years much theoretical effort has been devoted to understanding T -symmetry

violation in nature, and many experiments have been performed to search for failures

of T -symmetry beyond that originally observed in the K-meson system. The theo-

retical work has posited various possible sources of T -asymmetry beyond the stan-

dard model, but no new experimental examples have been found, thus preventing

confirmation of a correct theory and leaving T -symmetry violation as an important

problem in elementary particle physics. In addition, the inferred matter/antimatter

asymmetry in the universe may be a consequence of T -asymmetry in the laws of ele-

mentary particle interactions [32]. Thus an understanding of T -symmetry violation

is important both for high energy physics and cosmology. Further experimentation,

especially the discovery of additional examples of T non-conservation, is essential to

understand this fundamental symmetry breakdown.

Several experimental approaches have been used in the search for additional

failures of T -symmetry [33]. The two most sensitive are: (i) the investigation of

interactions and decays of high energy particles (e.g. the K and B mesons); and (ii)

1This experiment measured CP violation, which implies T violation if CPT holds. Recent work
on the CPLEAR experiment at CERN has made direct observation of T -symmetry violation in
the same system.
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Figure 6.1: Illustration of how for an atom, molecule, or elementary particle to have
a permanent EDM, T symmetry must be violated.

the search for EDMs of atoms, molecules, and the neutron. To date, no examples

of T -symmetry violation in high energy particle decays have been uncovered that

are inconsistent with the standard model. Similarly, no evidence of an EDM has

yet been found. Nevertheless, the experimental EDM sensitivity has improved by a

factor of ∼ 1010 over the last 30 years, and is now at a level to test many theories

that purport to explain T -asymmetry in nature. For example, experiments with cold

stored neutrons [11,89] have set the most stringent direct limits to date on the EDM

of a free particle by setting a bound on the neutron EDM (dn at the level of 10−25

e-cm). The limit on dn has directly disproved or constrained several theories that

include T -symmetry violation [17,33]. In particular, Weinberg’s 3-Higgs model [90]

is effectively ruled out because it predicts 10−25e-cm ≤ dn ≤ 10−22 e-cm.

Theories of particle interactions that are asymmetric (or odd) under T gener-

ally predict that free particles like the neutron, proton, and electron have non-zero

EDMs. Composite systems like atoms and molecules may also have EDMs due to

the intrinsic EDMs of their sub-atomic constituents as well as T -odd interactions
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among these constituents [17, 33]. In the absence of degeneracies, Wigner-Eckart

selection rules require an electric dipole moment d to be parallel or antiparallel to

the system’s total angular momentum F. But d is a polar vector (T -even, P -odd)

while F is an axial vector (T -odd, P -even). Thus the relative orientations of d

and F change under time reversal or spatial inversion, as illustrated pictorially in

Figure 6.1.2 Calculations indicate that atomic EDM magnitudes increase rapidly

with atomic number Z [35]. Thus precision experimental EDM searches using high

Z atoms serve as important complements to EDM measurements on the neutron.

In recent years, precision experimental searches for atomic EDMs have used the

high-Z diamagnetic atoms 129Xe [20,91] and 199Hg [14,92] and the high-Z paramag-

netic atoms 133Cs [12] and 205Tl [16,93]. EDMs of 129Xe and 199Hg are most sensitive

to T -odd interactions in the nucleus as well as tensor electron-nuclear interactions;

whereas 133Cs and 205Tl EDMs are most sensitive to a possible EDM of the electron.

Each of the EDM measurements performed to date sets a stringent limit, consistent

with zero, on the magnitude of the atomic or molecular EDM in question. These

null results already impose significant constraints on theories that incorporate T -

asymmetry in extensions of the standard model [17, 90, 94]. For example, there has

recently been great interest in models in which neutral-Higgs-boson exchange medi-

ates T -symmetry violation [90,94]. Such models predict atomic EDMs to be of the

order of magnitude of the best limits coming from present experiments, although

the theoretical connection between elementary particle theory and atomic experi-

ment is difficult (providing order of magnitude reliability [17]). Thus the challenge

to experimental atomic physicists is to improve the EDM measurement sensitivity

of their techniques, so that the predictions of finite atomic EDMs can be definitively

2For a spin−1/2 atom such as 129Xe, this fact follows trivially from Kramer’s theorem [34],
which asserts that the energy levels of a T -even Hamiltonian are doubly degenerate.
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Parameter limit experiment reference

de 4× 10−27 205Tl [16]
CS 7× 10−7 199Hg [15]
CT 1.3× 10−8 199Hg [15]
η 1.6× 10−3 199Hg [15]

Table 6.1: Table of the most stringent present experimental limits on the T -violating
parameters in Equation 6.1.

tested.

Calculations by Khriplovich [95,96], Martensson-Pendril [97], and Flambaum [98]

estimate the value of an atomic EDM in 129Xe to be approximately given by

dxe =

Khriplovich︷ ︸︸ ︷
10−3 · de + 7.5× 10−23 · CS +

Martensson−Pendril︷ ︸︸ ︷
10−21 · CT +

Flambaum︷ ︸︸ ︷
10−26 · η . (6.1)

Here, de is the value of the electron EDM; CS and CT are coupling constants reflect-

ing the strength of pseudo-scalar and pseudotensor T -violating interactions between

the electrons and nucleons; and η is a dimensionless scale factor proportional to the

size of the atomic Schiff moment, which reflects contributions to an atomic EDM

arising from intrinsic nucleon EDMs and T -violating nucleon-nucleon interactions.

Table 6.1 gives the most stringent present limits on these parameters, as well the

experiments which have established those limits. The theoretical values are uncer-

tain at approximately the 50% level, but it is still possible to deduce that for a 129Xe

EDM search to provide new information, dxe will need to be measured at a level

∼ 1− 2× 10−28 e-c.m. or better.
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6.2 Experimental Procedure and Apparatus

As described in Section 6.1, an atomic EDM must point along the total angular

momentum vector F. In 129Xe and 3He, the electronic angular momentum J is

equal to zero, and F points along the direction of the nuclear spin I. We can thus

write the Hamilitonian for a 129Xe or 3He atom in external electric and magnetic

fields as

Ĥ =
− (dngE + µngB) · I

I
, (6.2)

where dng is the magnitude of the noble gas EDM, E is the electric field, B is the

magnetic field, and I is the nuclear spin (I = 1/2). The dual noble gas maser EDM

search consisted of sequential applications of an electric field E across the interaction

region. The electric field was oriented parallel to the experiment’s static magnetic

field, and its direction was reversed regularly (∼ every 5000 seconds).

The DNGM was operated with the 129Xe species phase-locked and the 3He maser

free-running. Coupling to a 129Xe EDM would produce a frequency shift linear in

the magnitudes and signs of both the 129Xe EDM and the applied electric field.

A 129Xe EDM coupling would change the magnetic field required to maintain a

constant 129Xe maser frequency: this EDM-induced alteration of the magnetic field

would cause a frequency shift in the free-running 3He maser. Calculations indicate

that dng should scale as Z2 or Z3 [35], so that dxe ≥
(

54
2

)2
dhe. The value of the

129Xe EDM is then given by

dxe =
h

2γ∆E
δνhe, (6.3)

where γ ≈ 2.75408 is the ratio of the 3He and 129Xe magnetic moments and δνhe is

the change in the free-running 3He maser frequency when the electric field changes

by ∆E. We will apply this result when analyzing our preliminary data in Section
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Figure 6.2: Schematic of the DNGM high voltage system used to create the applied
electric field necessary for a 129Xe EDM search.

6.3.

A schematic of the electric field control system is shown in Figure 6.2. The field

across the EDM cell (typically ∼ 2 kV/cm) was generated by a pair of polarity-

switching high voltage DC power supplies.3 Polished brass tabs were soldered to high

voltage hookup wire coming from the power supply outputs. Electrical connection

from the high voltage to the cell was achieved by pressing the tabs against the

molybdenum cell endplates using 4-40 nylon screws, as shown in Figure 6.3. The

value of the electric field across the cell is given by E = V+−V−
s

, where the endplate

separation s was 2 cm for the preliminary measurements reported in this thesis.

The resistances Rf = 10 MΩ and capacitances Cf ∼ 20 pf shown in Figure

6.2 provided low-pass filtering of each power supply output, with an approximate

3CE1001 30 kV supplies, available from K and M Electronics, 11 Interstate Drive, West Spring-
field, MA 01089.
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V1 V2

Figure 6.3: Electrical connection from the high voltage to the cell was achieved by
pressing polished brass tabs against the molybdenum cell endplates using 4-40 nylon
screws. See Section 3.1 for a description of surface preparation of the electrodes.

breakpoint at 5 kHz. As will be described in Section 6.3, increasing the value

of Cf by a factor 105 should provide immediate, large improvements in the EDM

measurement resolution of the DNGM.4 The polarity and output levels of both high

voltage supplies were controlled by a dedicated computer located in the DNGM

laboratory. Note that in the EDM experiments reported in [15, 20, 36], precision

electrometers capable of sensing currents at the level of ∼ 1 pA were part of the

high voltage systems. Although our co-magnetometer measurements in Section 3.6

indicate that leakage currents will not play a role even in a sub-1×10−28 e-c.m. 129Xe

EDM measurement, we plan on implementing real-time leakage current monitoring

instrumentation in the near future.

41− 10µf high voltage capacitors are commercially available for a cost of ∼ $200 each.
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6.3 Preliminary Results

As described in Section 6.2, a 129Xe EDM measurement consisted of looking for a

frequency shift on the 3He Zeeman frequency as the electric field across the DNGM

cell was reversed from E to −E.5 With no electric field applied across the cell,

the DNGM 3He maser Allan deviation over time intervals τ ∼ 5 ks was typically

200 nHz. Making two consecutive such measurements while reversing the applied

electric field ±5 kV/cm would yield a one-standard-deviation sensitivity to a 129Xe

EDM of ∼ 14 × 1027 e-c.m. per field reversal. If 15 field reversals were performed

per day of running, the single-day EDM resolution of the DNGM would be given

approximately by 3.6× 1027 e-cm. In 300 days of running, the DNGM could place

a limit of ∼ 2.0× 1028 e-c.m. on the value of a 129Xe EDM. As described in Section

6.1, a result of this sensitivity could provide meaningful information on proposed

sources of T -violation in various extensions of the standard model.

To date, operation of the high voltage power supplies at electric fields ≥ 2 kV/cm

in the maser bulb has degraded the DNGM frequency stability (i.e., Allan deviation)

by as much as a factor of 5 – 10. This degradation is caused by two different effects.

One is a steady bleed-through of RF noise from the power supply electronics. The

magnitude of this noise source appears to be proportional to the voltage applied

to the high voltage electrodes. Addition of large filtering capacitors to the supply

electronics should abate this noise source considerably. The second source of noise

occurs only for cell electric fields higher than ∼ 2.2 kV/cm. These noise events are

discrete in nature and probably arise from arcing from the high voltage electrodes

5A alternating dwell pattern +E,−E,+E,−E, . . . provides the most efficient duty cycle for
an EDM measurement. For our preliminary measurements, we restricted our dwell patterns to
be strictly alternating. Most EDM measurements [15], however, are performed with some dwell
patterns incorporating zero electric field in order to search for a variety of possible systematic
effects associated with high voltage polarity switching, imperfect field reversal, effects which might
scale as E2, etc. See [15,36] for a thorough discussion.
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to the resonant pickup coil. They result in bursts of RF voltage which perturb the

maser and can also overload the pre-amplifier. In addition, the rate and intensity of

these discrete noise events increase rapidly for cell electric fields beyond 2.2 kV/cm.

Although the origin of these noise bursts is not understood precisely, better surface

preparation, a larger separation between the electrodes and the pickup coil, and the

addition of a dielectric medium around the electrodes should abate the noise bursts

substantially.

With this still non-optimized system, we have taken approximately 25 days of

preliminary EDM data over the last several months, with the primary goals of debug-

ging the high voltage control software and also of testing our data analysis routines.

We now briefly describe how our preliminary 129Xe EDM data were analyzed. Note

that our methods are similar to those laid out in [15].

The phase and amplitude of both maser signals were recorded at four-second

intervals by the lock-in amplifiers (Section 3.7) and downloaded for analysis once

every 24 hours. We performed initial reduction of the 3He phase trace for each EDM

run by fitting to the minimal fit model

φHe(t) = φ0 + 2πνot, (6.4)

where the coefficients φ0 and νo accounted for absolute phase and frequency offsets

between the 3He maser and the ultra-stable reference oscillator (Section 2.5). The

reduced χ2 statistic for this fit model was determined, and then additional terms

corresponding to quadratic and maser amplitude-correlated phase drift (see Section

2.6) were incorporated into the model if they significantly improved the reduced

χ2 [86]. The 3He phase residuals from the least-squares regression were then analyzed

for a 129Xe EDM signature.
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With the 129Xe maser phase-locked and the 3He maser free-running, a 129Xe EDM

signature would consist of a signed frequency shift linear in the value of the applied

electric field (Equation 6.3). Each one-day run consisted of dwells during which

the electric field across the cell had constant (signed) values Ei separated by dead-

times To during which the field was reversed by linearly ramping the power supply

voltages from V to −V . Typical field reversal dead times were ∼ 700 seconds,

and typical dwell times were ∼ 5000 seconds.6 A single day run thus contained

approximately 16 evenly spaced measurements of the free-running 3He frequency.

Additional diagnostic signals were also recorded during data taking. In addition to

monitoring the voltages V1 and V2 of the EDM cell electrodes, we monitored the

temperatures of the pump bulb, maser bulb, and external resonator; the relative

value of the Rb magnetization in the pump bulb (Section 3.4.2); the broadband

power emitted by the optical-pumping laser-diode array; and the ambient room

temperature.

Let {νi} represent the sequence of N minimum-variance estimates of the 3He

maser frequency (see Equation 2.39) corresponding to the electric field dwell pattern

{Ei}. We can then form {di}, the sequence of (N − 1) measurements of the 129Xe

EDM:

di =
h

2γ

(
νi − νi+1

Ei − Ei+1

)
, (6.5)

where h is Planck’s constant and γ ≈ 2.75408 is the ratio of the 3He and 129Xe

magnetic moments. The estimated mean for a one-day measurement of the 129Xe

EDM is given by the mean of the set {di} , and the estimated error is equal to the

standard deviation of the set {di} divided by
√
N − 1, and then multiplied by

√
2

to correct for cross-correlations between adjacent di.

6As stated earlier, all preliminary runs had strictly alternating electric field dwell patterns.
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Usable data for this experiment were acquired for 25 days with two different

maser cells over the period September, 1999 to April, 2000. Although no systematic

checks were carried out for the preliminary data runs,7 we remark here that an

electric-field correlated frequency shift could arise from a magnetic field produced

by the flow of leakage currents along the surface of the EDM cell [15,20]. Such shifts

could give false positive or false negative EDM results, and are thus of particular

concern. We showed in Section 3.6, however, that the 129Xe co-magnetometer should

limit the size of such a shift to ≤ .02 nHz/(kV/cm), well below even the most

optimistic estimate for 129Xe EDM sensitivity of the DNGM, even in several years

of running.

Weighted averaging of the the estimated means and errors of all single-day EDM

runs were used to extract a value for the 129Xe EDM [86] from our preliminary data.

Our null result of dxe = (.84±1.1)×10−26 e-c.m. (1-σ level) indicates no evidence of

T -symmetry violation in the 129Xe atom at the present level of statistical sensitivity.

The last two columns of Table 6.2 enumerate the single-day EDM results, with

estimated errors. These data are plotted in Figure 6.4.

The excellent frequency resolution (in the absence of electric fields) of the DNGM

has enabled us to establish the most stringent limit to date on Lorentz and CPT

violation involving the neutron, as described in Chapter 5. Attainment of compara-

ble resolution in the presence of electric fields of ∼ 5 kV/cm would permit a 129Xe

EDM search with a sensitivity of 1−2×10−28 e-c.m. in ≈ 300 days of running. Such

a limit would constrain T -symmetry violating mechanisms (Section 6.1) at a level

comparable to the the best present experimental limits (see Table 6.1), but with the

important advantage of a co-magnetometer. We believe that straightforward im-

7It was clear that the noise from the high voltage supplies would need to be overcome before
meaningful EDM work could continue.
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cell dwell time (s) dead time (s) dxe (10−26 e-c.m.) σd (10−26 e-c.m.)

E9 West 5000 232 2.69 10.2
E9 West 5000 232 8.5 10.6
E9 West 5000 232 6.5 7.2
E9 West 5000 170 -3.11 3.54
E9 West 5000 170 10.1 5.3
E9 West 5000 170 5.21 4.48
E9 West 5000 170 -3.1 4.9

SE3 West 7000 2960 2.98 4.69
SE3 West 7000 833 -4.7 10
SE3 West 7000 833 2.12 1.6
SE3 West 5000 700 3.64 8.68
SE3 West 5000 700 2.92 8.18
SE3 East 5040 700 -12.8 7.96
SE3 East 5040 700 -12.98 10.4
SE3 East 5040 700 -0.1037 5.72
SE3 East 5040 700 -8.44 11.6
SE3 East 5040 700 -14.66 8.8
SE3 East 5040 700 10 9.5
SE3 West 5040 700 -8.41 9.65
SE3 West 5040 700 -17.1 9.58
SE3 West 5040 700 2.62 5.53
SE3 West 5040 200 -45.1 20.4
SE3 West 5040 700 -10.8 10.7
SE3 West 7000 700 -3.9 9.4
SE3 West 5040 700 6.95 7.62
SE3 West 5040 700 8.358 11

Table 6.2: Table enumerating the 25 usable single-day EDM results (dxe), with
estimated errors (σd). Also indicated are the cell used, the direction of the solenoid
magnetic field (East or West), the duration of each high voltage dwell, and the
field-reversal dead time for each single-day measurement.

179



-60

-40

-20

0

20

X
e 

E
D

M
 (

10
-2

6  e
-c

m
)

2520151050

run number

weighted mean and error:
d_xe  = (.84  +- 1.05) x10-26

 e-cm

Figure 6.4: Estimated mean values and standard errors of the 25 usable single-day
EDM runs. The weighted mean and error provide a null-result of dxe = (.84±1.1)×
10−26 e-c.m. (1-σ level) for the value of a 129Xe EDM.

provements to the high voltage power supplies8 should enable such a measurement

to be performed within the next 1− 2 years.

8Immediate plans include improving the RC filter shown in Figure 6.2 by incorporating very
large (∼ 1µf) high voltage capacitors into the circuit, thereby reducing the low-pass breakpoint to
1/RC ∼ 100 Hz. We also plan to assess the effects of adding a dielectric medium around the cell
electrodes. Preliminary studies involving sulfur-hexafluoride (SF6) have shown great promise.
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D 52, 6224 (1995); V.A. Kostelecký and R. Van Kooten, Phys. Rev. D 54 5585
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Appendix A

Extended Bloch Theory of the

Dual Zeeman Maser

An extended Bloch theory of the dual noble gas maser was developed by Dr. Richard

Stoner, a research scientist in our laboratory at the Harvard-Smithsonian Center for

Astrophysics. We present in this appendix, at his request and with his permission,

Dr. Stoner’s (as yet) unpublished manuscript on this extended Bloch theory.
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Extended Bloch theory of the dual Zeeman maser

Richard E. Stoner
Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138

(July 16, 2000)

A dual Zeeman maser is a device in which ensembles of two different spin-polarized gases are
co-located in the same glass cell and perform continuous and simultaneous maser oscillations on
their respective Zeeman transitions. Being at present the only two-species maser technology, it is
a unique tool for differential magnetometry. Recent experiments have demonstrated phenomena in
Zeeman masers that cannot be described by existing theory. Accordingly, an extended Bloch theory
of the Zeeman maser is presented in this paper. This paper first provides a brief review of the devel-
opment of Zeeman masers. A description of the diffusive transport of polarization between separated
pumping and interaction regions is then presented. The equations of motion are solved exactly via
Laplace transforms. This model accounts for wall loss effects and finite transport times, and is
of general applicability, including polarized gas targets for nuclear and particle physics studies. A
Bloch model of the Zeeman maser incorporating the new polarization transport results is presented.
Solutions for the equations of motion are presented for steady state and threshold conditions as well
as near-steady-state polarization and frequency oscillations. Fundamental limitations of the Bloch
theory description of Zeeman masers are discussed.

84.40.Ik, 32.80.Bx, 32.60.+i, 67.65.+z

I. INTRODUCTION

The dual Zeeman maser is a new device of considerable usefulness for precision measurement and fundamental
symmetry tests [1–3]. Two noble gas ensembles simultaneously and continuously oscillate while occupying the same
volume; thus, one of the masers can be used to stabilize the magnetic field to high precision, leaving the other maser
free to respond to subtle physical effects. The demonstration of a dual noble gas Zeeman maser has been recently
reported [4,5]. Single-species Zeeman masers were first operated by Myint and Robinson [6], and subsequently by
Richards et. al. [7]. Both these experiments employed 3He as the maser gain medium, spin polarized via metastable-
state optical pumping. In contrast, Chupp et. al. showed that spin exchange with optically-pumped Rb could serve as
a means of polarizing noble gas ensembles sufficiently to support a Zeeman maser, and operated single-species Zeeman
masers employing 3He and 129Xe [8]. The employment of spin exchange with optically-pumped Rb makes possible
the simultaneous polarization of multiple species; this fact has been exploited in several fundamental symmetry tests
using freely-precessing polarized ensembles, including a study of local Lorentz invariance (LLI) [9], the linearity of
quantum mechanics [10], and a search for a permanent electric dipole moment (EDM) in 129Xe [11]. A spin-exchange-
pumped 3He maser was recently operated by Romalis and Happer [12] in the so-called inhomogeneous broadening
regime, characterized by large magnetic field gradients and slow diffusion. If we define the maser Larmor frequency
by ωL and its gradient (due to magnetic field variation) as ∇ωL, and the characteristic diffusion constant and cell
dimension by D and R, respectively, the inhomogenous broadening regime is characterized by D

/
R2 << R∇ωL [12].

This condition can be interpreted as a situation in which the diffusion rate across the cell is much less than the spread
in Larmor frequency across the cell due to field gradients. In this case, diffusion is not rapid enough to suppress the
broadening effect of field gradients. The dual Zeeman maser described here (and all Zeeman maser systems reported
to date, excepting [12]) operates in the regime of fast diffusion and small field gradients, wherein diffusion is rapid
enough to average out the effects of field gradients: i.e., D

/
R2 >> R∇ωL (motional narrowing [12]). Operating in

the motional narrowing regime is crucial for precision comagnetometry in the dual Zeeman maser; in order that the
two species sense the same average magnetic field in a given volume, the spatial distribution of the masing ensembles
should be identical in shape [24,26]. This ideal is most closely attained in the regime of rapid diffusion, where the
masing ensembles are nearly uniform.

The dual noble gas Zeeman maser was first proposed by Walsworth [13]. He observed that a device capable of
continuous oscillation would have significant advantages over the use of freely precessing ensembles, including the
maintainance of stable polarizations and the reduction of required measurement duration permitted by coherent
frequency averaging.

A qualitative discussion of the physics of the Zeeman maser is presented in this Section, along with a brief description
of an existing experimental apparatus. As of this writing, noble gas Zeeman masers have been implemented using 3He
(nuclear spin 1/2), 129Xe (nuclear spin 1/2), and 21Ne (nuclear spin 3/2) [3–5,24]. This paper will focus on describing
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a dual Zeeman maser system using 3He and 129Xe, as implemented in our laboratory and the laboratory of Chupp
and co-workers [4,5]. This is an interesting case study because the interactions of these noble gases with alkali atoms
and with their glass cell enclosure are very different, leading to significant differences in the dynamics of the 3He and
129Xe masers. These differences affect how well the two masers function as co-magnetometers, as will be discussed in
Section IV below.

Section II presents new equations of motion of diffusive transport of polarization, in a system where atoms are
polarized in a ”pump” region and are transported by diffusion to an interaction region. In previous work, a simple
linear gradient model was used to describe 3He diffusion in noble gas masers [7,8] as well as in polarized 3He targets
for nuclear physics research [14]. The new model incorporates a 1-d diffusion field to describe the transport region,
and incorporates polarization destruction effects in the pump, interaction, and transfer regions via phenomenological
polarization lifetimes T1. This model has applicability to polarized 3He targets used in nuclear physics applications
[14], as well as to the dual Zeeman maser. These equations of motion are solved exactly by use of Laplace transforms.
It will be seen that polarization losses in the transfer region are not important to Zeeman maser operation in the
diffusive transport of 3He, but will be shown to be important in transport of 129Xe. This distinction arises because
diffusion of 129Xe is much slower than that of 3He, and the polarization wall loss rate of 129Xe is much greater than
that of 3He. The time-dependent solutions will be useful in extracting polarization lifetimes from experimental data.
The solutions to the equations of motion in steady state will serve as a tool in the design of polarization systems.

Section III presents a Bloch model of the Zeeman maser that incorporates the diffusive transport formalism of Section
II. This extended Bloch model also explicitly presents the maser oscillation frequency as a dynamical variable, which
permits detailed theoretical description of frequency phenomena that were not experimentally resolveable prior to the
advent of the dual Zeeman maser. These extended Bloch equations are solved in the steady state to derive startup
conditions, an energy balance condition, and the cavity-pulling relation. The Bloch equations of motion are then
linearized about the steady state, and the linearized equations are solved exactly using Laplace transforms. These
solutions permit measurements of near-equilibrium behavior to be used to determine the values of maser operating
parameters.

Having worked out the near-equilibrium dynamics of the Zeeman maser polarizations, we will then investigate the
effects of these variations on the maser frequency in Section IV. In addition, we will describe the frequency dynamics
of the two-species Zeeman maser. One species is phase locked to an external reference clock by feedback to the main
magnetic field Bo. It will be shown that effects which would, in the absence of the phase lock loop, tend to shift
the phaselocked maser, will produce frequency shifts on the other [free-running] maser. The demonstration of the
dual Zeeman maser included effects wherein it was obvious that the polarizations (and associated magnetizations) of
the noble gases were strongly coupled to the frequency of oscillation [4], and were a significant cause of frequency
instability for measurement invervals longer than 500 sec. The fundamental reason for this coupling is that unlike
other maser technologies, the Zeeman maser’s frequency of oscillation is first-order in the longitudinal magnetic field.
The magnetization of the polarized gases contribute to this field to induce polarization-proportional frequency shifts.
These shifts must be understood in order to specify the requirements for polarization stability needed to attain a
given frequency stability. Section IV presents a description of these effects.

We will then present a scheme for minimizing the variation of the oscillation frequency with longitudinal polarization.
It will be shown that operating the maser at a selected detuning from the peak of the resonator response will result
in a cavity-pulling shift that is equal in magnitude and opposite in sign of the frequency shift due to other frequency
shifts proportional to the longitudinal polarization Pz. The result is that maser frequency oscillations resulting from
near-equilibrium oscillations of the maser polarization components are greatly reduced. This detuning scheme might
be useful in applications like an atomic gyroscope, wherein the maser system might be subjected to perturbations;
however, it has not yet proven to be beneficial in precision measurement applications. The detuning scheme is
analogous in concept to that of Crampton for the hydrogen maser [15], in which operation of the maser at a selected
detuning results in a cavity-pulling shift that cancels the spin-exchange shift, leaving the maser frequency independent
of the flux of polarized H atoms into the maser bulb. Finally, in Section IV we will cite some limitations of the extended
Bloch theory in describing dual Zeeman masers. Since the Bloch theory deals in volume-averaged dynamical variables,
it cannot account for effects due to changes in the shape of the distributions over which the averaging is done. Recent
measurements in our laboratory suggest that such effects are important [5].

We now present a brief qualitative discussion of Zeeman maser operation, which should aid in the understanding
of the formal mathematical discussions to follow. Certain processes must be present for any oscillator to operate:
a population inversion; an energy source to sustain that inversion; feedback; and energy dissipation. Population
inversion in a Zeeman maser is attained when the atoms have a net spin polarization, such that their Zeeman energy
in the axial magnetic field is positive. The inversion condition is sustained by providing a continuous source of
polarized atoms. As earlier mentioned, this has been achieved experimentally via optical pumping of metastable
noble gas atoms, or via spin exchange of noble gas atoms with optically pumped alkali atoms. Feedback in a Zeeman
maser is provided by placing the polarized sample of noble gas atoms in proximity with the inductor of a tuned
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resonant circuit, called the pickup coil. Energy dissipation results from dephasing of the atoms’ Larmor precession
and from ohmic energy losses in the pickup coil.

LDA
λ/4

Pump Bulb

Maser Bulb

~0 Hz
0.025 Hz

795 nm

Frequency
Synthesizers

Main Solenoid

(T = 120 C)

(T = 40 C)

4933 Hz
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Phase-Sensitive
Current Source

Bo

A/D Converter

H Maser Reference

Beam Expander

Nested Magnetic Shields

Preamp

External Resonator

Pickup Coil

Electric Field Plates

FIG. 1. The 129Xe/3He dual Zeeman maser. Co-located ensembles of noble gas atoms are polarized by spin exchange
collisions with optically pumped Rb atoms. A laser diode array is used to provide resonant light for optical pumping. The
static magnetic field of 1.5 G is produced by a solenoid residing inside nested layers of µ-metal shielding. Polarized noble
gas atoms diffuse down the transfer tube to the maser bulb, where the noble gas atoms’ nuclear spins precess in the static
field. The precession excites current in nearby inductive pickup coils, which are part of a circuit tuned with resonances near
the Larmor precession frequencies of the two noble gas species (see Appendix E). The current induces resonant alternating
magnetic fields which act back on the precessing atoms, providing feedback for maser oscillation. (The cell shown has electric
field plates; all-glass cells have also been used.) The signals from the resonant circuit are presented to a low-noise preamp; the
amplified signals are analyzed and digitally sampled using lockin amplifiers. The lockin amplifiers’ reference signals, and the
A/D conversion trigger signal, are all synchronized to one 5 MHz reference signal derived from an H maser.

Figure 1 is a schematic diagram of a Zeeman maser operated in our laboratory [4,5]. Atoms are polarized in the
”pump bulb” and diffuse to the ”maser bulb”, which is placed near the pickup coil. As the polarized atoms precess
in the static magnetic field, they produce in their vicinity an oscillating magnetic field, which is the field induced
by the atoms’ component of magnetization normal to the static magnetic field. The oscillating flux through the
pickup coil excites an oscillating current in the resonant circuit. The circuit’s resonance is tuned to the nuclear spin
Larmor frequency, so that the current is phased so as to create a field in the rotating frame that ”tips” the atoms to
the lower energy state. Figure 2 is an illustration of the maser polarization and magnetization vectors in the frame
rotating with the precessing nuclear spins, along with the magnetic fields ”seen” by the spins and the ~M × ~B torques
induced by those magnetic fields. The polarization and magnetization vectors, as well as the static field vector, are
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in the plane of the paper. The magnetization is shown as oppositely directed to the polarization: all noble gases
used thus far in Zeeman masers have negative gyromagnetic ratios. The principal torque is that driving the Larmor
precession, and is directed into the paper. The pickup coil magnetic field is static in the rotating frame. The pickup
coil magnetic field is directed into the paper when the Larmor precession frequency is at the peak of the resonator
response function, and can have a small component in the plane of the paper for detuned operation. The effect of
this small component of the pickup coil field in the plane of the paper is described below. It is the component of
the pickup coil field directed into the paper that ”tips” the atoms, i.e. torques the polarization vector towards the
lower energy state (the lower energy state is realized when a spin’s polarization vector is antiparallel to the static
field). The tipping process always transitions the spins to a state of lower energy , regardless of whether the atoms’
longitudinal polarization is aligned to the upper or lower energy state. This is because the pickup coil is a passive
device that cannot add energy to the polarized atoms. This tipping process is observed generally in nuclear magnetic
resonance (NMR) and is termed radiation damping [16], because in many NMR experiments the atoms’ polarization
is due to a Boltzmann distribution in a magnetic field, so that the atoms are in the lower energy (i.e. non-inverted)
state. The atoms’ precession is then observed to be damped by the feedback effect. Radiation damping is the primum
mobile of the Zeeman maser. It continously converts longitudinal polarization into transverse polarization, thus
allowing for attainment of a steady state transverse polarization, i.e. continuous Larmor precession. Figure 2 shows
the balance of processes that must occur for steady state operation of a Zeeman maser: the longitudinal polarization
must be replenished (by diffusion of polarized atoms) to compensate for losses due to radiation damping and cell
wall collisions; and the transverse polarization is replenished (by radiation damping) to compensate for losses due
to ensemble dephasing and spin depolarization. The oscillation threshold conditions derived below in Sec. III will
quantitatively describe these balance conditions.
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FIG. 2. The Zeeman maser polarization and magnetization vectors as seen in the frame rotating at the Larmor precession
frequency. For the noble gas species described in this work, the magnetization is oppositely directed to the polarization. Static
and AC magnetic fields are also shown, along with the resultant torque vectors. Under the correct conditions, both longitudinal
and transverse components of polarization exist in steady state. Longitudinal polarization Pz is replenished by diffusive loading,
and dissipated by wall loss and radiation damping. Transverse polarization is replenished by radiation damping, and destroyed
by magnetic field gradient dephasing, wall loss, and escape from the interaction region.

We can also identify from Fig. 2 the physical mechanism by which cavity pulling, a general property of maser
oscillators [17], manifests itself in the Zeeman maser. When the maser precession frequency differs from the resonant
frequency of the resonator circuit, the radiation damping field (which co-rotates with the transverse polarization)
created by the pickup coil is not precisely π/2 out of phase with the precessing polarization vector, so that there is a
small component of the damping field that lies parallel to the transverse polarization. This damping field component
then couples to the longitudinal polarization Pz to exert a torque which alters the precession frequency. Figure 2
shows the case where the maser frequency lies above the RLC resonance. The resultant torque, directed out of the
paper, reduces the net precession frequency, consistent with the expected action of a cavity pulling mechanism. It will
be shown in Sec. III that this mechanism is indeed cavity-pulling, and that the shift is proportional to the detuning
of the maser frequency from the RLC resonance, and to the longitudinal polarization Pz. The shift can then take on
either positive or negative sign, and thus could be combined with other Pz-proportional frequency shifts to reduce or
eliminate the net dependence of the maser frequency on Pz.

II. DIFFUSIVE TRANSPORT OF POLARIZATION IN TWO-BULB CELLS

In this section we derive a system of equations relating the mean polarization in the pump and maser chambers to
the polarization in a one-dimensional transfer tube connecting them (see Fig. 1). This analysis describes polarization
along the field direction only (field is directed along z, see Fig. 2), and will be extended in Section III to include a
[precessing] transverse polarization due to maser action. We will subsequently carry out an exact solution to these
equations using parameter values derived from existing dual noble gas masers.

It is assumed that the magnetizations are nearly uniform in both the pump chamber and maser chamber. The
mean polarization is related to mean magnetization (magnetic dipole moment per unit volume) via

MP = − h̄γ
2

[ng]PP ; Mz = − h̄γ
2

[ng]Pz (1)

in the pump and maser chambers, respectively. γ is the gyromagnetic ratio, and [ng] is the number of noble gas atoms
per unit volume.The minus sign is to account for the fact that for all the polarized noble gas atoms to be considered
in this paper, the magnetic moment is antiparallel to the particle spin; thus, γ > 0 describes the antialigned case.
The polarization in the transfer tube (of length L), is modelled as a 1-d field in variables x and t, 0 ≤ x ≤ L. This
field is related to the volume-averaged pump and maser bulb polarizations (PP and Pz, respectively) via

PP (t) = Π (0, t) ; Pz (t) = Π (L, t) (2)

Polarization is exchanged between the transfer tube and the pump and maser bulbs via diffusion. Polarization flux
from the pump and maser bulbs into the transfer tube is proportional to the gradient of the transfer tube polarization
at the endpoints. The total dipole moment in, e.g., the pump chamber, is the average pump bulb magnetization MP

times the bulb volume VP . The rate of change of total dipole moment due to diffusion into/out of the transfer tube
is then

d

dt
{MPVP } = Att ·D ·

∂

∂x
MP (3)

where Att is the cross-sectional area of the transfer tube (assumed uniform throughout the transfer tube) and VP is
the pump chamber volume. The rate of change of the polarizations due to diffusion to/from the transfer tube is now
obtained by use of Equation (1):

ṖP

∣∣∣
diffusion

=
Att ·D · ∂

∂xΠ (x, t)
∣∣
x=0

VP
; Ṗz

∣∣∣
diffusion

=
−Att ·D · ∂

∂xΠ (x, t)
∣∣
x=L

VM
(4)

The minus sign included in the maser chamber diffusion exchange rate accounts for the location of the maser chamber
at x = L.
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Parameter Description 129Xe 3He
Att

Transfer tube cross-sectional
area

π 0 232 0 1702 2. .  cm cm( ) =

L Transfer tube length 4 14.  cm
VM

Maser bulb volume π 0 629 2 06 2 552 3. . .   cm cm cm( ) ( ) =
VP

Pump bulb volume 4
3

0 944 3 523 3π . .  cm cm( ) =

TM
Maser bulb temperature 45o C

TP
Pump bulb temperature 120o C

Rb[ ] Pump bulb Rb density 2 03 10 13 3. × − −cm
PXe

129Xe fill pressure 114  torr
PHe

3He fill pressure 1100  torr
PN 2

N2 fill pressure 78  torr
PRb

Rb polarization (pump) 0.7
η Resonator fill factor 2 31 10 2. × −

Bo
Static magnetic field 1 5.  gauss

D Diffusion constant (maser
bulb, transfer tube) 1 65 10 1

2

.
sec

× − cm
8 48 10 1

2

.
sec

× − cm

D Diffusion constant (pump)
2 42 10 1

2

.
sec

× − cm
1 21

2

.
sec
cm

GM
Transfer rate (maser) 2.65 10 sec-3 -1× 1 10 sec-2 -1.36 ×

GP
Transfer rate (pump) 2.82 10 sec-3 -1× 1 10 sec-2 -1.41×

γ SE
−1 Spin exchange time (pump) 137 sec 3 08 105. sec×

κ Wall loss parameter (maser
bulb, transfer tube) 2 8 10 4.

sec
× − cm

1 6 10 5.
sec

× − cm

κ Wall loss parameter (pump
bulb) 1 40 10 4.

sec
× − cm

1 6 10 5.
sec

× − cm

T1
Polarization lifetime (maser) 860 sec 1 50 104. sec×

T P1,
Polarization lifetime (pump) 2 25 103. sec× 1 97 104. sec×

T tt1,
Polarization lifetime

(transfer tube)
415 sec 7 26 103. sec×

γ Gyromagnetic ratio
2 1 177π × .

kHz

gauss
2 3 242π × .

kHz

gauss
ω Operating frequency 2 1791π ×  Hz 2 4933π ×  Hz
Q Resonator quality factor 9.9 9.3
T2

Coherence time 333 sec 170 sec
τ RD

Radiation damping time 76 sec 15 9. sec 

TABLE I. Physically reasonable parameter values used in computing solutions to the equations of motion. Notes: i) the cell
gas pressures are given at a temperature of roughly 24oC; ii) Xe wall loss parameters in pump and maser bulbs are related
according to [20]; iii) Appendix A is used to compute polarization lifetimes from the wall loss parameters.
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It is assumed that the diffusion process can be described everywhere in the transfer tube by a single constant
diffusion rate D. This is not strictly in accordance with the experimental conditions in the dual noble gas maser cell.
Table 1 lists typical parameter values for the dual noble gas maser [4]; it indicates that the pump and maser bulbs are
maintained at different temperatures, 120o and 40o C respectively. This is a ∼ 25% difference in absolute temperature,
corresponding to roughly 37% change in D over the length of the transfer tube (since D ∝ T 3/2 [18] ). However,
much of the temperature drop in the transfer tube probably occurs within ∼1 cm of the pump chamber in both the
SAO [5] and Michigan apparatus [4]; and the transfer tubes typically in use are about 4 cm in length (Table 1). In
addition to the effects of diffusion, the transfer tube polarization evolves under a polarization loss rate characterized
by a constant T1,tt

−1. This loss rate is also expected to decrease exponentially with temperature (for a recent study
of polarization wall loss in 129Xe, see [20]) and is thus not constant over the length of the transfer tube; however, as
in the case of the diffusion constant the bulk of the variation occurs near the pump chamber. Thus, in attempting to
extract maser parameters using the model in this paper, it would appear necessary to account for the non-uniform
temperature, but it may be possible to do so approximately in a simple way. For example, the simulations reported
in this paper take the diffusion constant and polarization wall loss rate in the pump chamber to be different from the
assumed common values of the transfer tube and maser chamber (Table 1).

The pump bulb polarization is continually replenished via spin-exchange collisions with optically-pumped, polarized
Rb atoms, at a rate of PRbγSE per noble gas atom; a phenomenological loss rate, T−1

1,P , accounts for polarization loss
due to effects such as wall collisions and magnetic field inhomogeneities [22,28]. The maser bulb polarization loss
rate is characterized by T−1

1 . These phenomenological loss rates can be related to one another in terms of a common
parameter, by solving the diffusion equation in the various regions of the cell and assuming that noble gas polarization
destruction is dominated by wall collisions. This analysis is carried out in Appendix A.

In terms of these parameters, the coupled equations of motion for the polarizations are given by

ṖP (t) = PRbγSE −
PP (t)
T1,P

+GPL
∂

∂x
Π (0, t)

Ṗz (t) = −Pz (t)
T1

−GML
∂

∂x
Π (L, t) (5)

(
D
∂2

∂x2
− ∂

∂t
− 1
T1,tt

)
Π (x, t) = 0

where GM , GP are defined as

GP =
AttD

VPL
; GM =

AttD

VML
(6)

The transfer tube polarization Π (x, t) can be expressed in terms of the polarizations PP and Pz by means of a Fourier
series expansion and the method of Green’s functions, in conjunction with boundary conditions of eqn (2). The
derivation is outlined in Appendix B. The result is a reduction of eqns (5) to a set of 2 coupled equations in terms of
PP and Pz alone. Substitution of results (B12), (B13), and (B14) into the first two of Eqns (5) yields

ṖP (t) = PRbγSE − PP (t)
(

1
T1,P

+ γSE

)
+GP



(Pz (t)− PP (t)) +
√

2
L

∞∑
m=1

bm · πm · exp
(
−k2

mDt
)

+Pz (t) · Σ2 − PP (t) · Σ1

−2 ·
∞∑
m=1

(−1)m
[

1
k2
mDT1,tt

− 1
] ∞∫

0

du exp
(
−
(
k2
mD + 1

DT1,tt

)
u
)
Ṗz (t− u)

+2 ·
∞∑
m=1

[
1

k2
mDT1,tt

− 1
] ∞∫

0

du exp
(
−
(
k2
mD + 1

DT1,tt

)
u
)
ṖP (t− u)


(7)

Ṗz (t) = −Pz (t)
T1

−GM



(Pz (t)− PP (t)) +
√

2
L

∞∑
m=1

bm · πm · exp
(
−k2

mDt
)

+Pz (t) · Σ1 − PP (t) · Σ2

−2 ·
∞∑
m=1

[
1

k2
mDT1,tt

− 1
] ∞∫

0

du exp
(
−
(
k2
mD + 1

DT1,tt

)
u
)
Ṗz (t− u)

+2 ·
∞∑
m=1

(−1)m
[

1
k2
mDT1,tt

− 1
] ∞∫

0

du exp
(
−
(
k2
mD + 1

DT1,tt

)
u
)
ṖP (t− u)
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These are the [integro-differential] equations of motion for the pump and maser bulb polarizations. Note that (as
expected) these equations reduce to those of references [8,14] in the limit of infinite D. The steady-state pump and
maser bulb polarizations in the absence of masing action (defined as PP,o and Po, respectively) are found by setting
ṖP = ṖM = 0 in Equations ( 7). The result is

PP,o = ∆−1
o ·

(
1
T1

+GM (1 + Σ1)
)
· PRbγSE

Po = ∆−1
o ·GM (1 + Σ2) · PRbγSE (8)

where ∆o is defined as

∆o ≡
(
γSE +

1
T1,P

+GP (1 + Σ1)
)
·
(

1
T1

+GM (1 + Σ2)
)
−GMGP (1 + Σ2)2 (9)

Remember that Σ1 and Σ2 are defined by equation (B15). The above results can then be used to find the steady-state
polarization profile Πo (x) in the transfer tube by substitution of equations (8), (9) into eqn. (B12). Note also that
we take the initial condition transients of (B12) as having damped out. The result is

Πo (x) = PP,o +
x

L
· (Po − PP,o) + Po · 2

∞∑
m=1

sin (kmx)
πm

(−1)m
1

k2
mDT1,tt + 1

− PP,o · 2
∞∑
m=1

sin (kmx)
πm

1
k2
mDT1,tt + 1

(10)

The effect of transfer tube polarization loss is manifested by the presence of the Σ1, Σ2 terms (see (B15) ) in (9)
and the summation terms in (10). All of these terms vanish in the limit of large T1,tt or large D. This is reasonable
because even if there is a finite transfer tube loss rate, little loss occurs if the diffusion is rapid since the atoms then
spend little time in the transfer tube.

Calculations using (9) and (10) show that accounting for transport effects does not alter the polarizations of 3He
beyond the ∼percent level (either in a Zeeman maser or a typical polarized target). However, 129Xe polarization
in a double-bulb cell is significantly affected by polarization loss in the transfer tube. Figure 3 is a plot of the
calculated steady state Xe polarization profile and the Xe polarization gradient in the transfer tube assuming the
system parameter values of Table I. We have assumed that the wall loss parameter (see Appendix A) in the maser
bulb and transfer tube are the same. The polarization profile deviates discernably from the strict linear variation
that would be expected in the limit of zero transfer tube loss. This is obvious from the gradient plot; the gradient
decreases in absolute value by 43% over the length of the transfer tube. The polarization profile is concave upward:
because of transfer tube losses, more polarization must be supplied from the pump bulb, leading to a more negative
gradient at x = 0, and less polarization is delivered from the transfer tube into the maser bulb, leading to a less
negative gradient at x = L. It can be shown that the effect of transfer tube loss on the pump bulb polarization is
small, whereas the maser bulb polarization is more strongly affected as compared to the loss-free transfer tube case.
For the case displayed in Fig. 3, a maser bulb polarization of 0.36 is attained; it can be shown that in the case of
infinite T1,tt that the steady state maser bulb polarization is 0.41.

In summary, the steady state maser bulb polarization is significantly reduced by transfer tube losses in conjunction
with a finite value of D, in comparison with the loss-free case. These conditions are realized in currently operating
129Xe Zeeman masers. The steady-state solutions (8) provide explicit relations for the dependence of the maser and
pump chamber polarizations on the transfer tube polarization loss rate and the polarization diffusion constant (in
addition to the other system parameters), and are therefore a useful tool for the design of double-bulb cell systems
in which atoms are polarized in one bulb, and a physics experiment using the atoms is carried out in the other. The
necessity of these results for analyzing existing 3He polarized targets is admittedly limited; however, these results can
guide possible future experiments in which large standoff distances between the polarizing region and the interaction
region is desired. Given a wall loss rate, diffusion constants (calculable with good accuracy from cell gas pressures
and temperatures [18,19]), laser power, cell geometry parameters, and the required polarization delivery, this theory
determines the maximum permissible length of the transfer tube.
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FIG. 3. Polarization and polarization gradient as a function of position in the transfer tube, calculated from eqn (10) using
parameter values given in Table I. The endpoint values correspond to the values of the polarization in the pump (x = 0) and
maser (x = L bulbs. The endpoint gradients are proportional to the flux of polarization from the pump and maser bulbs. In
the limit of small polarization loss in the transfer tube, the polarization gradient would be constant.

An exact solution to eqns (7) can be obtained for a time-dependent problem of interest. This solution can be used
to extract the wall loss parameter for both the maser and pump bulbs. Again, the model is principally applicable to
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the slowly diffusing, high wall loss rate 129Xe case. Consider an experiment wherein the initial Xe polarizations are
zero, and wherein the spin-exchange polarization source term is suddenly turned on to its full value PRbγSE at t = 0.
The Rb polarization loss rate is almost completely determined in the pump bulb by the very high rate of Xe-Rb spin
rotation collisions [21]; the rate of these collisions per Rb atom depends only on the Xe density, not the polarization,
so that the Rb polarization can be taken to be constant in time. Also, the Rb polarization will attain its peak value
in less than a msec, so that the Rb polarization can be considered to be turned on instantaneously. Under the initial
conditions given above, Laplace transforms can be applied straightforwardly to equations (7): in terms of the Laplace
transforms defined by

QP (s) ≡
∞∫

0

dt · exp (−st)PP (t)

QM (s) ≡
∞∫

0

dt · exp (−st)PM (t) (11)

the solutions are

QP (s) = ∆ (s)−1 ·
(
s (GMσ1 (s)− 1)−

(
1
T1

+GM (1 + Σ1)
))
· PRbγSE

QM (s) = ∆ (s)−1 · (sGMσ2 (s)−GM (1 + Σ2)) · PRbγSE (12)

∆ (s) = s ·




[
s (1−GPσ1 (s)) +

(
1

T1,P
+ γSE +GP (1 + Σ1)

)]
·[

s (GMσ1 (s)− 1)−
(

1
T1

+GM (1 + Σ1)
)]

+{
[sGPσ2 (s)−GP (1 + Σ2)] ·
[sGMσ2 (s)−GM (1 + Σ2)]

}
 (13)

and

σ1 (s) ≡ 2
∞∑
m=1

[(
1

k2
mDT1,tt + 1

− 1
)

1
s+ k2

mD + 1
T1,tt

]

σ2 (s) ≡ 2
∞∑
m=1

(−1)m
[(

1
k2
mDT1,tt + 1

− 1
)

1
s+ k2

mD + 1
T1,tt

]
(14)

The solution to the original problem is the sum of residues of this transform (multiplied by an exponential time
dependence):

PP (t) =
∞∑
i=0

CP,n exp (Ωit) =PRbγSE
∞∑
i=0

exp (Ωit)

Ωi (GMσ1 (Ωi)− 1)−
(

1
T1,M

+GM (1 + Σ1)
)

d
ds∆ (s)

∣∣
s=Ωi



Pz (t) =
∞∑
i=0

CM,n exp (Ωit) =PRbγSE
∞∑
i=0

exp (Ωit)

ΩiGMσ2 (Ωi)−
(

1
T1,M

+GM (1 + Σ1)
)

d
ds∆ (s)

∣∣
s=Ωi


[Ωi ≡ ith root of ∆ (s)] (15)
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FIG. 4. Pump and maser bulb Xe polarizations as a function of time after turning on the optical pumping laser, computed
from eqn (15) and using the parameter values of Table I. There is a propagation delay time before the maser chamber
polarization starts to increase from zero, resulting from finite length of the transfer tube.

The residues result from simple poles at the zeros of the determinant function ∆ (s). There is an infinitude of such
poles. Note that even though the points s = −k2

mD − 1/T1,tt are removable singularities of the overall integrand,
∆ (s) changes sign near these points, i.e. has roots, thus contributing simple poles at these points. The residues can
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be found numerically. The first root is at s = 0 (which yields the equilibrium solutions). The next two roots Ω1 and
Ω2 are given approximately by the solutions to the quadratic equation

0 =



s2
[
(1−GPσ1 (0)) (GMσ1 (0)− 1) +GPGMσ2 (0)2

]
+s


(GPσ1 (0)− 1)

(
1
T1

+GM (1 + Σ1)
)

+ (GMσ1 (0)− 1)
(

1
T1,P

+ γSE +GP (1 + Σ1)
)

−2GPGMσ2 (0) (1 + Σ2)


+

[
−
(

1
T1,P

+ γSE +GP (1 + Σ1)
)(

1
T1

+GM (1 + Σ1)
)

+GPGM (1 + Σ2)2

]


(16)

These are the late-time exponential decay rates. The remaining roots serve to describe the early time behavior of the
system and are approximately

Ωi|i≥3
∼= −k2

i−2D −
1

T1,tt
(17)

The solution (obtained with 15 terms of the sums in (15) is plotted in Fig. 4. It is interesting to note that the
onset of Pz is delayed, with respect to PP , by a time ∼ (k2

1D)−1, the diffusion time of the lowest-order transfer
tube diffusion mode. PP and Pz can each be approximately described as linear combinations of a constant term,
and exponential terms exp(Ω1t) and exp(Ω2t) (i.e., a double exponential plus constant). Thus, for the purposes
of parameter extraction from experimental data, one can simultaneously fit the two profiles to double exponentials
(having the same time constants), and then equate the decay rates of eqn. (15) to the time constants extracted from
the fit. The time constants in the calculations shown in Fig. 4 are −Ω1

−1 = 91 sec, and −Ω2
−1 = 357 sec, which are

much shorter than the polarization lifetimes. The time constants are determined by the diffusion constants, the spin
exchange rate, and the cell geometry as well as the polarization lifetimes.

It can be shown that in the case of 3He, the fractional difference between maser and pump bulb polarizations is only
≤ 1%. Thus, the ratio PP /Pz for 129Xe can be measured in cells containing both 3He and 129Xe, by comparing Xe
and He signals measured in the pump and maser bulbs. Knowledge of that ratio alone allows the determination of the
polarization lifetimes T1 and T1,tt, given that the diffusion rate D has been determined independently from cell gas
pressures and temperatures [18,19], that the cell geometry is known in detail, and assuming that the wall loss rate κ in
the maser chamber and transfer tube are the same (see Appendix A). This seems to be a reasonable assumption since
the temperature in these regions is for the most part the same, but this approach remains to be tested experimentally.
Measurement of the polarizations PP and Pz as a function of time then provides an independent determination of the
polarization lifetimes T1 and T1,tt, as well as a determination of the pump chamber polarization lifetime T1,P .

In conclusion, a simple model for polarization transport in two-bulb cells leads to a set of differential equations which
admit exact solutions. While the exact solutions are complicated in form, approximate expressions for exponential
decay rates can be used for extraction of cell polarization lifetimes from experimental data. The steady state solutions
to the equations of motion illustrate the effect of transfer tube polarization loss on the net transport of polarization,
and are a valuable tool for the design of cells in which atoms are polarized in a region separate from where they will
be used.

III. ZEEMAN MASER DYNAMICS IN TWO-BULB CELLS

This section presents a Bloch model of the Zeeman maser that incorporates the results of the previous section, along
with a description of the maser frequency as an independent dynamical variable. The frequency is seen to depend
directly on the longitudinal polarization Pz, through the mechanism of cavity-pulling; this theory also permits the
easy introduction of [Pz-proportional] shifts due to fields induced by the polarized atoms’ magnetization. These effects
are subtle, causing fractional frequency shifts of less than 0.1 ppm, and were made observable only by the advent of
the two-species Zeeman maser [4].

This section considers the dynamics of single species Zeeman masers using simple RLC resonators. However, the
equations of motion are formulated so as to permit their use in describing dual Zeeman masers with a more realistic
resonator configuration (see Appendix E).

The equations of motion are derived by first writing down the Bloch equations, extended to include polarization
transport effects, in terms of Cartesian variables PP , Pz, Px, Py. The resulting system is then transformed into a
cylindrical representation in terms of variables PP , Pz, P⊥, Φ. The maser oscillation frequency ω is the time derivative
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of Φ; P⊥ is the magnitude of the polarization component perpendicular to the longitudinal (z-) axis. Conditions
required for the existence of a steady state solution will be discussed. The equations can be linearized about a steady
state solution (when it exists), and the resulting system of equations describing the near-steady-state oscillations is
solved using Laplace transforms. A simple description of the cavity-pulling mechanism in Zeeman masers is then
presented.

Prior to writing the maser equations of motion, it is necessary to introduce formally the effect of the pickup coil
feedback described qualitatively in Sec. I. The description of this feedback must account for the coupling of the pickup
coil to the polarized ensemble, and also the characteristics of the resonant circuit to which the pickup coil is attached.
We assume for simplicity that the resonant circuit is a simple RLC circuit, with resonant frequency inductance L,
capacitance C, ωo = 1

/√
LC, resistance R, and quality factor defined as Q = ωoL/R. The response of the resonant

circuit to the time-varying flux induced by the magnetization precessing at frequency ω is described in terms of the
following definitions of a resonator phase α and and amplitude response function ρ (see Appendix C):

ρ (ω) =
Q√

Q2
(

1−
(
ωo
ω

)2)2

+
(
ωo
ω

)2
cosα =

(
1−

(ωo
ω

)2
)
ρ (ω) sinα =

ωo
ω

ρ (ω)
Q

(18)

Note that these definitions are not consistent with those of reference [8]; the change is made here to more simply
accommodate resonator implementations other than simple RLC circuits (see Section IV and Appendix E).

As remarked, ω is a dynamical variable in the theory, so in principle the functions α and ρ are time-dependent.
However, it will be seen that deviations of ω from the Larmor precession frequency are roughly seven orders of
magnitude smaller than the feedback RLC resonance frequency ωo. A typical resonator Q is of order 101; thus,
the changes induced in the values of α and ρ by frequency variations are negligible as far as the behavior of the
polarizations are concerned. α and ρ can be assigned the values which they take on at the atoms’ Larmor precession
frequency γBo.

We can write the components of the polarization Px, Py in terms of a maser phase Φ and a maser amplitude P⊥:

Px = P⊥ cos (Φ (t)) Py = P⊥ sin (Φ (t)) (19)

The maser oscillation frequency ω is defined in terms of the phase Φ as

Φ (t) =

t∫
dt′ω (t′) (20)

As remarked earlier, the precessing atoms excite current in the the resonant circuit which flows through the pickup
coil; the magnetic field induced by this current flow torques the magnetization of the precessing ensemble. The time
derivative of the noble gas polarization due to magnetic field torque is

d

dt
~P

∣∣∣∣
Magfield torque

= γ ~B × ~P (21)

The components of the magnetic field due to the main axial field, along with that due to the pickup coil, are shown
in Appendix C to be

γBx = P⊥
τ cos (Φ (t) + α) = 1

τ (Px cosα− Py sinα) ;
γBy = P⊥

τ sin (Φ (t) + α) = 1
τ (Py cosα+ Px sinα) ;

γBz = γBo (22)

where τ is defined as

τ−1 =
h̄γ2

2
[ng]µoηρ (ω) (23)

η is a dimensionless parameter proportional to the strength of the inductive coupling between the pickup coil and the
magnetization of the polarized ensemble, and its value is computed for a typical geometry in Appendix C. The Bloch
equations in Cartesian coordinates for Px and Py can be written as
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Ṗx = γByPz − γBzPy −
Px
T2

Ṗy = γBzPx − γBxPz −
Py
T2

(24)

where T2 is a phenomenological damping time.
Equations (24) can be transformed into equations in P⊥, Pz and ω via linear combination. First, multiply the first

equation by (−Py), multiply the second equation by (Px), and add the results. Using relations ( 19), ( 20), and ( 22)
yields the equation governing the deviation of the maser frequency from the Larmor precession frequency:

ω − γBo = −Pz
τ

cosα (25)

Important effects resulting from magnetic fields due to the magnetization of polarized atoms are not included here,
but will be discussed later. It will also be shown that the frequency deviation shown here is, in steady state, a
cavity-pulling frequency shift. The equation in Ṗ⊥ can be obtained by multiplying the first equation of ( 24) by (Px),
the second by (Py), and adding the results. Use of relations ( 19), ( 20), and ( 22) yields

Ṗ⊥ =
PzP⊥
τ

sinα− P⊥
T2

(26)

It remains to show how the equation in Ṗz transforms: for brevity, consider the portion of the time derivative due to
the torque exerted by the magnetic field. It is simple to derive the relation

Ṗz

∣∣∣
magfield torque

= −1
τ
P 2
⊥ sinα (27)

We can now write down the equations of motion for the Zeeman maser in which all variables P⊥, Pz, Φ, PP , are slowly
varying, i.e. dx/dt << ωx. We have essentially achieved a transformation of the equations into a frame rotating at
the maser precession frequency. Prior to writing the equations, let us define the radiation damping time τRD:

τ−1
RD =

1
2
h̄γ2

2
µoηQ [ng]Po (28)

In this definition, Po is the noble gas polarization in the maser chamber that would be attained in the absence of
masing, given by equation (8). The definition is cast in these terms so as to make τRD a readily measurable quantity.
Using this definition in the expression for the quantity τ of eqn. (23), we obtain the transformed Bloch equations of
motion for the Zeeman maser:

ṖP (t) = PRbγSE−PP (t)
(

1
T1,P

+ γSE

)
+GP



(Pz (t)− PP (t)) +
√

2
L

∞∑
m=1

bm · πm · exp
(
−k2

mDt
)

+Pz (t) · Σ2 − PP (t) · Σ1

−2 ·
∞∑
m=1

(−1)m
[

1
k2
mDT1,tt

− 1
] ∞∫

0

du exp
(
−
(
k2
mD + 1

DT1,tt

)
u
)
Ṗz (t− u)

+2 ·
∞∑
m=1

[
1

k2
mDT1,tt

− 1
] ∞∫

0

du exp
(
−
(
k2
mD + 1

DT1,tt

)
u
)
ṖP (t− u)



Ṗz (t) = − 1
PoτRD

P 2
⊥
ρ (ω)
Q

sinα−Pz (t)
T1
−GM



(Pz (t)− PP (t)) +
√

2
L

∞∑
m=1

bm · πm · exp
(
−k2

mDt
)

+Pz (t) · Σ1 − PP (t) · Σ2

−2 ·
∞∑
m=1

[
1

k2
mDT1,tt

− 1
] ∞∫

0

du exp
(
−
(
k2
mD + 1

DT1,tt

)
u
)
Ṗz (t− u)

+2 ·
∞∑
m=1

(−1)m
[

1
k2
mDT1,tt

− 1
] ∞∫

0

du exp
(
−
(
k2
mD + 1

DT1,tt

)
u
)
ṖP (t− u)



Ṗ⊥ =
PzP⊥
PoτRD

ρ (ω)
Q

sinα− P⊥
T2

ω − γBo = − Pz
PoτRD

ρ (ω)
Q

cosα (29)
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This form of the Bloch equations is very useful for studying maser operation in which frequency stability is a critical
consideration. Before attempting to find steady state or near-steady-state solutions for the dynamical variables, we
again observe that in the first three equations of (29) we can assume a fixed maser frequency ω ∼= γBo in computing
the evolution of P⊥, Pz, PP . The result for Pz thus obtained can be used to determine the deviations of the maser
frequency ω from the Larmor frequency γBo using the last equation of (29).

Also, the use of a phenomenological damping time T2 should be discussed and justified. The term (−P⊥/T2) must
account for all processes that destroy transverse polarization. These processes include collisions with the cell wall that
depolarize the atoms (and indeed, all other processes that destroy Pz) [20,22], dephasing due to nonuniformities in
the main magnetic field Bo [22,23], and escape of atoms from the maser bulb via diffusion. The net T2 is the inverse
of the sum of all rates of destruction of transverse polarization by various processes. Thus, in any attempt to model
a real system using this theory, one is constrained in the selection of T2 values by T2 < T1.

Moreover, in considering the dephasing effects of P⊥ diffusing out of the maser bulb, one might ask whether it can
be properly accounted for with such a simplistic treatment. After all, in our study of Pz transport in Section II, we
explicitly modelled the diffusion process in the transfer tube using a large number of diffusion modes. The description
of dephasing due to diffusive escape that we are proposing here is really one in which transverse polarization in the
transfer tube linearly decreases to zero over some effective length scale Leff up the transfer tube from the maser bulb.
The rate of diffusion into the transfer tube is then proportional simply to P⊥. This simplistic approach should be valid
as long as Leff << L where L is the transfer tube length. This amounts to requiring that transverse polarization is
rapidly destroyed in the transfer tube. No transverse polarization has been seen in the pump chamber during masing
in experiments in our laboratory, so that at the very least, the transverse polarization does reach zero somewhere in
the transfer tube and thus the weaker condition Leff ≤ L is satisfied. There is also no experimental observation of
more than one exponential time constant in free induction decay of transverse polarization in either 129Xe or 3He, in
cells described by the parameters of Table 1. This indicates that there is no significant excitation of transfer tube P⊥
diffusion modes beyond the linear. Thus, while a system might exist in which a more comprehensive description of
diffusive escape of P⊥ from the maser bulb would be required, this appears not to be the case for a system described
by Table 1.

Let us first consider the required conditions for attaining a maser steady state, and the steady state values of
the dynamical variables. Setting all time derivatives to zero, and assuming all initial condition terms with decaying
exponential time dependence are damped to zero, one obtains the following set of equations:

0 = PRbγSE − PP,o
(

1
T1,P

+ γSE

)
−GP [PP,o (1 + Σ1)− Pz,o (1 + Σ2)]

0 = − 1
PoτRD

ρ (ω)
Q

P 2
⊥,o sinα− Pz,o

T1
−GM [Pz,o (1 + Σ1)− PP,o (1 + Σ2)]

0 =
Pz,oP⊥,o
PoτRD

ρ (ω)
Q

sinα− P⊥,o
T2

ωss − γBo = − Pz,o
PoτRD

ρ (ω)
Q

cosα

(30)

In solving these equations, it is permissible to set ω = γBo everywhere except the left hand side of the last equation.
The solutions are

ωss = γBo +
cotα
T2

Pz,o =
PoτRD
T2

1
ρ(γBo)
Q sinα

PP,o =
PRbγSE + PoτRD

T2

1
ρ(γBo)
Q sinα

GP (1 + Σ2)

γSE + 1
T1,P

+GP (1 + Σ1)
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P⊥,o =

(
PoτRD

ρ(γBo)
Q sinα

) 1
2


(
PRbγSE+

PoτRD

T2
ρ(γBo)
Q

sinα
GP (1+Σ2)

)
GM (1+Σ2)

γSE+ 1
T1,P

+GP (1+Σ1)

− PoτRD
T2

ρ(γBo)
Q sinα

(
1
T1

+GM (1 + Σ1)
)


1
2

(31)

Each of these results will now be discussed in turn. First consider the frequency equation: using the definitions of
sinα, cosα as given in (18), and assuming that the resonator Q << γBoT2, it is easy to show that the steady state
maser oscillation frequency ωss is given by

ωss = γBo −
Q

Qline
(γBo − ωo) (32)

where the line quality factor Qline is defined as

Qline ≡
γBoT2

2
(33)

This is precisely the general result for the cavity pulling frequency shift in an oscillator [17].
Equation (28) shows that the product PoτRD is dependent only on fixed properties of the system such as cell and

resonator geometry, resonator Q, gas density, etc. Thus, the second of eqns (31) shows that the maser interaction
tends to naturally fix the longitudinal polarization even as the maser amplitude changes with changing polarization
flux from the pump chamber. In light of the dependence of the maser frequency on Pz, this is an important property
for applications requiring high frequency stability. Also, the second of eqns (31) determines a threshold condition
for maser operation. We know on physical grounds that the ratio (Pz,o/Po) must be less than unity, since the maser
interaction cannot add polarization (i.e. energy) to the maser bulb. This leads to the threshold condition

τRD ≤
(
ρ (γBo)
Q

sinα
)
T2 (34)

which is a generalization of the threshold condition derived in [8] to include the effects of possible maser operation
away from the resonator peak frequency ωo. For a given coherence time T2, a smaller damping time τRD (i.e. stronger
cell/pickup coil coupling) is needed to attain threshold as the detuning (ω − ωo) increases in absolute magnitude.
That this is a threshold condition is also indicated by substituting the value Pz,o = Po in the fourth of equations (31);
it can be shown that in that situation the equilibrium transverse polarization P⊥,o is zero. For Pz,o > Po, it can be
shown that P⊥,o becomes imaginary, which is physically impermissible.

The third of equations (31) represents a simple balance of polarization creation and loss in the pump bulb, with
the maser chamber polarization fixed as described above by the maser interaction. The fourth equation of (31) can
be shown to be equivalent to an energy balance condition. To see this, we first write down the rate at which energy
enters the maser bulb via diffusion of polarized atoms:

Ėdiffusion =
h̄γBo

2
[ng]Vcell

[
PP,oGM (1 + Σ2)− Pz,o

(
1
T1

+GM (1 + Σ2)
)]

(35)

The first term in brackets represents the influx of polarized atoms into the maser chamber. The second term represents
polarization destruction and escape of polarized atoms from the maser chamber. Energy is lost to the maser chamber
via the interaction with the pickup coil resonator of the radiation field generated by the atoms:

Ėradiation = −
〈
I2
pu

〉
avg

R (36)

Using relation (C13), we can rewrite this as

Ėradiation = −1
2
ξ2V 2

cell

L2
Q2M2

⊥,o ·R (37)

where we have assumed for simplicity that the maser is operating with zero detuning, i.e. ω = ωo. Let us now use
the third equation of (31) in relation (35) to obtain
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Ėdiffusion =
h̄γBo

2
[ng]Vcell

P 2
⊥,o

PoτRD
(38)

It is now easy to see that the sum Ėradiation + Ėdiffusion vanishes, which we demonstrate by computing the ratio of
absolute values: ∣∣∣∣∣ ĖradiationĖdiffusion

∣∣∣∣∣ =
1
2
ξ2V 2

cell

L2 Q2M2
⊥,o ·R

h̄γBo
2 [ng]Vcell

P 2
⊥,o

PoτRD

=
1
2
ξ2VcellQ

2 h̄γ

2
[ng]

R

L2
PoτRD (39)

We now apply to this result the definition (28) for τRD, definition (C14) for η, and the definition of the resonator
quality factor Q = ωoL/R:∣∣∣∣∣ ĖradiationĖdiffusion

∣∣∣∣∣ =
ω

2

(
ξ2Vcell
µoL

)
Q2 h̄γ

2
[ng]

1
Q

(
1
2
h̄γ2Bo

2
[ng] ηQ

)−1

=
ω

γBo

(
ξ2Vcell
µoL

)
1
η

= 1 (40)

The energy balance result is precisely analogous to that derived for the hydrogen maser [25].
The equations of motion (29) can be linearized about the equilibrium solutions (31), and the linearized equations

can be solved via Laplace transforms in a fashion very similar to that employed in solving the equations of motion
in Section II. As remarked earlier, we need not account for frequency variations in studying the dynamics of the
polarization. We will proceed by assuming a fixed frequency and solving for the polarizations as a function of time;
the behavior of the frequency can then be determined using our knowledge of the behavior of Pz. First, we express
the polarizations as their steady state values plus time-dependent deviations:

ω = ωss + δω (t)

P⊥ (t) = P⊥.o + δP⊥ (t)

Pz (t) = Pz,o + δPz (t)

PP (t) = PP,o + δPP (t)

(41)

The deviation functions are assumed small in the sense that any term higher than first order in the deviation functions
can be neglected. Substituting definitions (41) into equations of motion (29), using steady state solutions (31), and
neglecting terms of higher than linear order in the deviation functions yields the following coupled equations of motion:

δω = − δPz
PoτRD

[
ρ (ω)
Q

cosα
]
ω=γBo

d

dt
δP⊥ (t) =

(
P⊥,o
PoτRD

ρ (ω)
Q

sinα
)
· δPz (t)

d

dt
δPz (t) =



(
−2P⊥,o
PoτRD

ρ(ω)
Q sinα

)
· δP⊥ (t) +GM (1 + Σ2) δPP (t)−

(
1
T1

+GM (1 + Σ1)
)
· δPz (t)

+GM · 2
∞∑
m=1

[
1

k2
mDT1,tt+1 − 1

] ∞∫
0

du exp
(
−D

(
k2
m + 1

DT1,tt

)
u
)
δṖz (t− u)

−GM · 2
∞∑
m=1

(−1)m
[

1
k2
mDT1,tt+1 − 1

] ∞∫
0

du exp
(
−D

(
k2
m + 1

DT1,tt

)
u
)
δṖP (t− u)



d

dt
δPP (t) =



−
(
γSE + 1

T1,P
+GP (1 + Σ1)

)
· δPP (t) +GP (1 + Σ2) · δPz (t)

+GP · 2
∞∑
m=1

[
1

k2
mDT1,tt+1 − 1

] ∞∫
0

du exp
(
−D

(
k2
m + 1

DT1,tt

)
u
)
δṖP (t− u)

−GP · 2
∞∑
m=1

(−1)m
[

1
k2
mDT1,tt+1 − 1

] ∞∫
0

du exp
(
−D

(
k2
m + 1

DT1,tt

)
u
)
δṖM (t− u)
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(42)

The first equation is in a sense already solved, in that once we have obtained an expression for δPz, the frequency
deviation is determined. As already remarked, the frequency deviation is small and does not appreciably affect the
dynamics of δPP , δP⊥, and δPz. Before proceeding further, let us note that we measure phase, not frequency, in
laboratory maser systems [5]. We can define a phase deviation function by δω ≡ d (δΦ)/dt. Substituting this relation
into the first of equations (42), and also substituting the second of equations (42) into the first, we integrate both
sides to obtain

δΦ (t) = −δP⊥ (t)
P⊥,o

cotα (43)

Note that a trivial constant of integration has been omitted from this relation. This form is useful for interpreting
experimental data, and will be generalized in Section IV to include the effects of magnetization fields and realistic
multiple-species resonators. We see that the maser phase deviation from linear evolution is proportional to the maser
amplitude deviation.

We can solve for the polarization deviations using Laplace transforms, defined by

δQ⊥ (s) ≡
∞∫
0

dt · exp (−st) δP⊥ (t)

δQz (s) ≡
∞∫
0

dt · exp (−st) δPz (t)

δQP (s) ≡
∞∫
0

dt · exp (−st) δPP (t) (44)

We anticipate that the solutions will behave like that of a damped harmonic oscillator, as has been shown for
Zeeman masers both theoretically and experimentally in previous work [4,6–8]. Reminiscent of Section II, the Laplace
transform solution will yield information (oscillation frequency and damping rate) describing late time behavior, and
an infinitude of damping rates that permit one to match initial conditions. Our primary interest is the late time
behavior, i.e. behavior at times where the rapidly decaying exponentials associated with specific initial conditions
have damped out. This frequency and damping rate are easy to measure, thus providing another means of determining
system parameter values from experiment. Even though early time behavior is not our primary interest, for definiteness
we will specify exact initial conditions, which are required to construct Laplace transforms. A problem of interest
involves administering a sudden RF ”tip” to a maser initially in a steady state, thus perturbing the maser chamber
polarizations, but not the pump chamber polarization. This corresponds to the following initial conditions:

δP⊥ (t < 0) = 0 δP⊥ (t = 0) = δP⊥,o

δPz (t < 0) = 0 δPz (t = 0) = δPz,o

δPP (t ≤ 0) = 0

(45)
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FIG. 5. Near steady-state oscillations for a 129Xe Zeeman maser described by the parameters of Table I. At t = 0 the maser
was subjected to a 5o ”tip” towards the longitudinal axis (see Fig. 2). The maser chamber longitudinal polarization deviation
is displayed with the transverse polarization deviation in the upper graph. The pump chamber polarization deviations are
plotted in the lower graph. The pump bulb polarization oscillations are significantly smaller in size than those in the maser
bulb. The steady state polarizations are: PP,o = 0.495, Pz,o = 0.0810, P⊥,o = 0.158. The exponential decay time constant
tends to increase with increased polarization lifetimes, and the oscillation frequency tends to increase with decreased radiation
damping time.
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FIG. 6. Near steady-state oscillations for a 3He Zeeman maser described by the parameters of Table I. At t = 0 the maser
was subjected to a 5o ”tip” towards the longitudinal axis (see Fig. 2). The maser chamber longitudinal polarization deviation
is displayed with the transverse polarization deviation in the upper graph. The pump chamber polarization deviation is plotted
in the lower graph; for comparison, the maser chamber longitudinal polarization deviation is also shown in the lower graph.
The pump bulb polarization oscillations are very similar in size to the maser bulb longitudinal polarization oscillations. The
steady state polarizations are: PP,o = 1.46× 10−3, Pz,o = 1.31× 10−3, P⊥,o = 6.63× 10−4.
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The Laplace transform representation of equations (42) with initial conditions (45) is obtained by multiplying each
side of the equations by exp (−st) and integrating over −∞ ≤ t ≤ +∞, remembering to apply the initial conditions
in evaluating the integrals. An elementary (but long and tedious) calculation leads to a matrix representation of
the equations for the Laplace transforms. To write this equation we must first define a matrix R (s). Note that the
functions σ (s) are those defined in equation (14):

R (s) =


γSE+s+ 1

T1,P
+GP (1+Σ1)−sGPσ1(s)

GPσ2(s)
−GP (1+Σ2)+sGPσ2(s)

GPσ2(s) 0
−GM (1+Σ2)+sGMσ2(s)

1−GMσ1(s)

1
T1

+GM (1+Σ1)−sGMσ1(s)+s

1−GMσ1(s)

2P⊥,o
ρ(ω)
Q sinα

PoτRD(1−GMσ1(s))

0 − P⊥,o
PoτRD

ρ(ω)
Q sinα s

 (46)

Using this definition, the matrix representation of the transformed equations of motion is[
δPz,o
δPz,o
δP⊥,o

]
= R (s) ·

[
δQP (s)
δQz (s)
δQ⊥ (s)

]
(47)

The solution to this equation is obtained by simple inversion of the matrix R. We write the inverse in terms of the
matrix S (s) and the function D (s) by

R (s)−1 =
1
D (s)

S (s) (48)

Appendix D shows that the poles of the right hand side of this equation are located at the zeros of the function D (s).
Also, a simple strategy for determining the roots of D (s), as well as the explicit expressions for the elements of the
inverse matrix are presented in that Appendix. The expressions for the solution to the time-dependent problem are

δPP (t) =
∞∑
i=0

CP,n exp (Ωit)

δPz (t) =
∞∑
i=0

Cz,n exp (Ωit)

δP⊥ (t) =
∞∑
i=0

C⊥,n exp (Ωit)

[Ωi ≡ ith root of D (s)] (49)

Appendix D gives expressions for the coefficients Cn. We have plotted the solutions (49) for the 129Xe maser in Fig.
5 and the 3He maser in Fig. 6. The parameter values of Table I are assumed. The main distinguishing characteristic
between the two cases is time scale: the 3He oscillations take much longer to damp out than do the 129Xe oscillations,
and the pump chamber oscillations are much larger in the 3He case, reflective of the stronger coupling between pump
and maser bulbs as compared to the 129Xe maser.

It might appear that the complexity of the expressions for the near-equilibrium oscillation frequency and the
damping rate, and for the steady-state maser polarizations, might make maser parameter extraction difficult. However,
the theory is sufficiently comprehensive that there are only a few parameters that cannot be well determined a priori
(the absolute equilibrium polarizations, e.g., are somewhat hard to measure with great accuracy). E.g., if one uses
Appendix A to relate the polarization lifetimes of different regions in the cell (as was done for the parameters of Table
I), one would only be left with one or two polarization wall loss parameters remaining undetermined. The coherence
time T2 might also need to be a free parameter as well, insofar as T2 has been found to vary with Pz and is somewhat
difficult to measure directly with great accuracy. This is only three unknown or partially known parameters: the
near-equilibrium oscillation frequency and damping rates, along with the steady-state orientation angle of the maser,
amount to three independent and readily measured quantities. In principle, then, there is reason to hope that a
nonlinear least squares determination of the unknown parameters could be easily obtained. Moreover, if one used
polarization transport data to determine the wall loss parameters, the near-equilibrium oscillation parameters and
the steady-state maser polarization orientation angle actually amount to overconstraint, since there remains only one
free parameter of note. This would permit a rigorous test of the Bloch theory. A detailed comparison of this theory
to measured maser characteristics will be presented in a future publication [24].
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IV. FREQUENCY DYNAMICS IN DUAL ZEEMAN MASERS AND LIMITATIONS OF THE BLOCH
THEORY

We now examine the implications of the previous section for Zeeman maser frequency stability. We need to make
extensions to eqn (29) to account for the effects of magnetic fields induced by the magnetization of the polarized
noble gases. We also must account for the effects of using one maser to stabilize the magnetic field. We will see
that influences which would have tended to cause the locked maser’s frequency to vary will instead induce frequency
changes on the free-running maser. A method for stabilizing maser frequency against changes in Pz will also be
described. Finally, we will discuss the fundamental limits of the Bloch theory in describing the dual Zeeman maser.

Magnetic fields due to the magnetization of the polarized noble gases are an important (but largely undesirable)
influence in the use of polarized noble gases in precision measurement [11]. One of the important features of Zeeman
masers for precision measurement was highlighted by Walsworth [13]. Zeeman maser oscillation fixes the maser’s
longitudinal polarization even in the presence of [quasistatic] variations in the influx of polarization into the maser
bulb from the pump bulb. This can be seen from equation 31, where the steady state longitudinal polarization Pz,o is
seen to be a function of fixed system parameters and the coherence time T2. Uncontrolled changes in the longitudinal
polarization of 3He and 129Xe were the dominant systematic error in the EDM measurement of Oteiza and Chupp
[11].

We will account for noble gas magnetization fields in the extended Bloch model in a simple way. We describe
the interaction between magnetization fields and the noble gas atoms in terms of volume averaged magnetic fields
exerting torques on the volume averaged noble gas magnetizations. We describe the noble gas magnetization fields
as proportional to the polarizations, but with one constant of proportionality relating longitudinal components and
another constant of proportionality relating transverse components. This description is exactly correct in a cell which
is an ellipsoid of revolution filled with uniform noble gas magnetization, if the ellipsoid’s axis of revolution is oriented
along the magnetic field axis. For other configurations (e.g. a cylindrical cell with symmetry axis parallel to the main
magnetic field), this is an approximation.

We will now work out the equation of motion for the frequency of a free-running dual Zeeman maser, assuming the
other maser is locked to an external clock. The derivation are omitted, since it is largely identical to that of equation
(29). We describe the dual maser system in terms of the definitions of Appendix E. We use the index j = 1, 2 to label
the two masers; for each maser j, we define the following quantities:
η ≡ filling factor of pickup coil (see eqn (E3))
Qj ≡ quality factor of jth resonance (see eqn (E5))
ωo,j ≡ frequency of jth resonance (see eqn (E4))
[j] ≡ number of atoms per unit volume of jth noble gas species
γj ≡ gyromagnetic ratio of jth noble gas species
τRD,j ≡ radiation damping time of jth noble gas species (see eqn (E9))
T2,j ≡ coherence time of jth noble gas species
~Mj ≡ magnetic dipole moment per unit volume (i.e., magnetization) of jth noble gas species
~Pj ≡ longitudinal spin polarization of jth noble gas species
Po,j ≡ spin polarization of jth noble gas species in the absence of maser effects
Φj (t) ≡ [rapidly-varying] phase of jth noble gas species
ρ (ω) ≡ amplitude of resonator response (see eqn (E6))
α (ω) ≡ phase of resonator response (see eqn (E6))

(50)

We also reiterate the following basic definitions for each noble gas species j:

~Mj ≡ −
h̄γj
2

[j] ~Pj

ωj ≡ Φ̇j ; Φj (t) =

t∫
dt′ωj (t′)

(51)
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We now list all magnetic fields presented to and/or induced by the noble gas spins. First, we define a function
describing the co-rotating magnetic field produced by the pickup coil when excited by precessing transverse magneti-
zation Mj of species j. This is a generalization of relation (C17) to account for multiple species:

~Bpu (ωj ,M⊥,j) = −µoηρ (ωj) ·M⊥,j ·
(
ê1 cos (Φj (t) + α (ωj)) +
ê2 sin (Φj (t) + α (ωj))

)
(52)

We now state the magnetic field induced by the magnetization associated with polarization ~Pi. Note that the
proportionality factors βz and β⊥ are both equal to unity in a spherical cell, and that we assume that (βz, β⊥)
are the same set of values for both noble gas species:

~Bmag,i

(
~Pi

)
= −2

3
µo
h̄γi
2
· [i] ·

(
ê3βzPz,i+
β⊥P⊥,i (ê1 cos (Φi (t)) + ê2 sin (Φi (t)))

)
(53)

Finally, the axial magnetic field is taken to be a slowly varying function of time:

~Bo (t) = ê3 ·Bo (t) (54)

The total magnetic field in the cell can thus be written

~Bt (t) =

 ê3 ·Bo (t) {main magnetic field}
+ ~Bpu (ω1,M⊥,1) + ~Bpu (ω2,M⊥,2) {field from pickup coil 1}
+ ~Bmag

(
~P1

)
+ ~Bmag

(
~P2

)
{field from noble gas magnetizations}

 (55)

In computing the ~Mi × ~Bt (t) torque terms, we neglect the torque exerted by non-resonant fields. For example,

~M1 × ~Bt (t) ∼= ~M1 ×


ê3Bo (t)
+ ~Bpu (ω1,M⊥,1)

+ ~Bmag

(
~P1

)
+ê3

(
ê3 · ~Bmag

(
~P2

))
 (56)

and a similar relation can be found for ~M2 × ~Bt (t) torque term by reversing the subscripts 1,2 in the above relation.
We now write the equations of motion for the polarizations Px,j , Py,j :

Ṗx,j = −γj
(
Py,j

(
~Bt (t) · ê3

)
− Pz,j

(
~Bt (t) · ê2

))
− Px,j
T2,j

Ṗy,j = −γj
(
Pz,j

(
~Bt (t) · ê1

)
− Px,j

(
~Bt (t) · ê3

))
− Py,j
T2,j

(57)

We now proceed exactly as in equations (21)-(29), for each species, to transform from a Cartesian to a cylindrical
representation. After a lengthy (but elementary) analysis, we obtain the following relation for the frequency ω1 of
masing species 1 (the corresponding equation for ω2 of masing species 2 is obtained by exchanging indices 1 and 2 in
the following equation):

γ1Bo (t)− ω1 =


βz−β⊥
τRD,1

· 2
3ηQ1

· Pz,1Po,1

+ βz
τRD,2

· 2γ1
3γ2ηQ2

· Pz,2Po,2

+ Pz,1
Po,1τRD,1

ρ(ω1)
Q1

cosα (ω1)
−δω1,other

 (58)

Note that in addition to effects from cavity-pulling and magnetization field effects, we have included a term δωj,other
to account for other frequency shifts. These include a possible inertial (gyroscopic) frequency shift and a possible
shift due to exotic physics.

We note that in the equations of motion for the longitudinal polarizations Pz,j and P⊥,j , there are no terms relating
to the magnetization-induced magnetic field. The equations have exactly the form of the first two equations of (29),
with the inclusion of subscripts to identify parameters associated with each species. Magnetization fields have no
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first-order effect on the dynamics of the polarizations. This is not the case for the system of Romalis and Happer [12],
where magnetization fields can be as large as those from the pickup coil, and thus play a large role in the dynamics
of the polarizations.

In dual masers presently in operation, one of the masers is used to stabilize the magnetic field. Thus, to compute
Bo (t), we can take the frequency ω1 to be fixed to a constant value by a lockloop that adjusts the external magnetic
field Bo (t). Equation (58) can then be solved for Bo (t); the result can be substituted into the equation for ω2. The
result is the equation of motion for the frequency of the free-running maser in a dual Zeeman maser system:

γ2

γ1
ω1 − ω2 =


−Pz,1

Po,1τRD,1

γ2
γ1

[ −2
3ηQ1

· β⊥
+ρ(ω1)

Q1
cosα (ω1)

]

+ Pz,2
Po,2τRD,2

[ −2
3ηQ2

· β⊥
+ρ(ω2)

Q2
cosα (ω2)

]
+γ2
γ1
δω1,other − δω2,other

 (59)

It is easy to show that equation (59) holds if either maser is locked, or indeed if the field is stabilized by some other
means. This relation highlights an obvious (but important) property of the dual Zeeman maser (or any dual magne-
tometer): perturbations to either maser manifest themselves in the frequency of the free-running maser, regardless of
which maser is locked (by varying the main magnetic field), or manifest themselves in the frequency difference (59)
if neither maser’s frequency is locked. Thus, when the dual maser system is used to detect small energy shifts due
to exotic physics (e.g., due to a possible EDM of the 129Xe atom, or the coupling of the spins to a possible preferred
reference frame, in violation of local Lorentz invariance), the maser system retains sensitivity to such effects regardless
of which species is used to stabilize the magnetic field [4]. We also note that the dual maser system frequency is not
sensitive to possible exotic physics frequency shifts if they are proportional to the gyromagnetic ratios.

The frequency dependence on polarization can easily be studied experimentally by inducing near-equilibrium oscil-
lations of the longitudinal polarizations. We record the phase, not the frequency, of the masers during measurement
[5,24]. Thus, we would like to derive an equation analogous to eqn (43) from eqn (59), that relates the near-steady-
state phase oscillation δΦ2 to near-steady-state oscillations δP⊥,j . The derivation is totally analogous to that of eqn
(43) and is thus omitted: assuming that maser 1 is locked, the result is

δΦ2 =


γ2
γ1

δP⊥,1

P⊥,1|steady state

ρ(γ1Bo)
Q1

sinα(γ1Bo)

[ −2
3ηQ1

· β⊥
+ρ(γ1Bo)

Q1
cosα (γ1Bo)

]

− δP⊥,2

P⊥,2|steady state

ρ(γ2Bo)
Q2

sinα(γ2Bo)

[ −2
3ηQ2

· β⊥
+ρ(γ2Bo)

Q2
cosα (γ2Bo)

]
 (60)

We should emphasize the correct interpretation of eqn (60): it relates the phase oscillations caused by oscillations
in the longitudinal polarizations, to the amplitude oscillations correlated to the longitudinal polarization oscillations.
The variations δP⊥ do not cause the phase oscillations δΦ. We emphasize this because we will discuss recently observed
frequency drifts that are correlated to slow changes in the maser amplitude, induced by a different mechanism than
described by eqn (60).

Examination of eqn (59) shows that it might be possible, in principle, to choose operating frequencies for the masers
such that there is no net shift in frequency due to noble gas longitudinal polarizations: those operating frequencies
are given by

2
3η
· β⊥ = ρ (ωj) cosα (ωj) (61)

Using the parameter values of Table 1, however, it would appear problematic to satisfy these conditions. Near the
peaks of the resonator response functions at ωo,j , the function ρ takes on the values Qj (see equations (E5) and (E6)).
For the typical values of η = 0.023, β⊥ ≈ 1, Qj ≈ 101, we see that we require cosα > 1 to achieve cancellation of
Pz-proportional frequency shifts, which is of course not realizable.
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FIG. 7. Maser amplitude and phase oscillations. The top plot shows measured 129Xe maser amplitude as a function of time
during maser polarization oscillations. The bottom plot shows the simultaneously observed 3He maser phase deviations from
linear phase evolution, as a function of time. The 129Xe maser was phaselocked. The two profiles are very strongly correlated,
as per equations (43) and (60).

However, we have experimentally demonstrated such a cancellation effect. We have carried out experiments in
which the net dual maser phase (60) was measured during near-equilibrium P⊥ and Pz oscillations induced on each of
the masers in turn [24]. An example is shown in Figure 7, which is a plot of the [phaselocked] 129Xe maser amplitude
and a plot of the deviation from linear evolution of the [free-running] 3He maser’s precession phase. The profiles
are very highly correlated as per the prediction of eqns (43) and (60). We have measured the amplitude of phase
deviations in near-equilibrium oscillations as a function of maser operating frequency. Remarkably, in spite of the
fact that eqn (61) evaluated with the parameter values of Table I suggests that it should not be possible, we found
that there is an operating frequency for each maser that results in zero net phase deviations during near-equilibrium
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oscillation of the polarizations. Figure 8 is a plot of measured phase deviations per unit maser amplitude deviation,
vs. maser operating frequency, for both the 129Xe and 3He masers. The data are clearly linear, and the fit lines
cross zero, denoting an operating frequency for each maser for which there is no phase (and thus frequency) change
due to near-equilibrium polarization oscillations. In each maser, we see that the zero-cross frequency is very close
to the measured peak in ρ (ω). While there were potentially significant systematic errors (of order 100 degrees) in
the measurements of the resonator phase response, we know that cotα was much less than unity at the operating
frequencies of the zero-crossings.
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FIG. 8. Amplitude of maser phase oscillations as a function of maser operating frequency. The top figure shows the measured
amplitude of free-running 3He maser phase oscillations induced by the phaselocked 129Xe maser undergoing near-equilibrium
polarization oscillations, at several 129Xe maser operating frequencies. The operating frequencies are expressed as deviations
from the frequency at which ρ (ω) has a [local] maximum value, i.e., in terms of detuning from maximum resonator ”gain” . The
bottom figure shows the measured amplitude of free-running 129Xe maser phase oscillations induced by the phaselocked 3He
maser undergoing near-equilibrium polarization oscillations, at several 3He maser operating frequencies. Again, the operating
frequencies are expressed as deviations from the frequency at which ρ (ω) has a [local] maximum value. The data show that
when the 129Xe maser is operated with frequency 2.5 Hz below the Xe resonator peak, polarization oscillations of the 129Xe
maser induce no frequency shifts on the free running maser. Similarly, the data show that when the 3He maser is operated
with frequency 8.3 Hz below the He resonator peak, polarization oscillations of the 3He maser induce no frequency shifts on
the free running maser.

The ability to suppress the effect of near-equilibrium oscillations on the masers’ phase would be useful in situations
where a device is being operated in poorly controlled environments in which the masers are subject to perturbations
(e.g., in an atomic gyroscope application). However, in our symmetry test experiments, the environmental control
is adequate to prevent excitation of near-equilibrium maser oscillations [5,24]. Thus, operating the masers at the
zero-cross frequencies of Fig. 8 has not discernably improved the usefulness of the dual Zeeman maser for precision
measurement.

The data of Fig. 8 highlight the fact that equation (61) apparently does not describe some significant physical
effects associated with near-equilibrium phase oscillations. There is an obvious fundamental limit to the Bloch theory
description of the dual Zeeman maser: the Bloch theory cannot account for effects that result from changes in the shape
of polarization distributions, since it deals expressly with volume averages over the maser polarization distributions.
However, we have found that shape changes could have significant effects on the maser frequency. We have constructed
a theory of precessing/masing three-dimensional ensembles of spin-1/2 particles, including the effects of diffusion, wall
collisions, magnetic field gradients, etc. [26], applicable to the motional averaging regime of Zeeman maser operation
[12]. The details of that theory are beyond the scope of this paper. However, the most important result of the theory
is a simple first integral of the frequency/phase equation. Described by that first integral is how the masers measure
an ensemble-average magnetic field. The magnetic field ”seen” by the masing ensemble can be written in terms of
variables defined in Appendix C: defining Bz (~r′, t) as the z-component of the magnetic field from all sources, we have

Bz,total (t) =

∫
cell

d3~r′Bz (~r′, t)P⊥ (~r′, t)∫
cell

d3~r′P⊥ (~r′, t)
(62)

which is a volume average of the field, weighted by the transverse polarization distribution (for simplicity, we have
assumed here that the magnetic field produced by the pickup coil is spatially uniform). This is intuitively reasonable.
The magnetic field Bz (~r′, t) is significantly non-uniform in dual Zeeman maser systems. Magnetic field gradients in
our system are of order 20µG/cm. In the presence of such a field gradient, even a change of 2 µm in the ”center
of mass” position of the P⊥ distribution would induce a 1 µHz frequency shift (which is large in relation to the
frequency resolution needed for precision measurements). Such ”center-of-mass” shifts occur in a 2-bulb noble gas
maser system when there is a change in the flux of polarized noble gas atoms into the interaction region; the shifts
are larger for smaller diffusion constant and larger wall loss rate, so that they would be larger for a 129Xe maser
than for a 3He maser. We have observed maser frequency variations that were very strongly correlated to 129Xe
maser amplitude changes, and we speculate that ”center-of-mass” shifts in the presence of a non-uniform Bz was
a contributing mechanism. These amplitude-proportional frequency drifts are an important systematic effect in the
129Xe/3He dual Zeeman maser; they cannot be described by the extended Bloch theory presented in this paper.
Thus, while the extended Bloch theory would appear to provide a useful description of polarization transport and the
gross dynamics of the maser polarizations, it cannot account for some subtle frequency shift mechanisms that play an
important role in precision measurement applications of dual Zeeman masers.

APPENDIX A: RELATING POLARIZATION LIFETIMES IN DIFFERENT REGIONS OF THE CELL

In the limit that wall collisions dominate the noble gas polarization destruction, it is possible to express the
polarization lifetimes in the three regions of the cell in terms of their geometry along with a wall loss parameter. The
lifetimes are computed as the inverse rate constants associated with the fundamental diffusion modes in each of the
cell regions. The diffusion equation

D∇2P − ∂

∂t
P = 0
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and the associated boundary condition

−D∇P · n̂+ κP = 0

is solved in the pump chamber (assumed spherical), and the transfer tube and maser chamber (assumed cylindrical).
The wall loss parameter κ may or may not be assumed to have a common value in the three regions of the cell. n̂ is
the normal to the cell wall surface, and D is the diffusion constant. This form of boundary condition has been used
previously to model polarization destruction by wall collisions [27,28]. Note that the wall loss parameter κ is only
weakly dependent on the cell gas pressure [28], then the wall loss rate is essentially independent of pressure in the
limit of small κ. There exist mechanisms other than interaction with cell walls that disorient spins. E.g., diffusion
of polarized atoms through magnetic field gradients can induce spin flips [22]. However, in noble gas Zeeman maser
cells, wall collisions dominate the polarization lifetime because the cells tend to have small volumes (∼cm3). This is
not the case with polarized 3He targets, which have much larger volumes and smaller surface-to-volume ratios [14].

It is elementary to find the fundamental diffusion mode in the spherical pump bulb, of radius aP : the fundamental
mode varies as

P ∝ sin (kr)
kr

exp (−γt)

and k is related to the polarization lifetime via

T−1
1,P = γ = k2D

k is found by use of the boundary condition: the resulting transcendental equation is

tan (kaP )
kaP

=
D

D − κaP
The relations for the cylindrical maser chamber, assumed to have radius aM and length LM , are found similarly: the
fundamental mode varies as

P ∝ cos (kzz) J0 (krr) exp (−γt)

and the lifetime is

T−1
1,M =

(
k2
r + k2

z

)
D

The transcendental equations determining kr and kz are

J1 (kraM )
J0 (kraM )

=
κ

krD
; tan

(
kz
LM
2

)
=

κ

kzD

The polarization lifetime in the transfer tube, T1,tt, is determined similarly to that in the cylindrical maser chamber,
except that polarization loss is restricted to the side walls; polarization is free to diffuse from the transfer tube ends.
Then

T−1
1,tt = k2

r,ttD

and the transcendental equation determining the transfer tube lifetime, taken to have length L and radius rtt, is

J1 (kr,ttrtt)
J0 (kr,ttrtt)

=
κ

kr,ttD

In general, the wall loss parameter might have a different value in the three regions of the cell, particularly since in
many circumstances the cell regions are deliberately kept at different temperatures. The wall loss parameter depends
exponentially on temperature [20]. Nevertheless, some simplification might be attainable in that often it is the case
that most of the transfer tube is at the same temperature as the maser chamber, in which case a common value of κ
could be used for those regions. Also, the diffusion constant D has a T 3/2 dependence which could be used to relate
diffusion constants in the different regions of the cell [18].
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APPENDIX B: SOLUTION FOR THE TRANSFER TUBE POLARIZATION FUNCTION

The solution of the diffusion equation in terms of the time-dependent boundary values is elementary (see, e.g., [29]),
and will only be briefly outlined here. The problem is(

D
∂2

∂x2
− ∂

∂t
− 1
T1,tt

)
Π (x, t) = 0 (B1)

with boundary and initial conditions

PP (t) = Π (0, t)
Pz (t) = Π (L, t)
Π (x, 0) = F (x)

(B2)

It is assumed that neither D nor T1,tt is a function of x. The problem can be recast in terms of a function U (x, t),
related to Π (x, t) via

Π (x, t) = PP (t) +
x

L
(Pz (t)− PP (t)) + U (x, t) (B3)

U (x, t) can easily be shown to satisfy(
D
∂2

∂x2
− ∂

∂t
− 1
T1,tt

)
U (x, t) =

∂

∂t
S (x, t) +

1
T1,tt

S (x, t) (B4)

where S (x, t) is defined by

S (x, t) ≡ PP (t) +
x

L
(Pz (t)− PP (t)) (B5)

and U (x, t) satisfies the homogeneous boundary conditions

U (0, t) = U (0, t) = 0 (B6)

We seek a particular solution to the inhomogeneous problem eqn. (B4) of the form

Up (x, t) =
∞∑
n=1

an (t)

√
2
L

sin
(πn
L
x
)

(B7)

Substituting (B7) into (B4), multiplying each side of that result by
√

2
L sin

(
πm
L x
)
, and integrating each side over

[0, L] yields the relation governing the time-dependent Fourier coefficients an (t):(
−
(πm
L

)2

− 1
DT1,tt

)
am (t)− ȧm

D
=

√
2
L

1
D

L

πm

{
1

T1,tt
(PP − (−1)m Pz) +

(
ṖP − (−1)m Ṗz

)}
(B8)

These equations can be solved by the method of Green’s functions: the result is

am (t) =

√
2
L

L

πm

∞∫
0

du exp
(
−
(
D
(πm
L

)2

+
1

T1,tt

)
u

){ 1
T1,tt

((−1)m Pz (t− u)− PP (t− u))

+
(

(−1)m Ṗz (t− u)− ṖP (t− u)z
) } (B9)

The substitution of this equation into (B7), the subsequent use of (B4), and the inclusion of a homogeneous solution
(necessary for satisfying the initial condition) yields the solution to problem (B1) with conditions (B2):

Π (x, t) =


PP (t) + x

L (Pz (t)− PP (t)) +
√

2
L

∞∑
m=1

bm sin (kmx) exp
(
−k2

mDt
)

+2
∞∑
m=1

sin(kmx)
πm

∞∫
0

du exp
(
−
(
D
(
πm
L

)2 + 1
T1,tt

)
u
){ 1

T1,tt
((−1)m Pz (t− u)− PP (t− u))

+
(

(−1)m Ṗz (t− u)− ṖP (t− u)
) }

 (B10)
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where

km ≡
πm

L
; bm ≡

√
2
L

∫ L

0

dx sin (kmx)F (x) (B11)

The {Pz, PP } dependence can be converted to dependences on
{
Ṗz, ṖP

}
via integration by parts. As an alternative,

one may be tempted to convert the dependence on the time derivatives
{
Ṗz, ṖP

}
to {Pz, PP } in the same fashion.

However, that operation is not legitimate since it results in expressions which are differences between two divergent
terms. In any case, the integration by parts on the {Pz, PP } dependence in the integral yields

Π (x, t) =



PP (t) + x
L · (Pz (t)− PP (t)) +

√
2
L

∞∑
m=1

bm sin (kmx) exp
(
−k2

mDt
)

+Pz (t) · 2
∞∑
m=1

sin(kmx)
πm (−1)m 1

k2
mDT1,tt+1 − PP (t) · 2

∞∑
m=1

sin(kmx)
πm

1
k2
mDT1,tt+1

−2
∞∑
m=1

sin(kmx)
πm (−1)m

(
1

k2
mDT1,tt+1 − 1

) ∫∞
0
du exp

(
−
(
k2
mD + 1

T1,tt

)
u
)
Ṗz (t− u)

+2
∞∑
m=1

sin(kmx)
πm

(
1

k2
mDT1,tt+1 − 1

) ∫∞
0
du exp

(
−
(
k2
mD + 1

T1,tt

)
u
)
ṖP (t− u)


(B12)

The gradients of this function at the endpoints x = 0 and x = L are

∂

∂x
Π (x, t)

∣∣∣∣
x=0

=



1
L · (Pz (t)− PP (t)) +

√
2
L

∞∑
m=1

bmkm exp
(
−k2

mDt
)

+Pz (t) · 1
LΣ2 − PP (t) · 1

LΣ1

− 2
L

∞∑
m=1

(−1)m
(

1
k2
mDT1,tt+1 − 1

) ∫∞
0
du exp

(
−
(
k2
mD + 1

T1,tt

)
u
)
Ṗz (t− u)

+ 2
L

∞∑
m=1

(
1

k2
mDT1,tt+1 − 1

) ∫∞
0
du exp

(
−
(
k2
mD + 1

T1,tt

)
u
)
ṖP (t− u)


(B13)

∂

∂x
Π (x, t)

∣∣∣∣
x=L

=



1
L · (Pz (t)− PP (t)) +

√
2
L

∞∑
m=1

bmkm exp
(
−k2

mDt
)

+Pz (t) · 1
LΣ1 − PP (t) · 1

LΣ2

− 2
L

∞∑
m=1

(
1

k2
mDT1,tt+1 − 1

) ∫∞
0
du exp

(
−
(
k2
mD + 1

T1,tt

)
u
)
Ṗz (t− u)

+ 2
L

∞∑
m=1

(−1)m
(

1
k2
mDT1,tt+1 − 1

) ∫∞
0
du exp

(
−
(
k2
mD + 1

T1,tt

)
u
)
ṖP (t− u)


(B14)

where we have used the definitions

Σ1 ≡ 2 ·
∞∑
m=1

1
k2
mDT1,tt + 1

Σ2 ≡ 2 ·
∞∑
m=1

(−1)2

k2
mDT1,tt + 1

(B15)

APPENDIX C: POSITION-DEPENDENT POLARIZATION DISTRIBUTIONS AND CELL/PICKUP
COIL COUPLING

Here we define position-dependent polarization distribution functions, and in terms of those functions derive the
parameters which serve as a measure of the coupling strength between the maser bulb and pickup coil resonator.
The coupling strength parameters are applicable to the Bloch maser theory of Sec. III. The current induced in
the pickup coil by the precessing magnetization, and the resultant magnetic field acting back on the atoms, will be
found. Approximations used in obtaining parameter values for the Bloch model of Sec. III will be clearly identified.
Note that we have derived equations of motion for the position-dependent polarization distribution functions. These
coupled, nonlinear partial differential equations of motion and their approximate solutions will be described in a future
publication.
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First we define the functions that describe the polarization as a function of position in the cell. These are designated
with scripted names to distinguish them from the spatially averaged quantities used in the Bloch model. They are
Px (~r, t), Py (~r, t), and Pz (~r, t). Just as in the case of the spatially averaged Bloch model variables, we transform the
Cartesian variable set into polar variables P⊥ (~r, t), Pz (~r, t), Φtotal (~r, t) via

Px = P⊥ cos (Φtotal (~r, t)) Py = P⊥ sin (Φtotal (~r, t)) (C1)

We define the instantaneous phase Φtotal (~r, t) of the precessing polarization at position ~r and time t in the cell. It is
written as a sum of two functions, a global phase Φ (t) which depends on time only, plus a function δΦ (~r, t) which
describes the local deviations of the phase from the global value:

Φtotal (~r, t) = Φ (t) + δΦ (~r, t) (C2)

The global phase Φ (t) is the same as that appearing in eqn (20) and is related to the maser precession frequency in
the same way.

We take the pickup coil to be a loop of radius a oriented in the y-z plane. The windings are assumed to be of an
extent small compared to the coil radius. The magnetization associated with the polarization ~P is

~M (~r, t) = − h̄γ
2

[ng] ~P (~r, t) (C3)

We define the magnetic field produced by the pickup coil as having the form

~Bpu (~r, t) = ~ξ (~r) Ipu (t) (C4)

so that ~ξ (~r) is the magnetic field per unit current produced by the pickup coil. We can write the voltage induced in
the pickup coil by the precessing magnetization in terms of ~ξ and the magnetization distribution function ~M [7]:

Vpu (t) = − ∂

∂t

∫
cell

d3~r′
{
~ξ (~r′) · ~M (~r′, t)

}
(C5)

In systems which are axially symmetric about the z-axis, only the x-component of the polarization contributes to the
flux through the pickup coil. Substituting eqns (C1), (C2), and (C3) into (C5), the pickup coil voltage becomes

Vpu (t) =
h̄γ

2
[ng]

∂

∂t

∫
cell

d3~r′ {ξ (~r′)P⊥ (~r′, t) cos (Φ (t) + δΦ (~r′, t))} (C6)

Expanding the cosine term in the integrand yields

Vpu (t) =
h̄γ

2
[ng]

∂

∂t


cos Φ (t)

∫
cell

d3~r′ {ξ (~r′)P⊥ (~r′, t) cos (δΦ (~r′, t))}

− sin Φ (t)
∫
cell

d3~r′ {ξ (~r′)P⊥ (~r′, t) sin (δΦ (~r′, t))}

 (C7)

Remember that we require the net ensemble phase for the precessing magnetization to be Φ (t), so that the coefficient
of the sin Φ (t) in eqn (C7) must vanish: this determines a condition on the phase deviation function δΦ (~r′, t):∫

cell

d3~r′ {ξ (~r′)P⊥ (~r′, t) sin (δΦ (~r′, t))} = 0 (C8)

The expression for the voltage induced in the pickup coil then becomes

Vpu (t) ∼= − h̄γ
2

[ng] · ω cos Φ (t) ·
∫
cell

d3~r′ {ξ (~r′)P⊥ (~r′, t) cos (δΦ (~r′, t))} (C9)

where we have neglected the time derivative of the [slowly varying] terms under the integral in comparison to the
derivative of the [rapidly varying] cos Φ (t) term. At this point, note that the voltage induced in the pickup coil
depends on the details of both the polarization and phase distribution as well as the variation of the pickup coil
magnetic field across the cell.
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We now define the transverse polarization of the Bloch theory, P⊥ (t), in terms of the voltage induced in the pickup
coil. First, we note the relationship between M⊥, the Bloch magnetization, and P⊥ is

M⊥ = − h̄γ
2

[ng] · P⊥ (C10)

We proceed by rewriting eqn (C9) in the following form:

Vpu (t) = − h̄γ
2

[ng] · ω sin Φ (t) ·

∫
cell

d3~r′ξ (~r′)

 ·
∫
cell

d3~r′ {ξ (~r′)P⊥ (~r′, t) cos (δΦ (~r′, t))}∫
cell

d3~r′ξ (~r′)

We then define the relationship of P⊥ (t) to the transverse polarization distribution function P⊥ (~r, t)

P⊥ (t) ≡

∫
cell

d3~r′ {ξ (~r′)P⊥ (~r′, t) cos (δΦ (~r′, t))}∫
cell

d3~r′ξ (~r′)
(C11)

and also define the relationship of the volume averaged pickup coil field per unit current to the spatially dependent
function describing the pickup coil field (note that Vcell is the cell volume):

ξo · Vcell ≡
∫
cell

d3~r′ξ (~r′)

In terms of these definitions, the pickup coil voltage is then

Vpu (t) ∼= − h̄γ
2

[ng]P⊥ (t) · ξoVcell · ω sin Φ (t) = M⊥ · ξoVcell · ω sin Φ (t) (C12)

Having calculated the pickup coil flux induced by the precessing magnetization, it remains to determine the current
flow in the coil that results from that excitation. The analysis is elementary and will not be shown here; we consider
a series RLC circuit driven by the voltage Vpu (t). It is easy to show that the current in the pickup coil is, using
definition (18),

I (t) =
ξoVcell
Lpu

M⊥ρ (ω) cos (Φ (t) + α (ω)) (C13)

This current produces a field at the cell in the x-direction. Note that Lpu is the inductance of the pickup coil. Prior
to writing the expression for the pickup coil magnetic field, we define the dimensionless filling factor η by

η ≡ ξ2
oVcell
µoLpu

(C14)

The filling factor can take on values between zero and unity. For the case of the small and/or spherical cell placed at
the center of a loop pickup coil of radius a and having N windings of extent much smaller than a, the filling factor
takes the form

η =
µoN

2Vcell
2a2Lpu

(C15)

Note that the N2 in the numerator is cancelled by N2 scaling of Lpu in the denominator, so that η is indeed dependent
only on geometry and not on the specific configuration of the coil windings. In the spirit of the Bloch theory, we use
the above definitions along with relation (C13) to write the volume-averaged pickup coil magnetic field as

Bx,pu (t) = −µoηρ (ω)M⊥ exp (iΦ (t) + iα) (C16)

This can be expressed in terms of a sum of vectors co-rotating and counter-rotating with the precessing magnetization
(ê1, ê2, ê3 are basis vectors in the x, y, and z directions respectively). Keeping only the co-rotating component, we
have

~Bpu (t) = −µo
2
ηρ (ω)M⊥ · {ê1 cos (Φ (t) + α) + ê2 sin (Φ (t) + α)} (C17)

Substituting eqn (C10) into the above equation, and recalling the definition (23), it is easy to show that

Bx = P⊥
γτ cos (Φ (t) + α)

By = P⊥
γτ sin (Φ (t) + α) (C18)

which leads to relation (22) above.
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APPENDIX D: MATRIX SOLUTION OF THE LAPLACE TRANSFORM EQUATIONS FOR
NEAR-EQUILIBRIUM OSCILLATIONS

Here we give explicit expressions for terms used in the solution to the Bloch maser equations of motion discussed
in Section III. As stated in Section III, the inverse of the matrix R (s) defined in equation 47 can be written in terms
of a function D (s) and a matrix S (s) (remember that the functions σ1 (s), σ2 (s) are defined by eqn (14):

D (s) =


2
[
P⊥,o
PoτRD

ρ(ω)
Q sinα

]2
·
(
γSE + s+ 1

T1,P
+GP (1 + Σ1)− sGPσ1 (s)

)
+s

[(
γSE + s+ 1

T1,P
+GP (1 + Σ1)− sGPσ1 (s)

)
·
(

1
T1

+GM (1 + Σ1) + s (1−GMσ1 (s))
)

−GPGM (− (1 + Σ2) + sσ2 (s))2

]
 (D1)

It is easiest to present the matrix S (s) element by element:

S11 = GPσ2 (s) ·
[
s

(
1
T1

+GM (1 + Σ1) + s (1−GMσ1 (s))
)

+ 2
[
P⊥,o
PoτRD

ρ (ω)
Q

sinα
]2
]

S21 = −sGPσ2 (s) (−GM (1 + Σ2) + sGMσ2 (s))

S31 = GPσ2 (s) ·
(
− P⊥,o
PoτRD

ρ (ω)
Q

sinα
)

(−GM (1 + Σ2) + sGMσ2 (s))

S12 = −s (1−GMσ1 (s)) (−GP (1 + Σ2) + sGPσ2 (s))

S22 = s (1−GMσ1 (s))
(
γSE + s+

1
T1,P

+GP (1 + Σ1)− sGPσ1 (s)
)

S32 = (1−GMσ1 (s))
(
γSE + s+

1
T1,P

+GP (1 + Σ1)− sGPσ1 (s)
)[

P⊥,o
PoτRD

ρ (ω)
Q

sinα
]

S13 = (−GP (1 + Σ2) + sGPσ2 (s))
[
2
P⊥,o
PoτRD

ρ (ω)
Q

sinα
]

S23 = −
(
γSE + s+

1
T1,P

+GP (1 + Σ1)− sGPσ1 (s)
)[

2
P⊥,o
PoτRD

ρ (ω)
Q

sinα
]

S33 =

[(
γSE + s+ 1

T1,P
+GP (1 + Σ1)− sGPσ1 (s)

)(
1
T1

+GM (1 + Σ1) + s (1−GMσ1 (s))
)

−GMGP (− (1 + Σ2) + sσ2 (s))2

]
(D2)

By inspection, none of the matrix elements contain common factors with D (s) and so any singularity in D (s) will
correspond to a pole and not a removable singularity (this assertion should be checked numerically in each case). The
roots of D (s) are found numerically. Note that there is no root at s = 0; this simply means that the steady state
solution vanishes, i.e. all the displacements must damp out at large times. Again, numerical solution for the roots
is simplified if approximate values of the roots can be found in advance. One can obtain a cubic equation in s to
estimate the three roots (one real, two complex) which define late time behavior, by writing D (s) in which functions
σ1 (s), σ2 (s) are evaluated at s = 0. Setting this expression to zero and solving for the three roots yields estimates
for the late time decay rate and oscillation frequency for the near-equilibrium oscillations:

0 =


2
[
P⊥,o
PoτRD

ρ(ω)
Q sinα

]2
·
(
γSE + s+ 1

T1,P
+GP (1 + Σ1)− sGPσ1 (0)

)
+s

[(
γSE + s+ 1

T1,P
+GP (1 + Σ1)− sGPσ1 (0)

)
·
(

1
T1

+GM (1 + Σ1) + s (1−GMσ1 (0))
)

−GPGM (− (1 + Σ2) + sσ2 (0))2

]
 (D3)
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Cell

LpuRpu

Rext Lext

Cpu

Cext

Preamp

FIG. 9. Schematic diagram for the single pickup coil resonator used in the work of [5]. Precessing magnetizations of noble
gases in the cell induce flux through inductor Lpu. The resultant voltage across capacitor Cpu is presented to a preamplifier.
This ideal circuit model fails to account for effects due to eddy current losses and coupling to permeable materials that results
from proximity of the inductors to conductors and magnetic shielding, respectively. The component values used to generate
the response plots of Fig. 10 are Lpu = 144 mH, Cpu = 30.5 nF, Rpu = 143Ω, Lext = 102 mH, Cext = 21.1 nF, Rext = 32Ω.

APPENDIX E: SINGLE-PICKUP COIL RESONATOR FOR DUAL ZEEMAN MASERS

In this section we briefly describe the resonator used in the dual Zeeman maser operated in our laboratory [5].
Figure 9 is a schematic of the resonator circuit. Note that there are two inductors: Lpu, which serves as the pickup
coil, and Lext, which is located far from the interaction region. Having only a single pickup coil is useful for three
reasons: first, maximizing the fill factor η (see eqn (C14)) requires close placement of the pickup coil to the cell,
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and this is difficult to achieve with multiple coils for multiple species; second, with a single pickup coil system, it
is possible to adjust the effective Q factor of the two resonances by changing the properties of the external coil,
without affecting the fill factor η; and η is [nearly] the same for the two species, which is a considerable system
simplification. The two principal drawbacks of the single-pickup coil resonator are: the external coil must reside in a
temperature-controlled environment inside magnetic shielding, thus resulting in greater overall system complexity and
expense; and energy from the atoms is inevitably dissipated in the external coil, which to some extent must reduce
the attainable radiation damping rate (see eqn (28) ). The details of resonator design and implementation will be
presented in a future publication [24]. Figure 9 defines the circuit components and their typical values. We define
effective response functions to relate the precessing noble gas magnetization to the induced magnetic field produced
by the pickup coil, in analogy to eqn (18). By an elementary analysis of the circuit of Figure 9, we can obtain an
expression for the magnetic field produced by the pickup coil in response to flux induced by precessing magnetization
Mx|species j = M⊥,j cos Φj (t) of species j . It is assumed that the pickup coil axis is oriented along the x axis:

Bx,pu|species j = −µoη<

 1
Z||(ωj)+Rpu
iωjLpu

+ 1
M⊥,j exp (iΦj (t))

 (E1)

where < denotes the real part, and we define

ωj = Φ̇j

Z|| (ω) =

(
iωCpu +

1
iωLext + 1

iωCext
+Rext

)−1

(E2)

The fill factor η is that associated with the pickup coil (ξpu is the volume-averaged magnetic field per unit current
produced by the pickup coil):

η =
ξ2
puVcell

µoLpu
(E3)

We further define amplitude and response functions, in order to establish a correspondence of the single pickup coil
resonator with the simple LCR resonator presented in Section III. First, it is easy to show that in the limit where
the individual coil quality factors are much greater than unity, the circuit of Figure 9 responds resonanantly at two
frequencies given by

ω2
o,1 =

 1
2LextCext

+ 1
2LextCpu

− 1
2LpuCpu

−
√(

1
2LextCext

+ 1
2LextCpu

− 1
2LpuCpu

)2

+ 1
LextCext

· 1
LpuCpu



ω2
o,2 =

 1
2LextCext

+ 1
2LextCpu

− 1
2LpuCpu

+

√(
1

2LextCext
+ 1

2LextCpu
− 1

2LpuCpu

)2

+ 1
LextCext

· 1
LpuCpu


(E4)

We define effective quality factors Qj by

Qj =
∣∣∣∣Z|| (ωo,j) +Rpu

iωo,jLpu
+ 1
∣∣∣∣−1

(E5)

We define the amplitude function ρ (ω) and phase function α (ω) by the following relation:

ρ (ω) exp (iα (ω)) =
(
Z|| (ω) +Rpu

iωLpu
+ 1
)−1

(E6)
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This form is chosen so that equations of motion of the same form describe masers using RLC resonators and those
using the single pickup coil resonator. Explicitly writing out the function ρ and α in terms of the circuit parameters
is complicated and not particularly illustrative. However, Figure 10 shows a plot of the ideal calculated resonator
amplitude and phase response function for the resonator circuit of Fig. 9. We see that there are indeed two resonances,
with linear phase variation near each; the phase value at each of the resonances is very close to +π/2. One should
note that the resonator response in real resonators is only approximated by Figure 9. The inductors of the resonator
circuit are unavoidably placed in proximity to conducting and permeable materials, such that the phase response
and quality factors are discernably different from the ideal values realized with the inductors in free space. Another
effect is the fact that large, relatively high-Q inductances must necessarily be implemented with multiple-layer coils.
These coils inevitably suffer from energy loss processes, which result in real, frequency-dependent AC impedances.
The net coil resistances then are frequency-dependent. Measured frequency response curves must be used in applying
the theory, and such measured profiles will be presented in a future publication [24].
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FIG. 10. Resonator response curves for the ideal resonator depicted by Fig. 9. The upper plot is ρ (ω) as defined by (??);
the bottom plot is the phase profile α (ω).

In any case, these definitions can be used in turn to describe the magnetic fields impressed on the atoms, induced
by their precession:

Bx,j = P⊥,j
γjτj

cos (Φj (t) + α)

By,j = P⊥,j
γjτj

sin (Φj (t) + α) (E7)

In the above relation, the functions τj are given by

τ−1
j =

h̄γ2
j

2
[j]µoηρ (ω) (E8)

We can now define the radiation damping rates for the two noble gas maser species j:

τ−1
RD,j =

1
2
h̄γ2

j

2
[j]µoηQjPo,j (E9)

where Po,j is the polarization of the jth noble gas species in the absence of masing effects. This completes the
definition of the functions used in Section IV.
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