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Nuclear Magnetic Resonance

Experiments using Laser-Polarized Noble Gas

Abstract

Three different nuclear magnetic resonance (NMR) experiments using laser-

polarized noble gas are reported. The first experiment demonstrates the feasibility

of fast low magnetic field (∼ 20 G) magnetic resonance imaging (MRI) with com-

parable resolution and signal-to-noise of conventional high magnetic field (∼ 1 T)

MRI. In addition, advantages of low field imaging over high field imaging are shown

for certain applications. The second experiment uses NMR to observe the phe-

nomenon known as “persistence” (i.e., the probability that a spin has not changed

sign up to time t) in the diffusion of laser-polarized noble gas. The result obtained

is consistent with theory and numerical simulations, and is the first measurement

of persistence in 1-D diffusion in any system. The final NMR experiment examines

the spin relaxation of polarized 129Xe in coated glass cells. In particular, a “double

resonance” method is employed to enhance the coupling between 1H atoms in the

surface coating and 129Xe adsorbed onto the surface.
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Chapter 1

Introduction

In this chapter, I describe the development of laser-polarized noble gas nuclear

magnetic resonance (NMR) and magnetic resonance imaging (MRI) applications.

In particular, I review the early efforts to polarize noble gases, highlight the features

that make laser-polarized noble gases unique for NMR and MRI experiments, and

survey the rich variety of research in the field. Within this context, I describe and

motivate the research presented in this dissertation.

For typical NMR or MRI experiments, the polarization P of nuclear spins relies

on the thermal Boltzmann distribution; in the high temperature limit where kBT À

µB,

P ≈ µB/kBT (1.1)

where µ is the nuclear magnetic moment, B is the applied magnetic field, kB is

Boltzmann’s constant, T is the temperature, and a spin-1/2 nuclei is assumed.

For 1H at a field of 1.5 tesla (a common field strength used in clinical MRI), P ∼

0.00051%. Nonetheless, such small polarization yields detectable signals in relatively

dense media such as proton-rich H2O (for example, standard MRI scans used by

1



doctors and radiologists essentially map the proton density within the body, and

thus pick out fluids and tissues). In contrast, gases are typically 1000× less dense

than liquids and solids, and have been infrequently used for NMR purposes. Optical

pumping techniques that enhance the polarization of noble gases by 4 to 5 orders of

magnitude have therefore caused a great deal of recent interest, spurring researchers

to develop applications that could benefit from such novel NMR nuclei.

Among the many distinct advantages that polarized noble gas NMR offers are the

independence of polarization on the applied magnetic field and the rapid diffusion

of the gas. Both of these characteristics are important for the research presented in

this dissertation: the first allowed us to perform MRI of laser-polarized 129Xe at a

magnetic field 700× smaller than that of standard clinical scanners, thus obviating

the need for a superconducting magnet. The second property allowed us to make

the persistence measurement described in Chapter 5.

Optical pumping of noble gases and NMR/MRI are well established research

fields; however, it was only recently that they have been combined in an especially

fruitful manner. In particular, it is a combination of both imaging and multidis-

ciplinary applications that have led to a much broader interest in using polarized

noble gases for NMR/MRI experiments1, and in the remainder of this chapter I

briefly recount some of the steps leading to the present research efforts.

1.1 Review: optical pumping and noble gases

In 1960, Bouchiat, Carver, and Varnum reported the first demonstration of en-

hanced 3He nuclear polarization due to spin exchange with optically pumped rubid-

ium (Rb) [1]. Although the achieved polarization was ∼ 0.01%, it was four orders

1One could also argue that the availability of affordable high-power diode lasers at useful wave-
lengths has also been a contributing factor.
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Figure 1.1: Comparison between thermal and laser-polarized 129Xe spectra at 4.7 T
(129Xe Larmor frequency ∼ 55.345 MHz). Both were acquired from similar samples
of 90% enriched 129Xe gas (3 atm, ∼ 300 cc) with identical acquisition parameters.
For the thermal spectrum on the left, a 90◦ flip angle was used; for the polarized
sample, only a 10.5◦ flip angle was used. Nonetheless, the polarized sample yields
∼ 400× more signal with the smaller flip angle. At 4.7 T, Pthermal Xe ∼ 0.00045%
while in this case, Ppolarized Xe ∼ 1%. The small peak on the left of each plot is the
zero frequency (DC) artifact (the x axes have been rescaled so that the gas peaks
are centered at 0 Hz).

of magnitude greater than the thermal Boltzmann distribution at their operating

magnetic field strength (123 G) and was readily detectable via NMR techniques.

Soon thereafter, Colegrove, Schearer, and Walters demonstrated that enhanced 3He

nuclear polarization was possible by metastability exchange with optically pumped

metastable 3He [2]; furthermore, they achieved much higher polarizations (∼ 40%)

than previously obtained [3, 4]. A key difference, however, is that metastable opti-

cal pumping requires low 3He pressures (∼ few Torr), and mechanical compression

of the gas after polarization to reach useful densities (∼ few hundred Torr). On

the other hand, spin exchange optical pumping can be performed with high (∼ few

thousand Torr) pressures.
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Since then, there has been comprehensive research – both theoretical and exper-

imental – to further our understanding of the nuclear polarization process and its

application to other nuclei. For example, it was initially believed that spin exchange

between 3He and Rb occurred as a result of a dipolar coupling; that view was later

corrected when Gamblin and Carver showed it is the scalar hyperfine interaction

between the nuclear and electronic spins which results in the larger-than-expected

interaction cross sections observed [5].

In 1965, Herman calculated spin exchange cross sections between optically pumped

Rb and a variety of “foreign gas nuclei” [6], but it wasn’t until 1978 that Grover ex-

perimentally polarized noble gas nuclei other than 3He (namely, 21Ne, 83Kr, 129Xe,

and 131Xe) via spin exchange [7]. In the last three decades, basic understanding

of the spin exchange polarization process has been expounded by Happer and col-

leagues in a number of papers (e.g., [8–10]). Experimentally, much of the work has

focussed on polarized 3He and 129Xe, since they possess spin-1/2 nuclei and are eas-

ily detectable using NMR techniques. Chapter 2 of this dissertation describes our

present understanding of spin exchange optical pumping and presents the experi-

mental details for polarizing noble gases.

The use of polarized gases has long been dominated by the nuclear physics

community. In particular, it was recognized very early that a highly polarized sample

of 3He gas would be useful for nuclear scattering experiments [11]. That is because

the spin-singlet state of 3He (where the proton spins are anti-aligned) accounts for ∼

90% of the 3He ground state; thus a polarized 3He nucleus is effectively a polarized

neutron, and is ideal as both a target to probe electromagnetic structure of the

neutron and as a neutron beam polarizer/analyzer (e.g., [12]).

More recently, polarized noble gases have been used for a number of precision

physics experiments. For example, in 1990 Chupp and Hoare tested the linearity of
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quantum mechanics by observing the coherences between the four Zeeman sublevels

of polarized 21Ne [13]. In 1996, a collaboration between our group and Professor

Chupp at the University of Michigan demonstrated a two-species (129Xe and 3He)

noble gas maser which could be used to search for an electric dipole moment in

129Xe [14, 15]; such a device was later used by our group to place the best limit to

date on violations of Lorentz symmetry and CPT for the neutron [16].

1.2 Breaking out of physics: NMR applications

Figure 1.2: MRI of laser-polarized 3He in normal human lung. Courtesy of the
University of Virginia.

In the last decade, there has been a dramatic surge of interest in the study

and use of polarized noble gases outside of the traditional physics community. One
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explanation for this trend is that the NMR community has recognized the utility of

such highly-polarized nuclei in performing a variety of experiments that had been

previous difficult or impossible to perform using only “thermally” polarized nuclei2.

As early as 1990, multidisciplinary groups such as Alex Pines’ at UC Berkeley had

begun to use polarized 129Xe as a means to study amorphous materials via NMR

spectroscopy [17]. In 1994, Albert et al. published the first MRI of polarized 129Xe

injected into mouse lungs [18]. This sparked the imagination of a number of scientists

from different fields and introduced polarized noble gases into a wider range of NMR

applications that now include chemistry, materials science, and biomedical research.

One of the most exciting prospects is in clinical human lung imaging. On-going

research and clinical trials are proving that polarized gas lung imaging can aid

doctors in diagnosing lung diseases such as Chronic Obstructive Pulmonary Disease

(COPD), one of the leading causes of death in the United States. Figure 1.2 shows an

example of a healthy lung image using polarized 3He; such an image offers resolution

unparalleled by any other clinical lung imaging method to date.

Much of the interest using polarized noble gases has focussed on two isotopes in

particular: the spin-1/2 species 3He and 129Xe. Tables 1.1 and 1.2 list the unique

properties that distinguish them from other common NMR nuclei such as 1H or 13C.

These different properties have prompted the many recent multidisciplinary

NMR applications of polarized noble gases. For example, rapid gaseous diffusion

has led to novel work in our group to measure the tortuosity (i.e., inter-pore con-

nectivity) of porous media, which has been heretofore impossible with liquid-based

NMR methods [19]. The large chemical shift of 129Xe when it dissolves into liquids

2Polarization due to a Boltzmann distribution is considered “thermal”; nuclei with enhanced
polarization due to optical pumping techniques have been variously labeled as “laser-polarized,”
“hyperpolarized,” or simply “polarized.” All three labels are used interchangeably in this disser-
tation.
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• 3He and 129Xe are both stable, spin-1/2 nuclei
- Inert and weakly interacting
- long longitudinal (T1) relaxation times

• Gaseous at room temperature
- rapid diffusion (∼ 1000× larger diffusion coefficient than liquids)
- fills pores and cavities easily

• 129Xe exhibits a large chemical shift (∼ 200 ppm) in certain environments
• Can be polarized via optical pumping techniques

- in a non-flowing system, nuclear polarization is non-renewable;
hence requires new NMR techniques

- does not require large applied magnetic field to achieve detectable signal

Table 1.1: Unique properties of the noble gases 3He and 129Xe for NMR applications

Larmor Natural Magnetic
Frequency Abundance Moment

Isotope (MHz/T) (%) (µN)
1H 42.577 99.984 2.79270

3He 32.434 1.3×10−4 -2.1274
13C 10.705 1.108 0.70216

129Xe 11.78 26.24 -0.7726

Table 1.2: Properties of selected spin-1/2 nuclei

or tissues allowed our group and collaborators to track the temporal dynamics of in-

haled 129Xe as it passed into living tissue [20]; similarly, Swanson et al. have utilized

the chemical shift to selectively image polarized 129Xe as it enters different organs

such as the brain [21]. There is also a large chemical shift when Xe condenses into

a liquid, and in our group we have successfully imaged both the liquid and gaseous

phases of Xe in samples near the boiling point and undergoing convection [22, 23].

And as a final example, Pines’ group has demonstrated that it is possible to transfer

a fraction of the high 129Xe polarization to other spin-1/2 nuclei through internu-

clear dipole interactions; for example, polarized 129Xe dissolved in benzene results

in an enhanced 1H NMR signal [24,25].
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1.3 Rethinking NMR for polarized noble gases

Although NMR and MRI are rather mature fields, using such “exotic” nuclei as po-

larized 3He and 129Xe has required a rethinking of standard NMR techniques. One

particularly challenging aspect of these gases is the non-renewable nature of the

polarization. In order to obtain an NMR signal, an experiment effectively depletes

some fraction of the gas polarization; when enough experiments are performed,

the gas polarization returns to its near-zero thermal polarization. However, unlike

thermally-polarized samples, relaxation does not return a polarized gas to its ini-

tially high polarization. This is an important factor when designing the so-called

“pulse-sequences” which guide an NMR experiment. For many standard NMR mea-

surements, only slight modifications are required to make the pulse sequences suit-

able for the finite polarization available. However, in other cases researchers have

come up with creative new pulse sequences to avoid restrictions imposed by finite

polarization or to exploit the highly polarized nature of these gases. For example,

Peled et al. have shown it is possible to make a diffusion measurement with only a

single excitation pulse applied to a sample of polarized gas [26]. Another example

is described in Chapter 5 of this dissertation, where I describe a cumulative k-space

encoding scheme to create “quasi-random” patterns in polarized noble gases, which

can then be imaged in real-time and analyzed to determine a diffusive persistence

exponent.

In addition to pulse sequence modification, NMR hardware has also required

adaptation to work with polarized noble gases. With commercial magnets and

scanners, this has included the straightforward reconfiguring of the frequency syn-

thesizers and computer console to operate at the appropriate Larmor frequencies of

the noble gas nuclei. What is slightly more difficult is constructing (or purchasing)
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an appropriately tuned radio-frequency (RF) coil for excitation pulse transmission

and signal detection (e.g., in appendix A I present the design of a transverse solenoid

coil tuned to 55.34 MHz – the 129Xe NMR frequency at 4.7 T – which was used for

the persistence experiments).

Another important and special feature of polarized noble gas is that it does not

need a large applied magnetic field to create a detectable magnetization. Hence,

NMR and MRI experiments can be performed without the use of commercially

available superconducting magnets. Chapters 4 and 6 describe a low field magnet

and associated NMR instrumentation constructed in our lab. With this magnet,

we have demonstrated the ability to produce high quality images of polarized noble

gases and explored some of the advantages of operating at this relatively low field

strength. Double resonance experiments described in Chapter 6 were also performed

using our low field magnet.

1.4 Dissertation overview

In the chapters that follow, I describe the theory and practice of polarized noble

gas NMR and the experimental efforts I have undertaken. In particular, Chapter 2

summarizes the basics of spin exchange optical pumping, from the present theoret-

ical understanding to practical aspects of its realization in the lab. An important

component of this topic is the availability (and affordability) of high power laser

diode arrays which provide our polarizing light, and a section is devoted to the

characterization studies we performed on our high power (∼ 15 W) lasers.

As mentioned earlier, many standard NMR and MRI pulse sequences have been

modified to work with polarized noble gas. In Chapter 3, I describe some of these

modified pulse sequences.
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Chapter 4 details the development and demonstration of low field MRI with

polarized noble gas. In particular, I describe both the enabling technology and ex-

perimental results, which include the first images at low field of a biological sample

(excised rat lungs) and investigations of radiation damping in low-field NMR exper-

iments. Furthermore, I compare and contrast this mode of imaging to typical high

field proton imaging and suggest potential future benefits.

In Chapter 5, I summarize our diffusive persistence measurement. Persistence

is an idea first introduced by the statistical physics community to ascertain the

probability that a given spin remains unchanged (i.e., “persists”) while undergoing

stochastic processes in an initially random environment. Much of the literature on

this subject has been theoretical in nature, indicating a universal power-law be-

havior, with the exponent depending on the system dimensionality and the specific

stochastic process. To date, only a small handful of experiments have sought to

observe persistence. Our results are both the first to be made on a diffusive system

and a 1-D system. Included in this chapter is an explanation of the “quasi-random”

encoding sequence developed for the persistence measurement and the “k-space” for-

malism that is useful for understanding this and other NMR techniques. Numerical

simulations to test model the NMR experiment are also presented.

Finally, Chapter 6 describes a novel double resonance experiment that probes the

coupling between wall coating protons and polarized 129Xe. By matching the Rabi

frequency of 1H to the Larmor frequency of 129Xe, we are able to enhance the 129Xe

relaxation rate and show that 1H-129Xe dipolar coupling is a contributing relaxation

mechanism. However, contrary to expectations it is not the dominant relaxation

mechanism, and we discuss possible explanations for this surprising result.
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Chapter 2

Polarizing Noble Gases via Spin

Exchange Optical Pumping

This chapter describes the nuclear spin polarization of the spin-1/2 noble gases 3He

and 129Xe via spin exchange with optically pumped rubidium (Rb) vapor. The dom-

inant determinants of this process are the flux of resonant D1 photons, the rate of

spin-exchange, and the rates of various relaxation mechanisms. For reference, Fig-

ure 2.1 shows the “leaky bucket” model occasionally used to describe spin exchange

optical pumping1. Although obviously simplified, this model captures the essence

of the process. In particular, the net polarization of both the Rb valence electron

spins and the noble gas nuclear spins depend on how much resonant (laser) light is

available. In the gas mixtures we typically prepare, the Rb relaxation rate is much

faster than the spin exchange rate of either 3He or 129Xe, so the net Rb polarization

is a function of the available light and the relaxation mechanisms. On the other

hand, the noble gas polarization depends not only on its own relaxation rate and

the spin exchange rate, but also on the overall Rb polarization. A more detailed

1This model was used by Dr. Gordon Cates at a talk I heard a few years ago.
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Laser Light

Rb polarization

Noble gas
polarization

spin 
exchange

Rb relaxation
(spin destruction)

Noble gas
relaxation

(wall interactions)

Figure 2.1: The “Leaky Bucket” model of spin exchange optical pumping. This
cartoon shows the basic relationships between the available photons, spin exchange,
and relaxation mechanisms.

description of the polarization process and the dominant relaxation mechanisms are

the focus of sections 2.1 and 2.2.

The practical realization of spin exchange optical pumping are described in sec-

tions 2.3.1 and 2.3.2 of this chapter, including characterization studies of the high-

power laser diode arrays (LDAs) used in the laboratory and preparation procedures

for the glass cells used to contain the gas mixtures.

For the interested reader, Professor William Happer of Princeton University is

widely regarded as the authority on the topics covered in this chapter, and a number
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of reviews by him and his colleagues delve into the spin exchange optical pumping

process in much greater detail (i.e., [8–10,27]).

2.1 Optical pumping of Rubidium

In our experiments, Rb is polarized by depopulation optical pumping. For exam-

ple, circularly polarized σ+ light resonant with the Rb D1 transition (794.7 nm) is

absorbed only by atoms with ms = −1
2
; however, the excited state decays back into

both ms states (±1
2
). Consequently, over time the ms = −1

2
state is depleted and

the atom is polarized in the ms = +1
2

state. In effect, the angular momentum of

the photons is transferred to Rb, resulting in a polarized electron spin.

The two naturally occurring isotopes of rubidium, 85Rb (72.17%) and 87Rb

(27.83%), have nuclear spins I = 5
2

and 3
2
, respectively. The ground state hy-

perfine splittings are correspondingly 3036 MHz and 6835 MHz. As described by

Wagshul [28,29], the hyperfine interaction does not change the achievable Rb polar-

ization; rather the nuclear spin acts as a store of angular momentum, and will slow

both the pumping and relaxation processes. This “slowing factor” is unimportant

in the experiments we conducted for a number of reasons. First, the densities of Xe,

He, or N2 that we typically use cause the D1 line to be broadened over 20 GHz2,

which is broader than the hyperfine splittings mentioned above. Similarly, the laser

diode arrays we used emit light with an equivalent linewidth of over 900 GHz, thus

averaging out any hyperfine splittings. Finally, as we discuss below, the polarization

of Rb is a process that occurs on millisecond timescales even with the hyperfine-

induced slowing factor, while the polarization of 3He and 129Xe occur over tens of

2Buffer gases such as 3He, 4He, N2, and Xe are known to pressure broaden the Rb D1 line by ∼
17.8, 18.0, 18.7, and 18.9 GHz/amagat, respectively [30]. 1 amagat is the density of an atmosphere
of ideal gas at 273K, i.e., 2.689 × 1019 cm−3.
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minutes to hours. Any slowing of the Rb polarization is still very fast compared to

the spin exchange times for the noble gases. Therefore, it is sufficient to discuss the

optical pumping of Rb in terms of the electron spin ms only.

collisional mixing

spin destruction

52 S1/2

52 P1/2

optical pumping

radiative
de-excitation

N2

radiation
quenching

N2

radiation
quenching

ms = -1/2 ms = +1/2

Figure 2.2: A simplified schematic of depopulation optical pumping of Rb with
σ+ light, showing the relevant pumping and relaxation pathways. Relaxation by
radiative decay (dotted lines) is effectively quenched by small amounts of nitrogen
(dashed lines). Spin destruction is predominantly due to a spin rotation interaction
with Xe, but in the absence of that noble gas, Rb-Rb or Rb-(buffer gas) collisions
are important.

Figure 2.2 shows the simplified 2-level diagram representing Rb when the hyper-

fine splittings are ignored. As mentioned earlier, the illustrated example of absorbing

σ+ D1 light requires that ∆ms = +1; consequently, only ground state atoms in the

ms = −1
2

state are excited. Depopulation optical pumping eventually polarizes the

atom into the ms = +1
2

ground state3. The Rb polarization PRb can be expressed

3It is straightforward to polarize Rb atoms into the ms = − 1
2 state using σ− D1 light by

reversing the polarizing optics or rotating the static magnetic field by 180◦. The higher energy
Zeeman level is the ms = +1

2 state because of the negative electron gyromagnetic ratio. Thus,
optical pumping with σ+ light into the ms = +1

2 state is most commonly used for creating a noble
gas Zeeman population inversion [14]; in contrast, optical pumping with σ− light into the ms = − 1

2
state is best suited for pulsed NMR noble gas experiments.
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as

PRb =
n+ − n−
n+ + n−

(2.1)

where the populations of the ground states ms = ±1
2

are denoted by n±. The time

dependence of PRb is given in the rate equation:

dPRb
dt

= (1− PRb)γopt − PRbΓRb (2.2)

where γopt is the optical pumping rate and ΓRb is the spin destruction rate.

2.1.1 Optical pumping process

The optical pumping rate γopt depends on both the Rb absorption cross section

σ(ν), and the flux of resonant photons Φ(r, ν). When Rb is in a cell with N2, He, or

Xe, σ(ν) is pressure broadened by roughly 18 GHz per amagat of the gas. Φ(r, ν)

is position dependent due to spatial variations of the incident light as well as the

attenuation of the light as it propagates in (and is absorbed by) the Rb vapor.

Consequently, γopt is also position dependent, and can be expressed as follows:

γopt(r) =

∫
Φ(r, ν)σ(ν)dν (2.3)

Continuing to use the example of σ+ optical pumping light, relaxation from the

excited 52P1/2 ms = +1
2

state by photon emission (radiative decay) in the absence of

buffer gases returns the Rb atom back into both ms = −1
2

and ms = +1
2

states, with

probabilities 2/3 and 1/3, respectively, as given by the Clebsch-Gordon coefficients

for those transitions. Thus, it takes 3 photons on average to polarize a Rb atom into

the ground ms = +1
2

state. The situation is further complicated by the fact that

the re-radiated photon is linearly polarized (∆m = 0) one third of the time and can
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cause depolarization of other (polarized) Rb atoms. This “radiation trapping” can

be alleviated by using a small quantity (∼ 0.13 amagat4) of nitrogen. Collisions with

N2 then quench excited Rb more rapidly than spontaneous emission, transferring

the energy into rotational and vibrational modes of the nitrogen molecule5.

Collisions with nitrogen and other buffer gases (e.g., noble gases) also increase

the optical pumping efficiency by mixing the excited P states6. Thus there are equal

probabilities that the two ground states will be repopulated, and on average only 2

photons are required to polarize a Rb atom.

Fortunately, collisions between ground state Rb atoms and buffer gases can occur

∼ 109 times before Rb is depolarized. Therefore, an additional benefit of buffer gases

is that they limit the diffusion of Rb to the walls. Rb atoms that are adsorbed on the

walls are considered 100% depolarized due to their relatively long interactions with

nuclei on the surfaces. However, aside from a thin layer (∼
√
DRb/γopt, where DRb

is the diffusion coefficient of Rb in the buffer gases) along the walls of unpolarized

Rb atoms, the bulk of the Rb vapor is shielded from any adverse wall effects.

2.1.2 Rb spin destruction

A number of mechanisms exist to depolarize the ground state of Rb, some of which

we have briefly mentioned (e.g., radiation trapping and interactions with the walls).

The use of a buffer gas such as N2 negates those processes, but may lead to three-

body collisions that create relatively long-lived van der Waals molecules, especially

40.13 amagat is approximately 100 Torr at room temperature.
5For reference, the quenching cross section of Rb due to collisions with N2 is approximately

58 Å2 [31]. Thus, with typical N2 densities at optical pumping cell temperatures of ∼ 100 C̊, the
quenching rate is 109 sec−1, which is fast compared to the radiative lifetime τ1 of the excited Rb
52P1/2 state (τ−1

1 = 3.6 × 107 sec−1 [32, 33]).
6Collisional depolarization cross sections for Rb 5 2P1/2 have been measured by Bulos and

Happer for He, Ne, Ar, and Kr [34]. For He, the depolarization cross section is 23 Å2.
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between Rb and heavy noble gas atoms such as Xe. For Xe pressures below ∼ 350

Torr7, such molecules can play an important role in spin exchange and spin relax-

ation [9, 35, 36]. However, at the multi-atmosphere pressures we typically operate

at, the lifetimes of such molecules are very short (O(10−11 sec)) [10] and their con-

tribution to ΓRb is negligible. Thus, in our work the dominant source of Rb spin

destruction is the spin-rotation interaction for a binary collision [37–39].

The Hamiltonian is simply:

HSR = γN · S (2.4)

where N is the rotational angular momentum of the colliding pair about its center

of mass and S is the Rb valence electron spin. γ is a spin-rotation coupling constant

that depends on the internuclear separation of the pair.

The spin destruction rate ΓRb can be expressed as follows:

ΓRb =
∑
X

kSR(Rb−X)[X] (2.5)

where X denotes another atomic species interacting with Rb, kSR(Rb−X) = 〈σRb−Xv〉

is the velocity-averaged rate constant in units [cm3/s], and [X] is the number density

of species X.

Table 2.1 gives a list of the spin rotation rate constants for common gases we mix

with Rb. Although the Rb-Rb interaction has the largest rate constant, the densities

of Rb for a typical experiment are five orders of magnitude lower than the densities

7Whenever I state a gas pressure, assume it is at room temperature unless otherwise specified.
8Bouchiat et al. in fact measured the Rb depolarization cross section σRb−Xe = 1.641 ×

10−19 cm2. The value of kSR(Rb−Xe) = 〈σRb−Xev〉 given in the table is calculated with a mean rel-
ative velocity v = 4.4× 104 cm/s between the Xe and Rb atoms at a typical pumping temperature
of 100 C̊.
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X kSR(Rb−X) refs
[cm3/s]

Rb 8.11× 10−13 [29]
N2 9.38× 10−18 [29]

3He ≤ 2.29× 10−18 [29]
Xe 7.2× 10−15 [39]8

Table 2.1: Spin rotation rate constants of Rb and different nuclei X.

of other gases present. In situations when Xe is present in typical quantities, the

term kSR(Rb−Xe)[Xe] dominates ΓRb and thus is the major contributor to Rb spin

relaxation. Table 2.2 give some example gas cell configurations and the associated

Rb spin relaxation rates.

Cell name Densities [cm−3] Contribution to ΓRb [Hz]
Rb N2

3He Xe Rb N2
3He Xe

TS2 1.0× 1014 3.5× 1018 7.3× 1019 – 130 33 ≤167 –
P-2 5.8× 1012 1.3× 1019 – 7.7× 1019 7 122 – 554,400
G7 1.0× 1014 5.1× 1018 1.8× 1019 1.4× 1019 130 48 ≤41 100,800

Table 2.2: Spin rotation rates for different experimental gas cells. Cell TS2 is a 3He
and N2 filled cell used for low field magnet calibration (due to the high polarization
achievable). Cell P-2 is an enriched 129Xe cell used for the persistence measurements
described in Chapter 5. Cell G7 is a 3He-129Xe cell made for future experiments.
Rb densities were calculated using eq. 2.15 assuming typical cell temperatures of
T=100 C̊ for pumping P-2, and T=150 C̊ for TS2 and G7.

Note that spin exchange with noble gas nuclei is also a relaxation mechanism for

Rb. However, as we will see in section 2.2.1, the rates are considerably slower, and

not an important contributor to the relaxation of polarized Rb.
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2.2 Noble Gas Polarization

The rate equation which describes noble gas nuclear spin polarization Png via spin

exchange is analogous to eq. 2.2 for Rb polarization:

dPng
dt

= (PRb − Png)γSE − PngΓng. (2.6)

As we discuss below, the spin exchange rates γSE for 3He and 129Xe are much slower

than γopt or ΓSR for rubidium optical pumping. Therefore, PRb is effectively constant

during the spin exchange process, and the time evolution of Png (assuming 0 initial

polarization) is given by:

Png(t) =

(
γSE

γSE + Γng

)
PRb

(
1− e−(γSE +Γng)t

)
. (2.7)

Section 2.2.1 below discusses the spin exchange process and gives example values

for γSE ; section 2.2.2 describes some of the important relaxation mechanisms that

affect the noble gas nuclear spins.

2.2.1 Spin Exchange

The transfer of angular momentum from a polarized Rb valence electron to the

nuclear spin of a noble gas atom occurs via the spin-exchange hyperfine interaction,

as first suggested by Herman [6]:

HSE = −2γnµnµB
∑
i

[
I · Si

r3
i

− 3
(I · ri)(Si · ri)

r5
i

+
8π

3
δ(ri)Si · I

]
(2.8)

where γn is the gyromagnetic ratio of the noble gas nuclei, µn and µB are the nu-

clear and Bohr magnetons, respectively, I is the noble gas nuclear spin, Si is the
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constant 3He 129Xe

γM – 2.92× 104 sec−1

ζ – 0.0949 (PRb → 1) – 0.1791 (PRb → 0)
〈σv〉SE 6.7× 10−20 cm3/s 3.7× 10−16 cm3/s

refs [40] [36]

Table 2.3: Summary of spin exchange constants between Rb and (3He, 129Xe).

ith electron spin (of the Rb valence electron and all noble gas electrons), and ri is

the distance from the noble gas nucleus to the ith electron. The scalar Fermi con-

tact potential (third term in eq. 2.8) is the dominant contributor to spin-exchange.

Furthermore, due to the indistinguishability of the many electrons and the peak in

the s-state electron wavefunction at the noble gas nucleus, there is a substantial

enhancement factor η which increases in magnitude for heavier noble gases. For He

and Xe, Herman originally estimated that η = −7 and -23, respectively, but a more

recent calculation by Walker yields η = −9.5 and -50 [10]. In any case, it is this

rather large interaction term that results in high polarization transfer to the noble

gas nuclei from polarized Rb.

The spin exchange rate can be expressed as

γSE = kSE [Rb] (2.9)

where the rate constant is given by [36]

kSE =

(
γMζ

[X]
+ 〈σv〉SE

)
. (2.10)

The first term is due to spin exchange in Rb-(noble gas) van der Waals molecules, and

is inversely proportional to the number density of X (the third body in a molecule-

forming collision, usually N2 or Xe). Although such molecules play a negligible
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Cell name Tpump ( C̊) [Rb] (cm3/s) γSE(3 He) (Hz) γSE(129 Xe) (Hz)

TS2 150 1.0× 1014 6.7× 10−6 –
P-2 100 5.8× 1012 – (2.4− 2.5)× 10−3

G7 150 1.0× 1014 6.7× 10−6 (5.7− 7.4)× 10−2

Table 2.4: Spin exchange rates for different experimental gas cells. See Table 2.2
for gas mixtures used in cells TS2, P-2, and G7.

role in Rb relaxation at high buffer pressures (as mentioned in sec. 2.1.2), they

do contribute to the polarization of the 129Xe nuclear spin in particular (for 3He

polarization such molecules are inconsequential [10, 41]). γM is a constant that

depends on the rate of van der Waals molecule formation and contact interaction

strength between Rb and the noble gas (i.e., Xe), while ζ is a constant that depends

on the polarization and isotopic composition of Rb. During optical pumping, we

can expect PRb to be high, and hence the smaller of the ζ values is applicable when

calculating the spin exchange rates between 129Xe and polarized Rb.

The second term of eq. 2.10 is simply the velocity-averaged cross section for

binary Rb-(noble gas) spin exchange. A summary of the constants is provided in

Table 2.39. For comparison, Table 2.4 gives the calculated spin exchange rates for

some of our experimental cells.

2.2.2 Relaxation mechanisms for noble gas nuclear spins

Interactions between noble gas nuclei and the cell walls are widely believed to be

the dominant source of nuclear spin depolarization. However, these interactions are

not fully understood. In 1965, Gamblin and Carber suggested the following: [5]:

Since the relaxation time seems to be independent of various nonmag-

9Note, the 3He value for 〈σv〉SE listed in Table 2.3 (taken from ref. [40]) is a factor of 2 smaller
than an earlier value measured by Coulter et al. [42]. No explanation of the difference is given or
suggested.
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netic wall materials, one can perhaps only guess at the mechanism of
relaxation as being adsorbed impurities on the wall surface.

More recently, Walker states in his 1997 review of spin exchange optical pumping

[10]:

The detailed physical mechanisms of wall relaxation are poorly under-
stood at present.

Actually, there is a fair amount of research on the subject of wall relaxation and

although questions still remain, the basic principles for increasing the noble gas

nuclear spin relaxation times are generally known.

3He wall relaxation is believed to arise from two mechanisms: (i) relaxation

due to diffusion of 3He through the glass, and (ii) adsorption of 3He on the glass

surface [43–45]. In both cases the dominant depolarizing factor is the presence of

paramagnetic impurities within the bulk glass and adsorbed on the glass surface.

To minimize the wall relaxation rates, cells are made from glasses with low He

permeability and low paramagnetic content10, such as aluminosilicate glasses (e.g.,

Corning 1720 or Schott Supremax). In fact, assuming care is taken to clean the cell

and 3He gas, cells made from these materials have exhibited relaxation times that

approach the bulk-limited 3He-3He dipole-dipole relaxation rate [46]11,

1

T1dip−dip

=
[3He]

744
hrs−1. (2.11)

One drawback of the aluminosilicate glasses is that they are notoriously difficult

for glassblowers to work with, in contrast to borosilicates such as pyrex. Chupp

10Fe3+ is the major contributor to paramagnetic impurities in commercial glasses [45].
11Note that the long relaxation rates observed by Newbury et al. were in cells used for 3He

metastability pumping. Thus no Rb or N2 were present, which is in contrast to spin exchange op-
tical pumping. However, Rb is thought to be a benign surface coating for 3He, and long relaxation
times are similarly achievable.
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and colleagues have shown that the borosilicate glass Corning 7056 (which has

midrange paramagnetic impurity content and He permeability) yields cells with life-

times similarly approaching the bulk dipole-dipole limited relaxation rates as given

by eq. 2.11 [47].

For the much larger 129Xe atom, permeability into the glass is not an issue.

However, adsorption onto glass surfaces is quite significant because of the large

129Xe polarizability. To address this issue, Zeng et al. showed that coating the

cell walls with a siloxane-derivative dramatically increases the 129Xe relaxation time

[48]. For uncoated pyrex cells, they found the longitudinal relaxation time T1 of

polarized 129Xe nuclei generally on the order of hundreds of seconds. In contrast,

cells coated with SurfaSil12 typically had much longer relaxation times, on the order

of 20 minutes or more.

Driehuys et al. showed that in cells coated with SurfaSil, the dominant relax-

ation mechanism for 129Xe is its dipolar coupling with protons in the coating [49].

Furthermore, they found that 129Xe is trapped in the coating for surprisingly long

times (τ > 10 µs). A motivating factor of the work presented in Chapter 6 is to

determine whether the same coupling is the dominant relaxation mechanism for the

coating we typically use, namely OTS13.

Another relaxation mechanism for polarized noble gases is due to diffusion through

inhomogeneous magnetic fields [5, 50] and is expressed as follows:

1

T1

= Dng
|∇B⊥|2
B2
z

(
1

1 + Ω2
0τ

2
c

)
, (2.12)

12Pierce Scientific, Rockford, IL 61105. SurfaSil is primarily composed of dichlorooctamethylte-
trasiloxane.

13n-octadecyltrichlorosilane.
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where Dng is the noble gas diffusion coefficient, ∇B⊥ is the transverse magnetic

field, Bz is the main field strength, Ω0 is the Larmor frequency of the noble gas, and

τc is the mean collision time between atoms. In a careful examination of eq. 2.12,

Cates et al. [51] showed that this expression is valid for cells at high pressure and

high magnetic fields when the following is true:

Ω0R
2

Dng

À 1. (2.13)

R is a characteristic length scale of the cell (e.g., radius of a spherical cell).

In our multi-atmosphere gas cells, the inequality expressed in eq. 2.13 is easily

fulfilled. Thus, to calculate the relative importance of inhomogeneous field relax-

ation, we begin by noting that the factor (1+Ω2
0τ

2
c )−1 of eq. 2.12 is nearly unity, since

τc is on the order of 10−9 or 10−10 sec for gases at STP and field strengths are not

commonly available for Larmor frequencies to be in the 109 sec−1 range. For 129Xe at

STP (DXe = 0.057 cm2/s), and if we assume a 100 Hz linewidth in a 1 cm diameter

spherical cell at 20 G (a worst-case scenario, implying ∇B⊥ ∼ 0.1 G/cm), we find

that 1/T1 inhomog ∼ 1.0 × 10−6 Hz. Similarly, for 3He at STP (DHe = 1.96 cm2/s),

the rate is ∼ 4.6 × 10−6 Hz. In both cases, the contribution is small compared to

the effects of wall relaxation.

2.3 Optical Pumping: experimental setup

Spin exchange optical pumping of 3He and 129Xe is performed using setups schemat-

ically show in Fig. 2.3. The key components are:
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Figure 2.3: Schematic of the optical pumping apparatus.
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• Rb D1 light source at 795 nm,
• collimating and polarizing optics,
• sample cell,
• oven, and
• main applied magnetic field B0.

We typically use a 15 W Opto Power14 fiber-coupled laser diode array (LDA)

as our light source. A small set of collimating optics narrows the relatively diver-

gent light from the LDA. A polarizing beam splitter cube15 separates the light into

two linearly polarized light beams (with orthogonal polarizations), which then pass

through quarter-wave plates16 to become circularly polarized light. A glass cell with

a few mg of Rb, N2, and noble gas(es) is placed inside an oven which is heated either

by blown hot air or resistive heater tape17. The oven temperature is regulated by

an Omega temperature controller18 with a 100 Ω platinum RTD (resistance thermal

device) placed within the oven as close as possible to the cell. Finally, the oven is

situated in a magnetic field B0 which provides the orientation axis for the atoms.

In situations where we were working near a high-field (> 1 tesla) magnet (e.g., at

MIT or the Brigham and Women’s Hospital), we would use the fringe field of the

magnet as B0 (typically between 100-500 Gauss). In our lab at the CfA, we created

B0 with a low field solenoid at ∼ 8 G.

The cell is placed in an oven to increase the Rb vapor density. Killian first

14model OPC-A015-FCPS, Spectra-Physics Semiconductor Lasers (formerly known as Opto
Power Corp.), Tucson, AZ.

15CVI Laser Corp., Putnam, Connecticut.
16ibid.
17Heater tape is easier to use, since it does not require a source of compressed air. However, it

does not generally heat the volume as uniformly as blown hot air. Of course, this also depends on
the design of the oven.

18Series CN8500, Omega Engineering, Inc., P.O. Box 2284, Stamford, Connecticut.
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measured the Rb vapor pressure p(T ) to yield the frequently cited result [52]19:

log10 p(T ) = 9.55− 4132/T (2.14)

A more recent measurement, valid between the Rb melting point (39.31 C̊) and

277 C̊, is as follows [54,55]:

log10 p(T ) = 9.318− 4040/T. (2.15)

In both cases, p is in pascals (N/m2) and T is in kelvins. To calculate the rubidium

density [Rb], one can simply use the ideal gas law p = nRT . In particular,

[Rb] =
p

(1.38× 10−17)T
, (2.16)

where [Rb] is measured in cm−3. The choice of which equation to use (2.14 or 2.15)

is relatively unimportant in our experiments, since we do not know precisely the

temperature of the Rb vapor owing to temperature gradients of a few degrees that

exist within the ovens, between the RTD temperature sensor and the glass cell, and

across the cell. For example, recent work using Raman scattering to determine the

temperature inside a sample cell during optical pumping with a high-power laser

diode array [56] indicates that the temperature may in fact be up to 10 C̊ higher

within the cell than expected by measuring the oven temperature alone. The higher

temperatures are probably due to the excess heating by the off-resonant laser light.

We usually heat cells to ∼ 100 C̊ for pumping 129Xe cells, while 3He cells are

19Killian’s original paper gives the formula log10 p(T ) = 10.55 − 4132/T . However, Killian
measures p(T ) in (chemical) bars, which was originally suggested in 1903 to denote a pressure of
1 dyne/cm2, or 0.1 pascals. The common (meteorological) bar, introduced in 1910, is equivalent
to 106 (chemical) bars [53].
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heated to slightly higher temperatures, ∼ 150 C̊. Because of the slow Rb-3He spin

exchange rate, fast diffusion of 3He, and long T1 times of 3He in well-prepared cells,

optical pumping in an optically dense Rb vapor is desirable when polarizing 3He

and hence requires the elevated oven temperature. On the other hand, the faster

Rb-129Xe spin destruction and exchange rates, slower diffusion rate of 129Xe, and the

need to protect the wall coatings from high-temperature alkali attack call for greater

optical transparency and thus lower oven temperatures when polarizing 129Xe.

Polarizations between 1%–10% were easily and repeatedly achieved with our

cells; variations from cell to cell were attributed to differences in coating quality

and the purity of the gases used to fill the cell. Optically pumping a 129Xe cell

typically requires 20 minutes, while a 3He cell needs several hours. Before conducting

an experiment using the polarized noble gas, the cell would be cooled to room

temperature – often by placing the cell into a bath of cool water.

In the sections that follow, I describe in detail the characteristics of the lasers

we used and the procedure for coating and filling an optical pumping cell.

2.3.1 High-power laser diode arrays

The development of Ga1−xAlxAs diode laser arrays has been a contributing factor

to the growing interest in polarized noble gas research [57], primarily because they

provide high-power near-infrared laser light that is both economical and easy to

use. As previously mentioned, our primary sources of light at 795 nm are high-

power fiber-coupled LDAs from Opto Power Corp. These units are composed of

24 diode arrays which are coupled to individual fiber optic cables via cylindrical

microlenses. The 24 fibers (typically 1–5 meters in length) are bundled together

and can deliver up to 15 Watts of power in a beam with a 12◦ divergence angle.
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The applied current and mean temperature of the arrays are set via an external

controller box. Each unit can be powered by a common 120 V AC outlet.

Distinct advantages of these devices include (i) high output power (15 W), (ii)

low cost (∼ $10, 000), (iii) portability, and (iv) ease of use. On the other hand,

drawbacks of these lasers include (i) very broad linewidths (∼ 2 nm or 1 THz) and

(ii) poor systems engineering of the units, resulting in variable operating reliability.

For example, we found that some of the units overheated when operating at full

power if the room temperature was greater than ∼ 27 C̊ or if the unit was not in

a well-ventilated space. Also, operating these LDAs in regions of magnetic fields >

50 G (e.g., near NMR magnets) caused the cooling fans to malfunction, which led

to overheating of the LDA system.

For comparison, the Spectra-Physics Titanium:Sapphire (Ti:Sapph) laser20 we

also have in the lab can produce ∼ 3 W of very narrow (FWHM21 < 40 GHz) light.

However, it is expensive (∼ $100, 000), bulky, and requires specialized installation

(e.g., a chilled water supply). In terms of efficiency, the Opto Power lasers cost ∼

$7, 000 per Watt of resonant light (assuming only 10% of the light can be absorbed by

pressure broadened Rb) while the Ti:Sapph is much more expensive, about $33,000

per Watt of resonant light.

The tuning and output power of the Opto Power LDAs varies from unit to unit,

and is dependent on both the applied current and temperature. In order to study

these dependencies, we used the setup shown in Fig. 2.4 [58]. The laser spectrum

was scanned using a Fabry-Pérot cavity22 with a free spectral range (FSR) of 4 nm.

With a telescope arrangement, we could image each fiber of the 24 fiber bundle onto

a given plane and use a pin hole to admit light from only one of the fibers through

20Model 3900S, Spectra Physics, 1335 Terra Bella Ave., PO Box 7013, Mountain View, CA.
21Full Width Half Max.
22model RC-110, Burleigh Instruments, Inc., Burleigh Park, Fishers, New York.
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Figure 2.4: Schematic of the LDA characterization setup.

to the Fabry-Pérot cavity. A photodetector was placed by the output end of the

cavity and an Apple Macintosh computer was used to record the spectrum. For

spectral calibration we used a second, less intense single-mode diode laser23 with

a FWHM < 4 MHz, which is considerably less than the 20 GHz resolution of the

cavity. To check the tuning of the single-mode laser, part of its light was directed

through a Rb vapor cell, which fluoresced when the laser was on resonance with

the Rb D1 line and could be detected by an infrared camera. To ensure we were

measuring the LDA spectrum in the correct FSR, we had another Rb vapor cell

(pressure broadened by ∼ 1 atm of N2) that could be placed in the optical path of

the LDA light; we observed a noticeable “dip” in the spectrum when we were in the

23model LCU2010M, Newport TMS (formerly EOSI), 1501 South Sunset Street, Suite D, Long-
mot, Colorado.
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Figure 2.5: Spectra from 12 of the 24 fibers from Opto Power LDA P-205. Operating
current=31.9 A and T=24.1 C̊.

correct FSR.

Fig. 2.5 gives an example of the various spectra emitted by individual fibers in the

optic fiber bundle of an Opto Power LDA. Obviously, the individual diode arrays are

manufactured to emit close to 795 nm, but process variations and differing operating

conditions for each of the arrays results in the multi-mode, non-uniform spectra

observed. When the spectra are summed together, as in Fig. 2.6, the result is a broad

emission spectrum with a FWHM24 of approximately 2 nm, as per manufacturer’s

specifications.

For the work presented in this dissertation, a number of different (but similar

model) Opto Power LDA units were used for optical pumping. The characterization

studies were important to determine the correct operating current and temperature

that would maximize the available laser light about 795 nm. While each of the

24For the overall spectrum of an LDA, we defined the FWHM as the spectral width about
the “peak wavelength” which yields an integrated intensity equal to 68% of the total integrated
intensity. “Peak” (or “center”) wavelength for a given spectra was defined to be the wavelength
at which half of the integrated power was at lesser (greater) wavelengths.
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Figure 2.6: Sum of 12 individual fiber spectra from Opto Power LDA P-205 (shown
in Fig. 2.5). The linewidth of this summed spectrum is ∼ 2 nm.

11 units we examined had different optimal settings, we determined that variations

in total output power or optimal settings were uncorrelated with the age of the

LDAs or with any other information provided by the manufacturer. Table 2.5 lists

a summary of the average parameters measured; ref. [58] provides further details.

2.3.2 Polarization Cells

Important steps in polarizing 3He and 129Xe include the careful design, fabrication,

and preparation of appropriate glass cells. 129Xe-only cells are typically made from

pyrex, which is an easy glass for glassblowers to work with (thus allowing a great

deal of flexibility in cell design) and can be coated to prolong 129Xe T1 times. For

cells containing 3He we generally use a less He-permeable glass such as the borosil-

icate glass Corning 7056 or aluminosilicates such as Corning 1720 or 1724. For

experiments that required delivery of the polarized gas to a sample (e.g., the lung
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Property average value

Age (as of Feb, 1999) 21 months
Operating hours 2049 hours

Total Power 12.6 Watts
∂λ/∂T 0.31 nm/ C̊
∂P/∂T -0.25 W/ C̊
∂λ/∂I 0.28 nm/A
∂P/∂I 0.46 W/A

Linewidth 1.9 nm

Table 2.5: Average operating parameters of Opto Power LDAs (see ref. [58]). Values
quoted represent the average of 11 units examined.

imaging performed in Chapter 4), cells were fitted with valves. Figure 2.7 illustrates

some of the polarization cells we used.

The 3He-only cells used in our experiments were designed and made by our

collaborators at the University of New Hampshire. They commonly work with

aluminosilicate glasses and have a rigorous cleaning and 3He filling regimen that has

consistently produced high quality 3He-polarization cells. A detailed description of

their cell preparation regimen can be found in ref. [59]. In our lab, we specialized

in producing 129Xe, or mixed 129Xe-3He cells, which are slightly different from the

3He-only cells in that they must also be coated with a silane- or siloxane-derivative.

Below, we discuss the “recipe” used for cleaning and coating cells, and conclude

with a discussion of the methods used to fill cells with the desired gas quantities.

Cleaning and Coating Procedure

The cleaning and coating procedures we used are outlined in Tables 2.6 and 2.7,

and are adapted from Oteiza [60] with modifications suggested by Rosen [61]. As

previously mentioned (i.e., in section 2.2.2), proper preparation of the cell surfaces

can extend the polarization lifetimes of polarized 3He and 129Xe. For historic reasons,
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Figure 2.7: Glass cell designs. Three example cell designs are shown here: (a) a
valved cell that allows the gas to be delivered to an experiment after it has been
polarized; (b) a sealed cell for persistence experiments (We also used this design
for a “thermal Xe” cell, which did not contain any Rb. Instead, we filled it with
a Xe/O2 mix that had a rapid T1 (∼ seconds) and at high field could be used to
calibrate the polarization achieved through optical pumping); and (c) a manifold
for making four 1” spherical sealed cells (The design must allow access for cleaning
and coating, an attachment point for a Rb ampoule, and a port to attach to a pump
station). Except for (c), all the cells were made from pyrex; for the 4-cell manifold,
the body was made from pyrex, but the spheres were made of Corning 7056 glass.
Our glasswork was handmade by Mr. Charles Raworth of Wilbur Scientific, Inc., 37
Leon Street, Boston, MA.
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we coat our cells with OTS as opposed to SurfaSil, the latter being a common coating

used by Happer and many of his students and colleagues. In comparing our typical

129Xe longitudinal relaxation times (T1) with published results in SurfaSil-coated

cells, there appears to be little difference in using either coating. For example, we

made an OTS-coated cell (P-2) that had a 129Xe T1 time greater than 3 hours (>

10,800 sec) when left in a 4.7 T magnetic field; Breeze et al. report a 129Xe T1 of

10,300 sec for one of their SurfaSil-coated 129Xe cells (SSD-1) measured at the same

field strength [62]. However, these T1 times are somewhat “best case” values, and

the variance in different cells is usually attributed to paramagnetic impurities that

may exist in the glass, or have contaminated the cell at some stage of its production.

Furthermore, as we shall see in Chapter 6, at low magnetic fields (< 100 G) the 129Xe

T1 times vary as a function of the magnetic field.

step 1 Wash the cell with Alconox25 mixed with distilled (DI)
H2O.

step 2 Rinse with DI H2O.
step 3 Clean with piranha solution (3:7 ratio by volume of 20%

H2O2 and concentrated H2SO4). Allow to sit for about
an hour.

step 4 Rinse (3×) with DI H2O.
step 5 Rinse (3×) with methanol.
step 6 Dry the cell (under rough vacuum, flowing N2, or by heat-

ing the cell to drive off moisture from the surface).

Table 2.6: Cell cleaning protocol.

Figure 2.8 illustrates our general understanding of how the coating process oc-

curs. After hydrolysis of the OTS molecule, hydrogen bonding occurs between the

surface and the OTS molecule, and then again between neighboring OTS molecules.

Ideally, these hydrogen bonds are all converted to covalent bonds with H2O as a

25A detergent used to clean glassware, manufactured by Alconox Inc., New York, New York
10003.
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Figure 2.8: Chemisorption of n-Octadecyltrichlorosilane (OTS) on glass [63,64]. (a)
hydrolysis occurs (with trace amounts of H2O on glass surface), releasing HCl; (b)
adsorption occurs by hydrogen-bonding between OH groups; (c) ideally, polymer-
ization and condensation occurs, with H2O given off; (d) in reality, some hydrogen-
bonding probably still exists, either between OTS molecules, or between OTS and
the surface. This figure is an adaptation from Sagiv [64].
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step 1 Rinse the cell with hexanes.
step 2 Rinse a clean beaker with hexanes (3×), and then pour

into the beaker enough hexanes to fill the cell.
step 3 Prepare coating solution by mixing a little OTS into the

beaker full of hexanes. Typically a few drops of OTS
mixed with hexanes is more than enough to coat a 1”
spherical cell. Mix solution and pour into the cell.

step 4 Allow the solution to sit inside the cell for 5-10 minutes.
step 5 Pour out coating solution and rinse the cell 3× with hex-

anes.
step 6 Rinse the cell (3×) with chloroform.
step 7 Rinse the cell (3×) with ethanol.
step 8 Allow cell to sit out overnight (exposed to the atmo-

sphere).

Table 2.7: Cell coating protocol.

by-product, but in reality the coating is probably a mixture of both covalent and

hydrogen bonds [64].

The coating, if done properly, forms a hydrophobic surface which prevents or

minimizes interaction with the glass surface itself. After the coating procedure de-

scribed in Table 2.7, we test the coating by placing some distilled water into the cell;

a good coating should not allow the water to wet the glass. On occasions where the

coating is poor, we have been able to successfully apply more OTS coating without

having to strip away the existing OTS. Re-cleaning the cell with the piranha solution

does not remove the OTS coating, nor does baking the cell26 up to temperatures of

400 C̊ [65]. Also, Sagiv as shown that with patches of OTS already bonded to the

surface, it is possible for additional OTS to fill the gaps during a subsequent coating

procedure [64,66].

It is important to avoid coating areas that will be flamed sealed, since the reaction

26This is true only if no alkali metal is present in the cell. If Rb is also in the cell, the coating
will be attacked by the Rb at temperatures exceeding ∼ 200 C̊.
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of OTS with hot glass is believed to result in depolarizing surfaces. If the coating

has inadvertently found its way to such regions, it is possible to remove the coating

with a strong basic solution such as concentrated sodium hydroxide (NaOH). Just as

Rb will attack the coating at elevated temperatures, we have observed that NaOH

can effectively remove OTS bonded to the surface. A cautionary note: NaOH will

also etch the glass, and presumably increase the surface roughness. Hence, it is

advisable to expose the glass surface to NaOH for as short a time as possible.

Cell filling procedure

Once a cell has been cleaned and coated, we attach a sealed Rb ampoule to it with

a small piece of glass rod inside that acts as a plunger (to break the Rb glass seal

later). The cell is then placed on a high vacuum pump station via an Ultra-torr

connector27. The cell is evacuated by a turbomolecular vacuum pump28 and baked

out for 2 days at ∼ 150–200 C̊. At this point, the pump pressure is usually in the

10−8 Torr range, while an ion-gauge closer to the cell reads in the 10−6 Torr range.

Rb metal must be condensed in the cell under vacuum before gases are admitted.

By shaking or rotating the cell quickly, we allow the glass plunger to break the small

glass seal which protects the Rb stored in one end of the ampoule. Argon is usually

sealed in with the Rb, and must be pumped away after the seal is broken (if needed,

we melt the Rb with a cold flame29 to allow the argon to escape out of the broken

seal). The Rb is heated and then “chased” (or condensed) into the cell with a cold

flame, until there are a few macroscopic Rb drops in the cell. We often wrap the

coated portions of the cell in wet paper, and then cover it with aluminum foil to

27This connector allows glass to be mated to the otherwise metal station via a compressible
rubber O-ring.

28Pump system PT 151, Leybold Vakuum GmbH, Cologne, Germany.
29For example, we used a methane-oxygen torch for our glasswork; with the oxygen turned off,

the flame is “cold” and does not melt the glass.
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protect it from unintentional heating. Finally, we usually seal the Rb ampoule/cell

connection by heating and collapsing the glass;30 as this occurs, we remove the Rb

ampoule and dispose of it appropriately.

As mentioned earlier and shown in Fig. 2.7, there are two types of cells we

commonly make: “valved” cells and “sealed” cells. Valved cells include a valve

which allows one to repeatedly fill and empty the cell with gases; in contrast, a

sealed (glass) cell is permanently sealed (with a torch) after being filled with gases.

Practically speaking, valved cells are easier to calibrate and fill, but generally do

not have the longevity of a sealed cell because of accumulated contamination of

oxygen and water from repeated fillings with not-perfectly-clean gas, and because of

human error (e.g., accidentally opening the valve). Again, the choice between using

a valved or sealed cell depends on the experimental requirements.

The basic idea in filling a cell involves loading a pre-determined amount of gas

into a “reservoir” volume on the pump station (we refer to it as the pump station

manifold). During this step, the cell is isolated from the reservoir, usually by a valve

either on the cell itself or on the pump station manifold. When the desired load

pressure is reached, the valve is opened and the gas is allowed to fill the cell.

Xenon gas is particularly easy to work with because it has a melting temperature

of ∼ 161 K and a boiling temperature of ∼ 166 K. Using liquid nitrogen, one can cool

a sample cell to ∼ 77 K, and thus easily condense xenon into the cell. Practically,

this means that all the gas initially loaded into the reservoir volume (at pressure

PXe load) will end up in the cell. If PXe is the pressure of xenon we desire in the cell

at room temperature, then using the ideal gas law (PV = NRT ) it is easy to show

30This is accomplished with a “hot” methane-oxygen flame, i.e., temperature in excess of 820 C̊,
which is the softening point for pyrex.
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that

PXe load = PXe

(
Vcell

Vmanifold

)
, (2.17)

where Vcell and Vmanifold are cell and manifold volumes as defined in Figures 2.9 and

2.10. Table 2.8 describes the manner in which we determine
(

Vcell
Vmanifold

)
.

Step Sealed cell Valved cell

pump station manifold and cell should be at vacuum.
1 close the valve between the

manifold and the cell, and fill
only Vmanifold with an arbitrary
amount of test gas (e.g., N2).
Record the pressure as P1.

close the cell valve and fill
only Vmanifold with an arbitrary
amount of test gas (e.g., N2).
Record the pressure as P1.

2 open the manifold valve to al-
low the test gas to expand into
the cell (Vcell) and interstitial
tubing (Vtube). Record the re-
duced pressure as P2.

open the cell valve to allow
the test gas to expand into the
cell (Vcell). Record the reduced
pressure as P2.

3 now place the cell volume into a
bath of liquid nitrogen, so that
the cell volume Vcell is at 77K,
while the remaining volumes
(Vmanifold + Vtube) are at room
temperature (∼297K). Record
the overall pressure as P4.

Vcell
Vmanifold

[
P1

P2P4
(P2 − P4)

] (
1

α−1

) (
P1

P2
− 1
)

Table 2.8: Cell volume calibration protocol for sealed and valved cells.
α = Troom/Tliquid N2 . See fig. 2.9 and 2.10 for the volumes represented by Vcell, Vtube,
and Vmanifold.

Other gases, such as N2, 3He, 4He, or O2 (used for thermally polarized noble gas

cells), are added afterwards assuming the sample cell is kept cold enough for the

xenon to stay frozen. Care must be taken to account for residual vapor pressures

of non-condensing gases which fill both the cell and the reservoir volume and to
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Figure 2.9: Schematic of sealed cell and pump station manifold with relevant vol-
umes labeled.
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Figure 2.10: Schematic of a valved cell and pump station manifold with relevant
volumes labeled.
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allow sufficient time for full diffusive mixing of such gases. Obviously, once the cell

is either sealed or valved off, gas left in the reservoir does not contribute to the

amount found in the cell.

Once the desired quantities of gas have been loaded into the cell, the last step

is to remove the cell from the pump station. For sealed cells, we need to flame seal

the connecting tube, which is only possible if the pressure inside the tubing is below

atmospheric (otherwise it will blow outward when the glass is heated to its melting

temperature). If the pressure inside the cell at room temperature is > 1 bar, then

the cell is cooled in LN2 to condense gases such as xenon and lower the pressure

of non-condensing gases by a factor of close to 4 (the ratio of room temperature to

LN2 temperature). Valved cells naturally do not require flame sealing, and can be

removed easily once all the appropriate valves are closed.
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Chapter 3

Basic NMR techniques as applied

to laser-polarized noble gases

3.1 Preliminaries

As is well known, there is a close correspondence between the quantum mechanical

magnetic moment expectation values (〈µx〉, 〈µy〉 and 〈µz〉) and the classical magne-

tization components (Mx, My, and Mz) for an ensemble of nuclear spin 1/2 atoms

or molecules. For example, both theories show that the dynamics are governed by

the Bloch equations (e.g., see ref. [67]):

dMx

dt
= γ(M×B)x −

Mx

T2

(3.1)

dMy

dt
= γ(M×B)y −

My

T2

(3.2)

dMz

dt
=

M0 −mz

T1

+ γ(M×B)z (3.3)

where we have chosen the quantization axis (i.e., main applied field B0) to lie in

the ẑ direction; T1 and T2 denote the phenomenological longitudinal and transverse
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relaxation times. Interestingly, equations (3.1-3.3) are also valid for time-dependent

B. In particular, the application of an oscillating magnetic field B1 (which we

assume to be orthogonal to B0) leads to population changes and coherences between

different magnetic states of an atom (quantum mechanically speaking) and can be

thought of as a precession of the magnetization vector (classically speaking).

For example, the transition probability P(t) between state populations is given

by the familiar expression for Rabi oscillation [68]:

P(t) =
ω2

1

ω2
1 + (∆ω)2

sin2

[√
ω2

1 + (∆ω)2
t

2

]
. (3.4)

ω1 is the Rabi frequency due to B1 (i.e., ω1 = γB1) and ∆ω is the difference between

the oscillation frequency (ω) of B1 and the Larmor frequency (ω0) of the nuclear spin.

When the oscillating field is on-resonance with the Larmor frequency (i.e., ∆ω = 0),

P(t) varies from 0 to 1 with Rabi frequency ω1. Classically this is equivalent to

saying that on-resonance, the B1 field appears stationary in the rotating frame of

the atom and that the magnetization vector M simply precesses about this field at

a rate determined by the strength of B1. In “pulsed” NMR, such a B1 would be

applied for only a brief duration τ , and in effect “tips” M an angle θ away from the

ẑ direction, where θ is equal to γB1τ . Consequently, Mz = |M| cos(θ), while in the

transverse plane there is a component |M| sin(θ).

It is this latter transverse component that gives rise to a detectable signal through

Faraday induction in a nearby pickup coil; quantum mechanically speaking, the off-

diagonal elements of the density matrix (i.e., the coherences) are detected. The

oscillating signal, known as a “free induction decay” or FID, decays in time as the

individual spins dephase from one another due to spin-spin coupling, local mag-

netic field inhomogeneities, and other possible environmental effects (e.g., applied
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magnetic field gradients). Inhomogeneous broadening occurs when the decay is dom-

inated by field inhomogeneities or other local environmental differences as seen by

the atoms, and is commonly labeled with the time constant T2
∗. For transverse re-

laxation that occurs uniformly throughout the ensemble (homogeneous broadening),

one typically refers to T2. As we shall discuss next, it is possible with “spin echoes”

to refocus T2
∗ dephasing; hence T2

∗ ≤ T2.

Spin echoes were discovered in 1950 by Hahn [69] and are among the key building

blocks of modern pulsed NMR1. Hahn found that applying a second RF pulse after

the FID from an initial pulse had decayed away gave rise to yet another signal, the

so-called “spin echo.” A simple spin echo pulse sequence is shown in Fig. 3.1; a

graphical explanation is given in Fig. 3.2. Spin echoes are important because they

π/2 π
FID

τ τ

Spin echo

Figure 3.1: π/2 – π RF pulses result in a spin echo.

allow one to compensate for T2
∗ effects. Furthermore, one acquires a spin echo signal

as the spins are refocussing, and then as they dephase once more. This is twice the

amount of information obtained through a simple FID and by assigning t = 0 to be

equal to the point of maximum detected signal (from either an FID or spin echo),

1It should be noted that modern NMR and MRI research is predominantly “pulsed,” and
employs an ever-growing variety of sophisticated “pulse sequences” that allow one to perform
complex manipulations of the nuclear spins [i.e., the B1 field is applied for a short period (with
possible repetitions), and the transient magnetization dynamics are detected]. In contrast, early
NMR experiments were performed in “continuous-wave” (CW) mode, (i.e., a steady-state B1 field
is applied and the magnetization is detected as the main magnetic field is swept through resonance).
The availability of fast, affordable computers to perform fourier analysis and the development of
novel techniques such as spin echoes [67,69] were driving forces that led to this modern trend.
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Figure 3.2: Graphical explanation of spin echoes [note: the rotating frame is assumed
throughout]. (a) An initial π/2 RF pulse (aligned with the x̂ axis in the rotating
frame) places the magnetization M into the transverse xy plane aligned with the ŷ
axis. (b) Spins precess at different rates, resulting in a spread (dephasing) of the
magnetization vector. For example, spin “2” precesses faster than the mean, while
“1” is a bit slower. Consequently, “2” leads in phase while “1” lags behind. (c)
A π RF pulse (aligned with the ŷ axis in the rotating frame) reverses the relative
phases of the spins; for example, spins “1” and “2” have had their relative positions
reversed. (d) Nonetheless, spin “2” is still precessing faster than the mean, while “1”
is still slower. Therefore, the phase difference between them decreases. (e) When
their phase differences return to zero, all the magnetization is again aligned along
ŷ, and a spin echo appears.
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it is clear that spin echoes yield “negative time” data in addition to the “positive

time” signal inherent to FIDs.

“Gradient echoes” are another means of obtaining both negative and positive

time NMR signal. Rather than using a second (π) RF pulse to cause the spins to

refocus, a gradient echo is created by first intentionally dephasing the spins with an

applied magnetic field gradient (G1 > 0) that dominates over any T2
∗ effects, and

then reversing the applied magnetic field gradient (G2 < 0), resulting in an echo that

is centered (in time) when
∫ t1 G1dt =

∫ t2 |G2|dt. It is apparent that this method

does not compensate for T2
∗; nonetheless, it is useful for some NMR applications.

In particular, it is well suited for laser-polarized noble gas applications.

As we have discussed in the earlier chapters, laser-polarized noble gas possesses

a large magnetization and is inherently out of thermal equilibrium. In addition, it

typically exhibits long T1 times in certain environments. These factors thus require

modified NMR techniques for laser-polarized noble gas experiments. Frequently, low

flip angles (i.e., θ ¿ π/2) are used with laser-polarized noble gas because of the high

magnetization available; also, this conserves the long-lived magnetization for further

experiments. However, spin echoes are usually inappropriate because they require

using all the magnetization (not just a small portion of it); hence gradient echoes

techniques are common in NMR sequences designed for laser-polarized noble gas.

In cases where T2
∗ is a limiting factor (e.g., in heterogeneous porous media), one

must either consider using spin echoes in the sequence and modify the method of

introducing polarized gas (e.g., via a continuous flow system, such as one we are cur-

rently developing), or operate at low magnetic fields where magnetic susceptibility

mismatches (which often dominate T2
∗) are reduced, as demonstrated in Chapter 4.
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3.2 Experimental considerations

Most laser-polarized noble gas NMR and MRI experiments (including some de-

scribed in this dissertation) are performed with commercial instruments (e.g., at

hospital radiology facilities). Since conventional NMR and MRI utilize nuclear spin

magnetization arising from the Boltzmann distribution – which in turn is depen-

dent on the applied magnetic field – the trend in magnet development is to push

for greater magnetic fields2. For both safety and economic concerns, clinical mag-

nets typically operate between 1.5 and 3 T; smaller horizontal bore animal research

magnets commonly operate at 4.7 T; and narrow vertical bore high resolution spec-

troscopy magnets are available at fields in excess of 18 T. The key consideration for

performing NMR and MRI experiments with laser-polarized noble gas at such facil-

ities is that the gyromagnetic ratios of both 3He and 129Xe are significantly different

from commonly detected NMR nuclei (c.f., Table 1.2)3.

As a result, it is necessary to address the following questions:

(i) can the spectrometer/imager operate at the noble gas Larmor frequency?

(ii) is an RF coil of appropriate geometry available that can be tuned to the noble
gas Larmor frequency?

If the spectrometer/imager does not accommodate Larmor frequencies other than

those of standard nuclei (e.g., 1H or 13C), it will be necessary to install mixers and a

supplemental frequency synthesizer to allow the spectrometer to work at these non-

standard frequencies. Also, the software that controls the NMR experiment will

need to be scrutinized to ensure that parameters are not determined with erroneous

2It is also possible to construct a modest NMR system that operates at much lower fields with
non-superconducting magnets, and in later chapters we discuss our own such home-made low field
system for use with laser-polarized noble gas.

3Actually, the gyromagnetic ratio of 129Xe is similar to that of 13C, the second most detected
NMR nuclei in chemistry (γ129Xe/γ13C = −1.1003). However, MR-imagers are usually not equipped
to detect 13C.
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assumptions about the Larmor frequency. Concerning RF excitation and detection

coils, it is rare that existing coils for other nuclei can be tuned to a noble gas Larmor

frequency. Consequently, a customized coil will either need to be ordered or built.

As a final practical matter, one should also investigate if it is possible to site an

optical pumping apparatus in the fringe field of the magnet. As was discussed in

section 2.3, laser-polarizing noble gas requires an orientation field coincident with

the propagation vector of the polarizing light. At convenient distances (∼ 1 m) from

the magnet, it is frequently possible to find fields of several hundred gauss for this

purpose. Of course, one must also ensure the associated equipment for the optical

pumping is either located further away (in a lower magnetic field environment), or

is capable of working at an elevated magnetic field. For example, the Opto Power

lasers we use tended to fail quickly when sited in a field higher than 50 G. However,

with a 5 meter fiber cable installed, they could be placed in a safer (lower) field and

still illuminate an optical pumping cell placed at high field. If pumping in the fringe

field is not possible, then constructing a polarizing field (e.g., with Helmholtz coils)

for the optical pumping apparatus will be necessary.

3.3 Basic measurement techniques

We now describe a number of commonly used NMR pulse sequences that have been

modified for use with laser-polarized noble gas experiments. In some cases the

conventional technique is also described, but the interested reader is encouraged to

peruse texts such as Abragam [70], Wehrli et al. [71], Callaghan [72], Slichter [67]

and Ernst et al. [73] for more complete discussions of standard techniques.
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3.3.1 Polarization, flip angles, and longitudinal relaxation

The amount of polarization in a sample of laser-polarized noble gas is usually de-

termined by comparing its NMR signal to that of a thermally-polarized sample; the

polarization of the latter is given by a Boltzmann distribution (i.e., directly propor-

tional to the magnetic field strength and temperature at room temperatures) and

can be calculated explicitly (see eq. 1.1). Of course, different factors such as sam-

ple volumes, dissimilar nuclear magnetic moments and natural abundances, number

densities, and coil Qs (if using different nuclei for calibration) must be taken into

account.

For example, consider a simple case where we obtain a laser-polarized noble gas

NMR signal of strength Sng after exciting some portion of the magnetization (i.e.,

applying an RF pulse, which rotates some of the longitudinal magnetization by an

angle α into the transverse plane and through Faraday induction yields a detected

signal Sng). In order to determine the noble gas polarization Png, we compare Sng

to the signal St from a thermally polarized sample (e.g., water). In particular, the

magnitude S of any NMR signal can be expressed as follows:

S = µPV ρηζ sin(θ)ωQ, (3.5)

where µ is the nuclear magnetic moment, P is the polarization, ρ is the density of

the nuclear species, η is the isotopic abundance, ζ is the filling factor, θ is the RF

excitation “flip angle” (which determines how much the magnetization vector has

been rotated into the transverse plane), and ω is the Larmor frequency. Assuming

that the thermal signal is excited by a π/2 pulse (i.e., sin(θ) = 1 in eq. 3.5), we have

Png =
Sng
St

1

sin(α)

(
ωt
ωng

)2 [
VtρtηtQt

VngρngηngQng

]
Pt. (3.6)
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Pt is the polarization expected for a (thermal) Boltmann distribution given the

magnetic field strength and temperature; it also depends on the magnetic moment

µt of the thermally polarized nuclei (c.f., eq. 1.1).

Of the variables in eq. 3.6, the flip angle α is not known a priori. In principle, α

is given by γngB1τRF , where γng is the gyromagnetic ratio (in radians G−1 s−1) of the

noble gas nuclei, B1 is the strength (in G) of the RF field, and τRF is the duration

of the pulse. Thus α can be varied by changing the pulse duration or magnitude

of B1 (by typically changing the RF power of the pulse). Experimentally, we can

determine α by first using the simple pulse sequence shown in Fig. 3.3. It begins

with an RF pulse (α), and the resulting FID is recorded. Before the next α pulse,

a “crusher” gradient is pulsed to dephase any remaining transverse magnetization.

This sequence is then repeated as often as desired (e.g., 8 or 16 times). The time

between two consecutive RF pulses is parameterized by TR. Each FID amplitude

α α α

TR TR

• • • • •

crusher crusher

FID FID

Figure 3.3: Simple pulse sequence for determining flip angle α and longitudinal
relaxation time T1.

is proportional to the transverse magnetization resulting from the RF excitation

pulse; in other words, it is the projection of the magnetization vector M onto the

transverse plane after the RF pulse has rotated it away from ẑ by an angle α. In

a sample without additional sources or sinks of magnetization, Mz diminishes over

time due to two causes: longitudinal (T1) relaxation and losses due to each RF pulse.

51



The sequence of FID amplitudes should therefore proceed as follows:

S0 ∝ M0 sin(α)

S1 ∝ M0 cos(α) sin(α)e
−TR
T1

S2 ∝ M0 cos2(α) sin(α)e
− 2TR

T1

...

Sn ∝ M0 cosn(α) sin(α)e
−nTR

T1 (3.7)

Taking the natural logarithm of eq. 3.7, we have

lnSn ∝ ln [M0 sin(α)] + n [ln(cos(α))− TR/T1] (3.8)

The first term of the right hand side is merely a constant, while the second term is

linear in n. Therefore, we expect that lnSn plotted against n should yield a straight

line, with the slope (m) equal to ln(cos(α)) − TR/T1. In order to measure α, we

typically use a short TR such that TR ¿ T1; thus the term TR/T1 can be ignored

and

α ≈ cos−1(em). (3.9)

Knowing α, one can return to eq. 3.6 and determine the polarization of the noble

gas. Also, it is possible to repeat this experiment with a longer TR such that TR/T1

cannot be ignored, and since α has been determined, one can measure T1 (i.e.,

T1 = TR/ [ln cos(α)−m′] , (3.10)

where m′ is the slope of the linear fit to the long TR data).

The method just outlined is applicable in situations where T1 is very long (tens
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of minutes to hours), such that TR can be varied as required. For example, for our

OTS-coated sealed glass phantoms filled with 129Xe, N2, and some Rb, we typically

measured 129Xe T1’s in excess of 2 hours at magnetic fields > 1 T. Figure 3.4 is an

example of data taken with TR = 1 s (¿ T1); this allowed us to determine the flip

angle α = 10.4◦ in this particular case. Using this value, we increased TR to 120 s

and assuming α = 10.4◦, we found that the 129Xe T1 = 9293± 39 s (see Fig. 3.5).

0 2 4 6 8 10 12 14 16
16

16.05

16.1

16.15

16.2

16.25

Pulse #, n

Ln
 (

S
  )

Flip angle calibration -- file: Nov2_98:polxeflip.dat

n

nln(S  )=-0.0164 x (n) + 16.27

flip angle=10.36

Figure 3.4: Flip angle calibration using a laser-polarized 129Xe cell P-2 at 4.7 T.
The natural logarithm of 16 FID amplitudes (ln(Sn)) is plotted against the pulse
number, n. TR = 1 second. The line shown is a linear least-squares fit to the data,
and has a slope of -0.0164. Since TR ¿ T1, we find α = 10.4◦.

As we shall discuss in more detail in Chapter 6, typical 129Xe T1 times are much

shorter at low magnetic fields (¿ 1 T), to the extent that choosing a TR ¿ T1 may

not be practical. Nonetheless, it is still possible to determine T1 and α using the

pulse sequence shown in Fig. 3.3. If we repeat this experiment k times with a series
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Figure 3.5: Laser-polarized 129Xe T1 measurement in cell P-2 at 4.7 T. The natural
logarithm of 16 FID amplitudes (ln(Sn)) is plotted against the pulse number, n.
TR = 120 seconds. The line shown is a linear least-squares fit to the data, and has a
slope of -0.0049. Using α = 10.4◦ from the measurement shown in Fig. 3.4, we find
that T1 = 9293± 39 s.

of different TR values, we can fit different lines to each run such that

mj = ln(cos(α))− τj/T1. (3.11)

mj is the linear coefficient of the least-squares fit for the experiment where TR = τj.

It is clear that mj is linear in τj, and a linear least-squares fit of mj vs. τj will yield

an intercept equal to ln(cos(α)) and a slope equal to −1/T1 (see Fig. 3.6). Note that

no assumptions about the relation between the values of {τj} and T1 are required4.

4However, the accuracy of this method will improve if the τj are chosen over a wide range with
respect to T1
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Figure 3.6: Laser-polarized 129Xe flip angle and T1 measurement at 12.21 G by
varying TR (cell G-2). 6 different TR were used (i.e., τj = [45, 60, 90, 120, 150, 180]
seconds). At this field strength, the 129Xe Larmor frequency is 14.38 kHz. Note that
each point represents the slope of a graph similar to those shown in Fig. 3.4 and
3.5. From this data, we conclude that the 129Xe T1=542±18 s and α = 11.0± 1.2◦.

For comparison, calibrating the flip angle and measuring T1 in a thermally polar-

ized sample is quite different. Since thermally polarized nuclei such as 1H in water

have relatively fast (∼second) T1’s, one usually just employs π/2 pulses, which can

be calibrated by adjusting the pulse power or duration until the FID signal is max-

imized. To measure T1, a sample is then subject to the following pulse sequence:

π
τj−→ π/2− (acquire FID)

∼5T1−→ repeat.

This is known as the “inversion recovery” sequence, and was first proposed by Vold

et al. [74]. The delay τj between the π and π/2 pulses is varied from nearly zero to

a few times T1, and this sequence is repeated after the magnetization has returned

to thermal equilibrium (e.g., ∼5 × T1). The resulting series of FIDs, when phased
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properly, follows the relationship

Sj ∝M0[1− 2 exp(−τj/T1)], (3.12)

and it is straightforward to solve for T1.

3.3.2 Diffusion measurements

Measuring the diffusion of gas in different environments is among the more in-

teresting NMR applications for laser-polarized noble gas; in particular, the high

polarization and fast diffusion create opportunities for studies of porous media [19]

and the lungs [75].

π/2 πδ

∆

g

echo

Figure 3.7: The PGSE sequence.

A standard pulse sequence used to measure diffusion is the “Pulsed Gradient Spin

Echo” (PGSE) sequence, first introduced by Stejskal and Tanner in 1965 [76]; it is

illustrated in Fig. 3.7. After the initial π/2 RF pulse, a magnetic field gradient pulse

of strength g and duration δ “winds” a spatially varying phase onto the transverse

magnetization M⊥. In particular, the accumulated phase ∆φ(u) along the gradient

direction û is given by

∆φ(u) =

(
γ

∫ δ

0

g(t)dt

)
u ≡ ku, (3.13)
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where k is the wavenumber of the modulation or ‘grating’ of M⊥ and u is the spatial

variable. In the simple case of a square gradient pulse with amplitude g and duration

δ (as shown in Fig. 3.7), ∆φ(u) = γgδu, and hence k = γgδ.

The π RF pulse reverses the sense of all the phases by inverting one component

of M⊥; the subsequent gradient pulse of equal amplitude and duration as the first

one then allows all the spins to refocus (i.e., ∆φ(u) → 0). This generates a spin

echo and is recorded. If the spins did not move at all during this sequence, one

would expect perfect refocussing of the phase modulations, and the resulting spin

echo would have an amplitude attenuated only by any spin decoherence (T2) losses

in the time between the initial RF excitation and the echo acquisition. However,

diffusion causes random atomic and molecular motion and results in imperfect phase

refocussing after the second gradient pulse. The diffusive attenuation is determined

by g, δ, ∆ – all of which are controlled by the NMR spectrometer – and of course

the diffusion coefficient D. By varying one of the experimental parameters and

repeating the experiment a number of times, it is possible to determine D.

For a more detailed explanation, consider the following: let ψ(x, t) be a complex-

valued function of position x and time t (i.e., the transverse magnetization M⊥);

assume |ψ(x, t)| ≤ 1. Under 1D diffusion, ψ obeys Fick’s Law:

∂ψ(x, t)

∂t
= D

∂2ψ(x, t)

∂x2
. (3.14)

Now the initial part of the PGSE sequence is equivalent to creating an initial con-

dition in ψ(x, t) such that ψ(x, t) = A(t) exp(ikx), where A(t) is a time-dependent

amplitude, and exp(ikx) is a spatial phase modulation with wavenumber k. Solving
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eq. 3.14 is straightforward using integration by parts, and the solution is simply

ψ(x, t) = exp(−k2Dt) exp(ikx). (3.15)

For a given x, we could determine the diffusion coefficient D if we could measure

ψ(x, t) at different times with fixed k, or alternatively with fixed t and varying k.

However, in NMR the signal collected is integrated over the whole sample, and

thus
∫
ψdx→ 0 due to the exp(ikx) modulation. The π pulse and second gradient

pulse of the PGSE sequence effectively remove the exp(ikx) dependence from ψ(x, t),

and thus the echo is proportional to exp(−k2D∆), where ∆ is the diffusion time

and k is determined by g and δ (see eq. 3.13).

In reality, the NMR experiment is only slightly more complicated to analyze,

since one must also take into account diffusion that occurs during the finite time δ

of each gradient pulse. Also, it is possible to generalize the experiment to account

for bulk flow as well as diffusion; whereas the latter results in attenuation of the

echo amplitude, the former causes a net phase shift of the echo. The resulting echo

amplitude E is [72,76,77]:

E = exp
[
ik · v∆− k2D∆′

]
. (3.16)

with the following definitions:

v = velocity vector of bulk flow

k = γ
∫ δ

g(t)dt

∆′ = the “reduced observation” time [72]

Commonly, the gradients are rectangular or half-sinusoidal pulses (the latter reduce

the eddy current distortions that arise from fast switching of large magnetic field
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gradients), and explicitly give the following expressions for |k| and ∆′:

|k| =

 [γδg(2/π)] for sinusoidal gradient pulses

[γδg] for rectangular gradient pulses

∆′ =

 (∆− δ/4) for sinusoidal gradient pulses

(∆− δ/3) for rectangular gradient pulses

It is common practice to record several echo amplitudes E while changing ∆ or

g. Thus, a plot of ln(E) versus ∆ (or g2) should yield a straight line whose slope is

equal to the product of D and g2 (or ∆).

α δ

∆

g

echo

Figure 3.8: The PGE sequence.

For laser-polarized noble gas, one cannot use the PGSE sequence as shown in

Fig. 3.7 because after a single run of the experiment, all the polarization would

be depleted and additional laser-polarization of the noble gas would be required.

Since the measurement requires multiple runs to acquire a series of varying echo

amplitudes, we must instead consider a way to repeat the experiment using only a

portion of the available polarization each time. The solution is to use a modified

form of the PGSE sequence, known as the “Pulsed Gradient Echo” (PGE), which

is shown in Fig. 3.8 [78].

Instead of placing all the magnetization into the transverse plane as the PGSE

sequence does with its initial π/2 pulse, the PGE sequence uses only a fraction of

its magnetization (i.e., M sin(α)). The first gradient, as before, creates a spatially
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varying phase in the magnetization, which then evolves over a time set by ∆. In

place of a [π - (gradient pulse)] to refocus the spins, the PGE sequence simply

uses an inverse gradient pulse to accomplish the same thing. However, one of the

shortfalls of this method is that it is sensitive to T ∗2 decoherence, as mentioned in

section 3.1.

Furthermore, one must use an increasing flip angle α in order to begin each

experiment with the same amount of transverse magnetization M⊥. If we assume

that the experiment is repeated quickly relative to T1, then we can determine the

sequence of α’s needed by writing

M
(0)
⊥ = M0 sin(α0)

M
(1)
⊥ = M0 cos(α0) sin(α1)

M
(2)
⊥ = M0 cos(α0) cos(α1) sin(α2)

...

M
(n)
⊥ = M0

[
n−1∏
m=0

cos(αm)

]
sin(αn) (3.17)

Ideally, we want M
(n)
⊥ /M

(n−1)
⊥ = 1, which leads to the iterative relationship:

tan(αn−1) = sin(αn) (3.18)

An example of data taken using the PGE sequence is shown in Fig. 3.9. The sample

is laser-polarized 129Xe in cell P-2 (OTS-coated sealed glass cell with 3 atm of 90%

enriched 129Xe, 0.13 atm N2, and some Rb metal).

For completeness, I mention three other diffusion measurements which have

been used in conjunction with laser-polarized gases. The first is known as “time-

dependent” diffusion [19,78], and is useful for studying samples where the noble gas
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Figure 3.9: Example of laser-polarized 129Xe diffusion data using the PGE sequence.
To keep the transverse magnetization constant for each echo acquisition, a varying
flip angle was used (i.e., α = [10, 10.16, 10.32, 10.49, 10.67, 10.86, 11.06, 11.27, 11.5,
11.74, 11.99, 12.26, 12.55, 12.87, 13.20, 13.57]); δ = 2.5 ms, ∆ = 60 ms. From this
measurement, the diffusion coefficient D0 = 0.019 cm2/s, which is consistent with
measurements made with PGSE NMR and other techniques.

fills some sort of pore space. The measurement is basically the same as PGSE or

PGE, except that now both ∆ and g will be varied; one then finds that the effective

diffusion coefficient is not the same for all time scales. In particular, D = D(t),

where it is common practice in making such measurements to equate t and ∆. For

small t (i.e., small ∆), we expect that D(t) will be similar to the free gas diffusion

coefficient D0. However, for larger t, the size of the pore space begins to restrict the

movement of the gas and is manifest in an apparently smaller diffusion coefficient.

Specifically, D(t) depends on the surface-to-volume ratio of the pore (S/Vp), until

the diffusion length
√
D0t begins to approach a fraction of the mean pore diame-
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Figure 3.10: Time-dependent diffusion measurements for thermally polarized xenon
gas in randomly packed spherical glass beads. Each sample contains beads of a
uniform diameter b, as indicated in the legend. Data is shown as the time-dependent
diffusion coefficient normalized to the free gas diffusion coefficient, D(t)/D0, as
a function of the free gas diffusion length in the time t normalized to the bead
diameter,

√
D0t/b. Error bars are shown for the 1 mm beads and are similar for the

other measurements. The calculated limits at short time (surface-area-to-volume
ratio, S/Vp) and long time (tortuosity, α) are shown by the solid and dashed lines,
respectively. For dense spherical bead packs, porosity φ = 0.39, 1/α ≈

√
φ = 0.63,

and S/Vp = 6(1− φ)/(φb) = 9.38/b. Figure and caption taken from ref. [19].

ter. At greater diffusion lengths (i.e., longer times), the D(t) measurements reveal

the tortuosity of the media, which is a characteristic of the interconnectivity of the

pores. Figure 3.10 illustrates a series of such “restricted diffusion” measurements

that were performed in samples of randomly packed glass beads.

A crude technique to measure diffusion in laser-polarized noble gas is simply

a “hole-burning” or “bleaching” method [79–81], where by a small “slice” of the

magnetization is depleted by a saturating RF pulse. This can be done by applying a

narrow-frequency excitation (known as a “soft” pulse) onto the polarized gas while

a linear magnetic field gradient is simultaneously applied. The width of the zero-

magnetization slice is determined by the frequency-selectivity of the pulse and the

strength of the magnetic field gradient applied. Once this slice of magnetization is

depleted, one simply images the sample profile and watches as diffusion “fills” the

62



hole (imaging will be discussed in the next section). This technique has limited

spatial and temporal resolution.

Finally, Peled and coworkers suggested a novel “single-shot” diffusion measure-

ment (SSDM) [26]. Whereas a PGE sequence must be repeated multiple times

with differing g values (assuming fixed ∆), the SSDM method creates an overlay

of a discrete set of spatial phase modulations. Multiple echoes are subsequently

acquired, with each containing amplitude information for all desired g values, which

can then be used to determine D. A more thorough analysis of the sequence is

facilitated by the “k-space” formalism, which we review in Chapter 5; in fact, the

SSDM method is very similar to the “quasi-random encoding” sequence we used for

the 1-D persistence measurement (also described in Chapter 5).

3.3.3 Imaging

A common theme in conventional pulse sequences (for thermally-polarized samples)

is using π/2 and π pulses to maximize the available signal and create spin echoes.

Since many experiments (such as imaging) rely on repeating the sequence with

different parameters, one must simply use a delay equal to a few multiples of the T1

between repetitions. This allows the system to return to thermal equilibrium and

have sufficient magnetization to yield an NMR signal. With laser-polarized noble

gas, however, using π/2 and π pulses are usually inappropriate as they deplete all

of the available magnetization and thus cancels the possibility of further repetitions

of the sequence5. Consequently, the laser-polarized noble gas sequences we have

discussed use low flip angles and gradient echoes to circumvent this problem. As

they do not require a wait of several T1 before repeating the sequence, they can

5This limitation is of course lifted if a way is engineered to deliver “fresh” polarized gas to the
experimental sample, either by discrete batches or by a continuously flowing system.
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often run much faster than their conventional sequence counterparts.

The basic technique for imaging laser-polarized gas was developed several years

ago, albeit for a different reason. The technique, known as Fast Low-Angle SHot

(FLASH), was introduced in 1986 by Haase et al. [82] as a way to acquire NMR

images faster without having to be limited by T1. Fortunately, it is perfectly well-

suited to laser-polarized noble gas imaging. In the remainder of this section we will

review the basic imaging process and the FLASH sequence, with concluding remarks

on variations that are particularly useful for laser-polarized nuclei.

Broadly speaking, imaging is the process of recording (on a photographic plate or

binary data file) the spatial distribution of some quantity, such as light of a particular

color. Specifically, in MRI it is the distribution and density of nuclear spins that

are recorded, weighted by local environments and convolved with magnetic field

homogeneity and RF coil geometry. Let ρ(r) represent the distribution of nuclear

spins, [1H (e.g., in water) or a polarized noble gas (3He, 129Xe)]. The NMR signal

S(t) detected from this distribution is always integrated over the volume, i.e.,

S(t) = A

∫
ρ(r) exp(iωt)dV. (3.19)

Here, A is a constant proportional to the nuclear magnetic moment, coil Q, and

Larmor frequency ω. Eq. 3.19 is very similar to the fourier transform of ρ(r) – it

only requires that the exponential argument have a linear dependence on position.

This can be accomplished by applying linear magnetic field gradients after the initial

excitation RF pulse, but before and/or during the signal acquisition. An applied

gradient pulse before the signal is acquired would result in a position-dependent

phase, while a gradient applied during the signal acquisition would cause a position-

dependent frequency ; the creation of such spatial dependence in the magnetization
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is called “phase-encoding” and “frequency-encoding,” respectively.

Consider two orthogonal linear field gradients ∂Bz/∂x, and ∂Bz/∂y, which we

shall call Gread and Gphase
6. The resultant NMR signal can be expressed as follows:

S(t1, t2) = A

∫ ∫
ρ(x, y) exp

{
i

[
ωt1 + γ

(∫ t1

Greadxdt

)
+ γ

(∫ t2

Gphaseydt

)]}
dxdy.

(3.20)

Without loss of generality, we have assumed a “slice” of uniform thickness in the

ẑ direction, and are only concerned with acquiring an image in the xy plane. t1 is

actually the time variable while the signal is being acquired, while t2 is the duration

of the phase-encode gradient pulse applied prior to signal acquisition.

At this point the discussion is simplified if we explicitly change to the familiar

spatial fourier conjugate variables kx and ky, such that kx = γ
(∫ t1 Greaddt

)
and

ky = γ
(∫ t2 Gphasedt

)
. Up to some constant factor, we can therefore rewrite eq. 3.20:

S(kx, ky) = A′ exp(iωt1)

∫ ∫
ρ(x, y) exp {i (kxx+ kyy)} dxdy. (3.21)

The exponential exp(iωt1) is just the carrier frequency, while the integral is the

fourier transform of ρ(x, y). Since kx is a function of t1 (the signal acquisition time

variable), the NMR signal recorded represents a “line” of values S(kx, ky) where ky

is held constant. To change ky, we repeat the experiment with a different Gphase.

This method is known as “spin warp imaging” and was introduced by Edelstein et

al. in 1980 [83]; a simple depiction of how one traverses k-space to acquire S(kx, ky)

is shown in Fig. 3.11.

Now one question that naturally arises is how one may obtain data for negative

values of kx and ky; in the latter case, it is a simple matter of reversing the polarity

6These are common NMR labels for the gradients. For example, Gread will be the frequency-
encoding gradient, which is applied when the signal is read out.
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Figure 3.11: Spin warp imaging – the progression through k-space. Lines of kx are
acquired with each NMR signal, while moving to a different ky line requires a repeat
of the imaging experiment with a different Gphase magnitude.

of Gphase, whereas for kx we must acquire an echo (which effectively yields both

negative and positive time information if we define the echo maximum as t = 0).

Typically, one uses a π pulse to induce a spin echo, but as we mentioned earlier,

gradient echoes are better suited for laser-polarized noble gas.

Understanding the FLASH sequence (shown in Fig. 3.12) is straightforward. A

low flip angle RF pulse α is used to excite some magnetization into the transverse

plane; theGphase pulse sets a particular ky value, and then theGread gradient is pulsed

in a way to yield a frequency encoded gradient echo. Once an echo is acquired, the

sequence is repeated with a new low flip angle RF pulse, a different Gphase (and

hence a different ky), and so on. An image is then formed by a simple 2-D fourier

transform of all the acquired data.

For some samples, the T1 of laser-polarized noble gas is very short, and this may

be of concern if the time to acquire a set of image data is comparable to T1. For
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α

Gread

Gphase

Figure 3.12: The FLASH imaging sequence.

example, our low field imaging FLASH sequence required ∼ 25 s to acquire all the

data (due to our instrument hardware limitations), which is comparable to the T1 ∼

16–63 s we measured inside of excised rat lungs (as described in section 4.2). Under

these circumstances, it is desirable to first acquire the lower spatial frequency data

first, and if sufficient magnetization exists, to then continue with higher order data

acquisition. In other words, rather than progress linearly from −kmax
y to +kmax

y ,

it is preferable to start at ky = 0 and then acquire data for increasing values of

|ky|. Figure 3.13 illustrates the meandering path through k−space implied by this

algorithm (also known as concentric encoding [84]).

Another factor to consider when using the FLASH sequence is whether or not to

use variable flip angles (see eq. 3.18). Each α pulse depletes the longitudinal mag-

netization by an amount [1− cos(α)]. Consequently, each successive NMR signal

arises from less and less transverse magnetization; using a variable flip angle would

therefore normalize each NMR signal to the same initial transverse magnetization.
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Figure 3.13: Concentric imaging – the progression through k-space. Lines of kx are
acquired with small |ky| first, with successively higher ky acquired at later times.

However, if α is initially very small and only a small number of phase encodes

will be acquired (e.g., α0 < 9◦ and ky steps ≤ 32), there may be little noticeable

improvement.

Finally, it should be noted that one can acquire 1-D images (also referred to as

“profiles”) by turning off Gphase . This is equivalent to obtaining only the ky = 0 line

of k-space, and represents the spatial distribution of spins along the Gread direction

integrated over the other 2 orthogonal axes. The persistence measurement described

in Chapter 5 relies on this manner of imaging.
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Chapter 4

Low Field Imaging

This chapter consists of two papers describing our MRI experiments using laser-

polarized noble gas at low magnetic fields. The first paper, entitled “Low-Field MRI

of Laser Polarized Noble Gas”, appeared in Physical Review Letters, 81, pp. 3785–

3788 (1998). It describes our first demonstrations of low field imaging and explores

some of the inherent advantages, such as reduced magnetic susceptibility effects and

greater RF transparency.

The second paper (“A System for Low Field Imaging of Laser-Polarized Noble

Gas”, Journal of Magnetic Resonance, 141, pp. 217–227 (1999)) describes in more

detail the experimental apparatus we built for performing low field imaging. It also

presents new results (i.e., the first low field biological image) and demonstrates the

effects of radiation damping on standard measurements such flip angle calibrations.

The work presented here is the result of a collaboration between the Harvard-

Smithsonian Center for Astrophysics, the Massachusetts Institute of Technology,

the University of New Hampshire, the Massachusetts General Hospital, and the

Brigham and Women’s Hospital.
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4.1 Low-Field MRI of Laser Polarized Noble Gas

C. H. Tseng, G. P. Wong, V. R. Pomeroy, R. W. Mair, D. P. Hinton, D.
Hoffmann, R. E. Stoner, F. W. Hersman, D. G. Cory, and R. L. Walsworth

Physical Review Letters vol. 81, pp. 3785–3788 (1998).

This article has been reformatted to conform to Harvard dissertation guide-
lines and is reprinted with permission.

NMR images of laser polarized 3He gas were obtained at 21 G using
a simple, homebuilt instrument. At such low fields magnetic resonance
imaging (MRI) of thermally polarized samples (e.g., water) is not prac-
tical. Low-field noble gas MRI has novel scientific, engineering, and
medical applications. Examples include portable systems for diagnosis
of lung disease, as well as imaging of voids in porous media and within
metallic systems.

In this paper we demonstrate a powerful diagnostic technique: NMR imaging

at low magnetic fields using laser polarized noble gas. Conventional magnetic reso-

nance imaging (MRI) employs large magnetic fields (∼1 T) to induce an observable

thermal Boltzmann polarization in the nuclear spins of liquids such as water. MRI

is a minimally invasive imaging technique with enormous impact in the biomedical

and physical sciences. Examples include diagnostic clinical medicine [85], biological

research, such as mapping of brain function [86], materials science (e.g., imaging

the flow of shaken granular media [87]), and soft condensed matter physics, such

as imaging the coarsening of foams [88]. Nevertheless, the large magnetic fields

of conventional MRI require cumbersome and expensive equipment, and limit the

technique’s scientific and practical applications [89].

As demonstrated in this paper, the greatly increased nuclear spin polarization

of the noble gases 3He and 129Xe, provided by optical pumping techniques (“laser

polarization”) [90], enables efficient gas-phase MRI at low magnetic fields (∼ 10 G)

using a simple, small, and inexpensive device. With this demonstration, the door
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is opened to a wide variety of new MRI applications. Examples in the biomedical

field include portable systems for diagnostic lung imaging in humans [18, 91–96],

and low-cost tabletop MRI instruments for research in animals. Furthermore, a

low-field noble gas MRI system would be compatible with operation in restricted

environments, such as on board a space station, and may permit lung imaging of

patients with artificial transplants such as pacemakers [97].

In the physical sciences, low-field noble gas MRI will be effective in imaging voids

in two classes of materials that are problematic for high-field MRI: (i) heterogeneous

systems, such as porous and granular media, which distort high-field images because

of large, solid-gas magnetic susceptibility gradients; and (ii) electrical conductors,

which prevent high-field MRI by Faraday (i.e., rf) shielding. Also, low-field NMR

measurements of the restricted diffusion of noble gas imbibed in porous media (e.g.,

reservoir rock) may provide an effective and practical diagnostic of fluid permeability

in such media.

At low magnetic fields and near room temperature, the thermally polarized nu-

clear magnetization of systems such as 1H in water is extremely weak (spin polar-

izations ∼10−8), requiring extensive signal averaging in order to obtain a resolvable

NMR signal, and making imaging impractical with conventional methods [72,89,98].

With laser polarization, however, angular momentum is transferred from photons to

nuclei, and a large nonequilibrium nuclear spin polarization (> 10%) can be created

in the spin-1/2 noble gases, 3He and 129Xe, independent of the applied magnetic

field [90]. Laser polarized noble gas can be stored in specially prepared containers

for several hours before the spin polarization decays back to thermal equilibrium.

In “real world” samples such as biological tissue, air, and porous sandstone, the 3He

and 129Xe spin polarization lifetime (T1) is typically ∼10 s, still quite long for many

purposes. Laser polarization greatly enhances the NMR detection sensitivity of the
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noble gases [99], enabling diverse applications such as gas-phase imaging at high

magnetic fields (e.g., of the lung) [18, 91–96], dissolved-state biomedical investiga-

tions [20, 100–103], chemical physics and materials science studies [17, 24, 104, 105],

precision frequency measurements [14,15,106], and, as reported in this paper, prac-

tical MRI at low magnetic fields [107].

As a demonstration of low-field noble gas MRI, we imaged glass and plastic cells

(“phantoms”) containing laser polarized 3He gas and thermally polarized water,

at both high (4.7 T) and low (21 G) magnetic fields. Laser polarization of 3He

was accomplished with a standard spin-exchange optical pumping technique that

employs Rb vapor as an intermediary to transfer angular momentum from laser

photons to 3He nuclear spins [90]. The 3He glass cells were held in a static magnetic

field of ∼100 G, heated to ∼170 ◦C in a hot air oven, and illuminated by 15 W of

795 nm light (∼3 nm FWHM) from a fiber-coupled laser diode array (Optopower,

Inc.). After about 3 hours of laser polarization, the 3He phantoms were cooled to

room temperature, walked over to the MRI instrument (without a holding magnetic

field), and then placed in an appropriately tuned rf coil at the center of the low-

or high-field MRI magnet. All 3He phantoms contained 2.7 atm of 3He, 100 torr

of nitrogen, and a small amount of Rb metal, and were imaged with a 3He spin

polarization of ∼10%.

MRI at 4.7 T was performed using a commercial GE Omega/CSI spectrome-

ter/imager operating at 152 MHz for 3He and 200 MHz for 1H, while imaging at

21 G was performed with an inexpensive, homebuilt spectrometer/imager operating

at 67 kHz for 3He and 88 kHz for 1H, and employing a simple, wire-wound solenoid

electromagnet (see Fig. 4.1). (A detailed description of our low-field MRI system

will be provided in a future paper. The solenoid design is described in [108].) All

images were obtained without signal averaging using standard MRI techniques. For
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Figure 4.1: Schematic of the homebuilt low-field MRI system. The main magnetic
field (Bz) of ∼20 G is created by an unshielded, copper wire solenoid. Gradient coils
provide controllable, linear variations of Bz along the x, y, and z directions, which
are necessary for imaging. Around the sample, coils tuned to the spins’ Larmor
frequency provide NMR excitation (“drive”) and detect the resultant NMR signal
(“pickup”). A frequency synthesizer operating close to the spins’ Larmor frequency
is gated by a millisecond TTL trigger to provide rf drive pulses. The pickup signal
goes from a preamplifier - which is blanked during the drive pulse to avoid satu-
ration - to a lock-in amplifier for phase-sensitive detection. A computer controls
the magnetic field gradients and rf drive pulses, and performs data digitization and
storage.
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example, a spin echo pulse sequence was used for 1H imaging of water phantoms at

4.7 T, and a low-flip-angle gradient echo technique (known as FLASH) was used for

imaging the laser polarized 3He gas phantoms [72]. (Low-flip-angle techniques are

widely used for MRI of laser polarized noble gas because of the finite and difficult-

to-replenish sample magnetization [18, 91–96].) The low-field imaging employed

magnetic field gradients up to 0.2 G/cm, chosen to keep field variations across the

sample small relative to the main field of ∼20 G, and hence to validate the secular

approximation used to generate undistorted images from MRI data [109,110].

As shown in Fig. 4.2, low-field 3He images have comparable spatial resolution

to high-field images of water and 3He. Not surprisingly, low-field water images

could not be obtained due to the very small 1H spin polarization at 21 G. Our

prototype low-field MRI system provides 3He images with a good, two-dimensional

resolution of ∼1 mm2 for a data acquisition time of 10 s and a sample or slice

thickness of ∼1 cm. For example, the H-shaped 3He image shown in Fig. 4.2d has

a two dimensional resolution of 0.6 × 1.5 mm and a sample thickness of 21 mm.

In contrast, using naive scaling laws, approximately two months of signal averaging

would be needed to make an 1H water image of comparable resolution at 21 G using

our low-field MRI system.

We found that the signal-to-noise ratio of low-field, laser polarized noble gas

MRI was sufficient that the limit to imaging resolution was set by gas diffusion

[72]. Diffusion coefficients for gases are ∼104 times larger than for liquids [111].

Therefore, significant gas atom displacement can occur during the application of

the small imaging gradients that are appropriate for low-field MRI, limiting the

image resolution [109, 110]. For example, with a gradient echo imaging method, an

imaging gradient of ∼0.1 G/cm sets a diffusion-limited imaging resolution of ∼1 mm

for free 3He gas at standard temperature and pressure (STP) [72]. Note that this
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Figure 4.2: Comparison of NMR images taken at 4.7 T and 21 G. Images at 4.7 T
were obtained using a GE Omega/CSI spectrometer/imager: (a) Water inside a
cylindrical Plexiglas cell; and (b) laser polarized 3He gas inside a cylindrical glass
cell (the increased signal intensity near the edges is due to restricted gas diffusion
near the cell walls, i.e., edge enhancement [107]). Comparison images at 21 G were
obtained using the homebuilt spectrometer/imager (see schematic in Fig. 4.1). (c)
No image of water inside a cylindrical glass cell because of the very low 1H spin
polarization, but (d) a clear image of laser polarized 3He gas inside a handblown,
roughly H-shaped glass cell. All four images are to the same scale, as given in (b).
The width and height of the gas space within the glass H cell are each 22 mm, and
the thickness is 21 mm. The 21 G images were acquired in ∼10 s using standard
gradient echo imaging sequences.
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imaging resolution can be improved by reducing the effective noble gas diffusion

coefficient: e.g., in restricted environments (the lung, granular media, etc.), or in

the presence of a buffer gas with a large scattering cross section.

An endemic problem in high-field MRI is spatial variations in magnetic suscepti-

bility, for example, at the solid-gas or liquid-gas interfaces in granular media, foams,

or the lung. Such susceptibility variations create local magnetic field gradients that

induce both spatially homogeneous and inhomogeneous NMR line broadening at

high magnetic fields: the homogeneous broadening reduces imaging resolution while

the inhomogeneous broadening causes image distortion. Operating at low magnetic

field greatly reduces these effects because the magnitude of susceptibility-induced

local field gradients is proportional to the applied field. For example, we measured

the NMR linewidth of laser polarized 3He gas imbibed into rat lungs to be less than

3 Hz at 21 G, whereas recent measurements at high magnetic fields found much

broader NMR linewidths (∼100 Hz for 3He gas imbibed into guinea pig lungs at

2 T and human lungs at 1.5 T [112, 113]). The nonlinear nature of susceptibility-

induced distortion is evident in the high-field water images shown in Figs. 4.3a and

4.3b, while the reduced susceptibility distortion of low-field noble gas MRI is clearly

demonstrated in Figs. 4.3c and 4.3d. Similar susceptibility-induced problems also

limit NMR diffusion measurements at high magnetic fields, where background gra-

dients in heterogeneous samples can make experiments difficult or impossible [77].

Again, such problems should be greatly ameliorated with low-field noble gas op-

eration, providing a practical technique for measuring fluid permeability in porous

media.

Low-field noble gas MRI can also examine voids inside electrically conducting

materials. At the lower NMR frequencies enabled by low-field operation, RF elec-

tromagnetic fields can penetrate much deeper into conducting materials. Figure 4.4
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Figure 4.3: Reduced magnetic susceptibility distortion at low magnetic fields. At
4.7 T, an NMR image of a water sample in a machined, W-shaped Plexiglas cell
is (a) undistorted when no high magnetic susceptibility materials are nearby, but
is (b) severely distorted by susceptibility-induced magnetic field gradients when
placed next to four sealed tubes of paramagnetic materials (gadolinium chloride,
nickel chloride, magnesium chloride, and gadopentetate dimeglumine). However, at
21 G an NMR image of laser polarized 3He gas in a handblown, roughly triangular
glass cell is undistorted both (c) without nearby paramagnetic materials and (d)
when placed next to the same four tubes of paramagnetic materials that distorted
the high-field water image in (b). The gas space within the triangular cell has a
base length of 23.5 mm, equal side lengths of 34 mm, and a thickness of 23 mm.
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demonstrates the ability of low-field noble gas MRI to image gas spaces within con-

ductively shielded objects. This new technique may be useful in studies of fissures or

cavities inside metals, for example, in aerospace components, or in measuring wall

thinning of pipes in steam generation plants and elsewhere. Together, the efficacy of

low-field noble gas MRI for both paramagnetic and metallic materials should allow

imaging of interstitial spaces in a wide variety of granular media, and thus provide

a powerful probe of three dimensional granular structure, dynamics, and relative

grain-gas flow.

In summary, low-field noble gas MRI is a powerful diagnostic technique with

novel applications in physical and biomedical science. We developed a simple low-

field apparatus that provides laser polarized 3He gas images at 21 G in a few seconds,

with a two dimensional spatial resolution of∼1 mm2 for a sample or slice thickness of

∼1 cm, comparable to the resolution at high magnetic fields provided by commercial

MRI instruments.
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Figure 4.4: Imaging of voids within a conductor. Samples of water and laser polar-
ized 3He gas were encased in identical rf shields made of 25 mm thick brass. The
rf shield reduced the water NMR signal by 3 orders of magnitude at 4.7 T, but
reduced the 3He signal minimally at 21 G. This modest low-field signal reduction
is consistent with reduced Faraday (i.e., rf) shielding of the NMR excitation pulses
and signals at low magnetic fields. NMR imaging was performed at 4.7 T of (a)
a cylindrical water sample, and (b) the same sample encased in the brass shield,
illustrating the impracticality of imaging spaces within an electrical conductor at
high magnetic fields. Comparison images were obtained successfully at 21 G of (c)
laser polarized 3He gas in a handblown, roughly triangular glass cell (the same cell
as in Fig. 4.3), and (d) the triangular cell encased in the brass shield, demonstrating
the utility of low-field noble gas MRI for imaging voids within conductively shielded
objects.
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4.2 A System for Low Field Imaging of Laser-

Polarized Noble Gas
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Hoffmann, R. E. Stoner, F. W. Hersman, D. G. Cory, and R. L. Walsworth

Journal of Magnetic Resonance, vol. 141, pp. 217-227 (1999).

This article has been reformatted to conform to Harvard dissertation guide-
lines and is reprinted with permission.

We describe a device for performing MRI with laser-polarized no-
ble gas at low magnetic fields (<50 G). The system is robust, portable,
inexpensive, and provides gas-phase imaging resolution comparable to
that of high field clinical instruments. At 20.6 G, we have imaged laser-
polarized 3He (Larmor frequency of 67 kHz) in both sealed glass cells
and excised rat lungs, using ∼0.1 G/cm gradients to achieve ∼1 mm2

resolution. In addition, we measured 3He T2
∗ times greater than 100 ms

in excised rat lungs, which is roughly 20 times longer than typical values
observed at high (∼2 T) fields. We include a discussion of the practi-
cal considerations for working at low magnetic fields and conclude with
evidence of radiation damping in this system.

Key Words: laser-polarized noble gas; low magnetic field; magnetic
resonance imaging; lung imaging; radiation damping.

4.2.1 Introduction

Recently, laser-polarized (LP) spin-1/2 noble gases (3He and 129Xe) have been the

focus of intense interest in the magnetic resonance community. Starting with LP

129Xe gas imaging of excised mouse lungs in 1994 by Albert et al. [18], there have

been numerous advances made with LP 129Xe and 3He imaging. Notable examples

include live animal and human lung imaging [114], as well as imaging and time-

dependent diffusion studies of materials [78, 104]. The interest in LP noble gases

arises from the large nuclear spin polarization (>10%) provided by laser-polarization

techniques [10,115]. Whereas the spin polarization of conventional, thermally polar-

80



ized systems is a linear function of the applied magnetic field, the spin polarization

of LP noble gas is determined by factors that are not dependent on the applied

magnetic field, such as laser power and gas mixtures. Consequently, it is possible

to perform sensitive NMR and MRI on LP noble gases at substantially lower field

strengths. For example, Darrasse et al. recently demonstrated LP 3He human lung

imaging at 1000 G (0.1 T) [116], while Saam and coworkers obtained one dimensional

profiles of cells filled with LP 3He at 31 G [117]. In addition, using superconducting

quantum interference devices (SQUIDs), Augustine et al. imaged LP 3He gas and

129Xe solid at liquid helium temperature (4 K) and 5.4 G [118].

There are important advantages to low field MRI of LP noble gas because cer-

tain fundamental imaging constraints are diminished. In particular, distortions and

line broadening that result from large background gradients produced by magnetic

susceptibility differences in heterogeneous samples are greatly reduced. Also, low

Larmor frequencies (∼kHz) correspond to greater electromagnetic field skin depths.

Consequently, RF pulses can penetrate thin metallic shielding and thus allow gas-

phase imaging inside conductors. In addition, a low field system is simple, inexpen-

sive, portable, and easy to maintain. Magnetic field requirements are easily met with

a low-power, wire-wound solenoid capable of producing absolute field homogeneity

comparable to, if not better than, typical high field clinical magnets. Also, the small

external field and low (kHz) RF frequencies do not necessitate site restrictions, such

as large shielded rooms, thus permitting operation in restricted environments (e.g.,

a space station) and with subjects and systems incompatible with high magnetic

fields or high RF frequencies (e.g., patients with sensitive implants or experimental

apparatus with integrated electronics).

Recently, we demonstrated fast, single-scan 2D imaging at 20.6 G of LP 3He in

sealed glass phantoms (for an example, see Fig.4.5) [119]. In this report, we describe
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Figure 4.5: Example 3He test phantom and low field image. (a) Photograph of
a sealed glass cell filled (at STP) with 2.7 atm 3He, 100 Torr N2, and Rb metal.
Prior to filling, the cell was baked at high temperature under vacuum for 6 days;
(b) Laser-polarized 3He MRI of the test phantom at 20.6 G using a gradient echo
FLASH sequence. Note that the small volume pull-off stem of the cell is visible to
the left; the protrusion to the lower left of the pull-off is the zero-frequency artifact,
and the discrepancy in the stem length is due to image foreshortening.

the low field imaging system used in those experiments, present recent experimental

results (e.g., low field MRI of LP 3He imbibed in excised rat lungs), and discuss

advantages and practical considerations of imaging at low fields. We also present

measurements of radiation damping in LP 3He at low field and conclude with a

discussion of this effect on our experiments.

4.2.2 System Overview

The Magnet

We built a wire-wound solenoid using a design by Hanson and Pipkin [108]. It is

capable of producing a magnetic field of up to 100 G without significant resistive

heating and consists of four layers of 19-gauge copper wire wrapped around a 114-

cm long, 30-cm o.d. aluminum cylinder. Two HP6200B DC power supplies provide

the current required to power the magnet – typically, 0.4 amps to each of the four
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winding layers to establish an applied field of ∼20 G.

As Hanson and Pipkin showed, the magnetic field homogeneity in the central

region of a solenoid can be characterized by the field along the axis (taken as the z

direction) and its derivatives. This axial field Bz(z, r = 0) is primarily determined

by the solenoid dimensions, and given the solenoid radius a and the angle θ (which

is defined by the symmetry axis and the line joining the solenoid center to the radius

at the bore end), can be written as

Bz =
4πNI

10
cos(θ)

[
1− 3

2
sin4(θ)

(z
a

)2

− 5

8
sin6(θ)(7 cos2(θ)− 3)

(z
a

)4

− · · ·
]
.

(4.1)

Here, I is the applied current and N is the number of turns per unit length. We also

included second- and fourth-order correction coils wound on the outside of the main

solenoid. The angle θ2, defined by the dimensions of the second-order correction coil

in analogy with θ is chosen so that the fourth-order term in Eq. 4.1 equals zero (i.e.,

7 cos2(θ2)− 3 = 0). The fourth-order correction coil is a split solenoid and may be

analyzed as two different solenoids with opposing currents and characteristic angles

θ′4 and θ4. The angles are chosen so that the second-order term in Eq. 4.1 goes to

zero (i.e., cos(θ′4) sin4(θ′4)− cos(θ4) sin4(θ4) = 0). For convenience, we follow Hanson

and Pipkins example and choose θ′4 = θ2.

A simple coil loop of n turns with applied current I is used to shim the linear

component of Bz(z, 0); its field is described by

B(1)
z (z, 0) =

2πnI

10

sin3(θ)

a

[
1 + 3 cos(θ) sin(θ)

(z
a

)
+

3

2
sin2(θ)(5 cos2(θ)− 1)

(z
a

)2

+ · · ·
]
.

(4.2)

This linear correction coil is offset so that the second order term of B
(1)
z is zero at

the center of the main solenoid (i.e., 5 cos2(θ1) − 1 = 0, where θ1 is defined by the
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position of the linear coil).

The magnet’s field homogeneity was determined by measuring free induction

decays (FIDs) of LP 3He sealed in a spherical 8.5 cc test cell placed at the solenoid’s

center. At main fields of ∼20 G, typical linewidths of 2-3 Hz were observed, with

even narrower linewidths (<1 Hz) under ideal conditions. Such 3He linewidths were

suitable for the imaging experiments performed; higher homogeneity would require

magnetic shielding from the background field of ∼1 G and shim coils to compensate

for radial gradients of Bz (the existing coils correct for axial gradients only).

Figure 4.6 shows an example of the measured temporal stability of the field

during the first 12 h after the magnet was turned on. There is an initial large drift

in the field (∼0.1%) as the DC current supplies and detection electronics warm up.

After about an hour, the field equilibrates, providing short-term stability (on minute

time scales) of a few parts in 105; with imaging times less than 30 s, this stability is

sufficient. Straightforward modifications such as shielding, active feed-back control

of the solenoid current, and temperature control of the magnet would increase both

the magnetic field stability and homogeneity.

Electronics

The RF source is an unamplified Wavetek DDS function generator Model 29. This

device provides a frequency reference for a lockin amplifier (Stanford Research Sys-

tems, Inc., Model SR830), while its main output is gated by a TTL pulse (whose

duration sets the RF pulse width) and drives a set of Helmholtz coils surrounding

the sample. A pair of orthogonally mounted pickup coils around the sample sense

the NMR signal, which is amplified and filtered by a low noise preamplifier (Stanford

Research Systems, Inc., Model SR560). After this stage, the lock-in amplifier further

amplifies and filters the NMR signal components near the reference frequency. The
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Figure 4.6: Typical temporal stability of solenoid’s magnetic field (∼20 G) without
stabilization. Two data sets are shown. The first (×) is taken just after turning on
the magnet; the large initial drift is due to system warm up. The second data set
(◦) is taken much later, after the current supplies and electronics have stabilized.

two drive coils surrounding the sample each consist of six turns of no. 25 HAPT wire

wound around a square 7 cm per side. The drive coil pair are separated by 8.5 cm

and tuned with external capacitors to the spin Larmor frequency (e.g., 67 kHz for

3He at 20.6 G). The Q of this drive coil configuration is ∼10. The pickup coils

are mounted orthogonal to the drive coils, and are wired to allow differential sig-

nal amplification that rejects common-mode noise (see Fig. 4.7a). Each pickup coil

consists of ∼200 turns of no. 32 HAPT wire on a round nylon form 7.5 cm in diam-

eter. The coils are spaced 4.5 cm apart and are tuned to the spin Larmor frequency

by external capacitors; the measured Q is approximately 60. The sample holder is

a 2.5 × 3.2 × 9 cm long trough nestled between the drive and pickup coils. The

whole assembly (coils + sample holder) is rigidly mounted together with one of the

drive coils on a hinged lid to allow access into the sample holder. This is shown in
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Figure 4.7: (a) Configuration used to reject common-mode noise in the pickup coils.
(b) Sample holder with orthogonal RF drive (square) and pickup (round) coils. The
coil geometry was inspired by our earlier maser and adiabatic fast passage (AFP)
LP noble gas experiments (Ref. [14]).

Fig. 4.7b.

Imaging gradients are produced by a homemade set of unshielded Golay coils (for

dBz/dx and dBz/dy, i.e., Gx and Gy) and a pair of anti-Helmholtz coils (for dBz/dz,

i.e., Gz) wound on a 14-cm diameter G-10 cylinder, following the description found

in Callaghan [72]. With our present amplifiers, the anti-Helmholtz coils (also known

as a Maxwell pair) provide a maximum gradient of 380 mG/cm, while the Golay coils

produce up to 630 mG/cm. Typically, we used these gradients up to 50% of their

full strength for durations of 10 ms. The gradients, as well as the RF trigger pulses,
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are controlled by a commercial Bruker AMX console. Detected NMR signals are

routed directly from the lock-in amplifier outputs into the console’s digitizer (thus

bypassing the console’s normal high frequency receivers and mixers). Figure 4.8

shows a schematic of the system. One could easily replace the AMX console with a

desktop computer equipped with a Digital-Analog Acquisition (DAQ) board. The

DAQ board should have at least two analog outputs for gradient control, a TTL

output to trigger and set the duration of the RF pulse, and a sufficiently fast digitizer

( ∼50 kHz).

Pre-amplifier

Frequency
Synthesizer

Computer
Console

Gradient
Amplifier

Main Solenoid Imaging Gradient Coils

Trigger

Drive
Coils

Pickup
Coils

Quadrature signals

Sample

Gradient
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TTL Pulse
Generator
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RF Drive

Ref
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Gate
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Figure 4.8: Schematic of low-field MRI system. A variable length TTL signal blanks
the preamplifier slightly longer than the RF pulse to avoid amplifying any coil ring-
down.
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4.2.3 Method

A cell containing a mixture of 3 atm of 3He, ∼100 Torr nitrogen and Rb metal was

placed in a blown-air oven and heated to 180 C̊. Optical pumping of the Rb vapor

by circularly polarized light from a 15 Watt fiber-coupled laser diode array (Opto

Power Corporation, model OPCA-015-FCPS) polarized the 3He via spin-exchange

to approximately 10% after 3-4 h (in our small 8.5 cc sealed test cells). For the

lung imaging experiments, a valved 65 cc cell was used; after laser-polarization,

measured shots of 3 to 5 cc’s of 3He gas were forced into the excised rat lungs for

imaging. Excised tissue was obtained from 300-400 g male Sprague–Dawley rats.

Both the left and multiple right lobes of the lungs, along with several cm of trachea,

were removed postmortem. A 25 gauge butterfly tube (with needle removed) was

placed into the trachea and secured with silk suture. Forty-eight inches of high

pressure plastic tubing extended down the bore of the low field magnet to connect

the lung tissue to a syringe that was filled with LP 3He gas directly from the valved

glass polarization cell. Excised lungs were used in the imaging experiments within

3 h of harvest. All animal procedures were approved by the Massachusetts General

Hospital Subcommittee on Research Animal Care.

4.2.4 Results

Pulse flip angles and T1 of the LP gas were measured by recording the FIDs following

each of a series of low flip angle (α) pulses. Given a time TR between each pulse,

the jth FID signal amplitude Sj can be expressed as

Sj = S0(cosα)j−1 exp [−(j − 1)× TR/T1] . (4.3)
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Figure 4.9 shows typical FID and flip angle calibration data taken at 20.6 G for LP

3He sealed in a glass cell. Each point of the flip angle calibration data represents

the logarithm of the integrated real part of each successive FIDs fourier transform

(which is proportional to log[Sj]); plotting log[Sj] versus j should be linear with a

slope equal to [ln(cosα)− TR/T1]. With TR ¿ T1, one can determine the flip angle

α; consequently, once α is known, repeating the experiment with a long TR allows

one to measure T1.

To demonstrate the efficacy of low field imaging with laser-polarized noble gases

for samples of biological interest, we imaged excised rat lungs filled with LP 3He

(Fig. 4.10) using a FLASH imaging sequence: 128 concentric phase encodes steps;

12◦ flip angle; gradient strength and duration was ∼0.1 G/cm, 10 ms; total imaging

time was ∼25 s. No slice selection was used, and the two-dimensional resolution was

∼1 mm2. In different experimental runs we measured 3He relaxation times T1 from

16 to 63 s (Fig. 4.11), which is within the range of values reported at high field due

to remnant paramagnetic oxygen in the lung gas space [93]. We also measured the

low-field 3He T2
∗ in excised rat lungs to be greater than 100 ms, which is significantly

longer than the approximately 5 ms T2
∗ observed for LP 3He in guinea pig and human

lungs at 2 and 1.5 T, respectively [114, 120]. This longer 3He T2
∗ is a result of the

reduced effect of magnetic susceptibility heterogeneity at low magnetic fields, and is

one of the advantages of low-field imaging. In addition, there was a consistent trend

of increasing T2
∗ with subsequent low angle RF pulses (corresponding to decreasing

longitudinal LP 3He magnetization), which prompted us to investigate radiation

damping in this system. A brief discussion of these measurements is given later in

this paper.
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Figure 4.9: (a) Typical free-induction decay (FID) observed for LP 3He at 20.6 G
and (b) flip angle calibration data obtained using a series of low flip angle pulses on
a LP 3He sealed glass phantom; the line shown is a fit to the data. RF pulse width
was 2 ms, and the frequency synthesizer was set to output 2.0 Vpp at 67.0 kHz.
For each FID acquired for (b) (of which (a) was the first), the linewidth was ∼2 Hz
with initial SNR ∼1700. Acquisition of 64 FIDs took ∼84 s, which was much less
than the T1(∼100 h) of the cell. Fitting the data to the log of Eq. 4.3 indicated a
flip angle α of 13.0◦ for this RF pulse.
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Figure 4.10: Low field LP 3He images of excised rat lungs. Excised rat lungs (a)
were filled with LP 3He gas and (b) imaged at 20.6 G.

Figure 4.11: Example T1 data for LP 3He inside excised rat lungs at 20.6 G. With
the calibrated flip angle of 9.5◦ and TR of 540 ms, the data shows a T1 of 19 s for
LP 3He inside the lungs.
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4.2.5 Discussion

(i) Dependence of Signal-to-Noise-Ratio on Magnetic Field Strength

In conventional NMR and MRI, nuclear spin polarization P is determined by the

temperature T and magnetic field strength B according to the Boltzmann (thermal)

distribution,

P =
1− exp(−µB/kT )

1 + exp(−µB/kT )
∼ µB/2kT (4.4)

where k is the Boltzmann constant, and µ is the nuclear magnetic moment. For

example, assuming T at room temperature (∼296 K) and a field strength of 1.5 T,

the proton spin polarization is ≈ 0.0005%. This value can be improved by increasing

the magnetic field or lowering the temperature. However, given the large quantity of

available protons found in most samples of biological interest (usually in the form of

H2O), NMR signal intensity is usually adequate at magnetic fields of ∼1 T despite

the low polarization. This is in contrast to the laser-polarization of noble gases (i.e.,

129Xe and 3He), where polarizations of order ∼1-50% can be achieved independent of

magnetic field strength. This factor of 104 to 105 increase in polarization is balanced

by the 1/3000 ratio of gas to liquid density [at standard temperature and pressure

(STP)] and the lower gyromagnetic ratio of the spin-1
2

noble gases compared to

that of 1H [γ(3He) : γ(1H) = 0.76; γ(129Xe) : γ(1H) = 0.28]. Thus in high magnetic

fields, one can expect comparable magnetization density, and hence NMR signals

per unit volume, from protons (in liquid) and LP noble gases. At low fields (e.g.,

20.6 G) LP noble gas imaging is still feasible, whereas proton imaging is impractical

unless a large “prepolarizing” field is used to enhance the extremely low proton spin

polarization (see Table 4.1).

A more quantitative discussion should begin with signal-to-noise considerations.

By approximating the ensemble of polarized nuclear spins as a driven solenoid cou-
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1H (water) 3He 129Xe
Spin densities at STP (assuming pure samples) 6.7× 1022 2.7× 1019 2.7× 1019

(1H nuclei/cc) (3He nuclei/cc) (129Xe nuclei/cc)
Gyromagnetic ratio γ (108 rad/s/T) 2.67 2.04 0.74
High Field (B0 = 1.5 T)
Larmor frequency 63.8 MHz 48.6 MHz 17.6 MHz
polarization 5.1× 10−6 (1− 5)× 10−1 (1− 10)× 10−2

magnetization density (1018µN/cc) 0.96 5.7–29 0.2–2.1
Low Field (B0 = 0.002 T)
frequency 87.9 kHz 67.0 kHz 24.5 kHz
polarization 7× 10−9 (1− 5)× 10−1 (1− 10)× 10−2

magnetization density (1018µN/cc) 0.0013 5.7–29 0.2–2.1

Table 4.1: Comparison of thermally polarized water and laser-polarized 3He and
129Xe magnetizations at high and low fields.

pled to the pickup (or receiver) coils, Hoult and Richards deduce an expression for

the detected NMR signal ξS [121]:

ξS = (Br/ir)VSω0M0. (4.5)

Here, (Br/ir) is the magnetic field strength per unit current that the pickup coil

can produce, VS is the sample volume, ω0 is the Larmor frequency, and M0 is the

sample magnetization given by the product of the polarization P , density of spins

NS, and the magnetic moment µ/2:

M0 = PNSµ/2. (4.6)

Combining Eqs. [4.5] and [4.6], and noting that ω0 = γB, one finds

ξS = (Br/ir)VSγBPNSµ/2. (4.7)

The dominant noise source for sufficiently small samples at high field, and practically
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any sample at low field, is Johnson noise from the pickup coils at temperature T

ξN = (4kTR∆f)1/2, (4.8)

where R is the coil resistance and ∆f is the noise bandwidth of the system. Induc-

tively coupled noise from samples with weak electrical conductivity (e.g., biological

tissue) scales linearly with the NMR frequency: ξN ∼ ω ∼ B. This latter “tissue

noise” dominates over coil Johnson noise only in large biological samples at high

fields. [Note: due to the RF skin depth of the coil, there is also a weak dependence

on NMR frequency, and hence magnetic field: ξN ∼ ω1/4 ∼ B1/4. For simplicity of

discussion, we will ignore this weak effect here.]

Dividing Eq. [4.7] by Eq. [4.8], one obtains the familiar expression for the NMR

signal-to-noise-ratio (SNR):

SNR =
(Br/ir)VSγBPNSµ/2√

4kTR∆f
. (4.9)

Note that P in the equations above is linearly dependent on the applied magnetic

field for thermally polarized samples: i.e., SNR ∼ B2. As mentioned earlier, a

prepolarizing field BP is sometimes applied that is purposefully stronger than the

magnetic field B in which the nuclei precess [122, 123]; in such cases, SNR is pro-

portional to BP × B. In contrast, P is field independent for laser-polarized noble

gases and hence SNR depends only linearly on B.

Assuming similar coil characteristics for detecting both thermally and laser-

polarized samples, the ratio of SNRs scale as

SNR(LP )/SNR(thermal) ∝ 1/BP . (4.10)
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Equation [4.10] gives the expected SNR from laser-polarized noble gases when com-

pared with a thermally polarized sample at the same field. Furthermore, this equa-

tion can be directly applied at varying field strengths, which is not necessarily true

of a comparison of SNR at high and low fields for LP or thermally polarized samples

alone. In this latter case, establishing a clear field dependence is complicated by the

fact that coil characteristics (i.e., Br/ir in Eq. [4.9]) can be quite varied in design

and behavior over large frequency ranges. For instance, at low frequencies (kHz)

one can utilize multiple turn coils to enhance signal detection, a technique not easily

parameterized by the main applied field.

As an example, we compare 1/BP at 1.5 T (a typical clinical imager field

strength) and 20 G. If we assume SNR(LP gas) ∼ 10 × SNR(water) at high field,

then at the lower field we expect SNR(LP gas) ∼ 750 × 10 × SNR(water). Thus

the low field SNR of a LP noble gas sample exceeds the low field SNR of a thermally

polarized water sample by nearly four orders of magnitude.

(ii) Reduced Effect of Magnetic Susceptibility Gradients at Low Fields

As noted above, one of the advantages of low field imaging is to reduce both imag-

ing distortions and line broadening due to heterogeneous magnetic susceptibilities.

Assuming that a given susceptibility χ is linear, we have the simple expression for

the resultant magnetic field B′

B′ = B0(1 + χ), (4.11)

where B0 is the main applied field. When χ is nonuniform in a sample (B′ = B′(r)),

spins will precess at a frequency γ(B′(r) = G · r) in the presence of an imaging

gradient G. Thus the usual mapping of spin frequencies (with gradients on) to real
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space is no longer an accurate representation of the spatial distribution of spins,

and will result in imaging distortions. Two possibilities to reduce or eliminate such

artifacts is to either increase the imaging gradient strengths to a degree which makes

the susceptibility-induced frequency shifts much smaller than the imaging gradient

(i.e., G · r À variations in B′(r)), or to produce the same effect by decreasing the

main field B0. In our low field setup we use gradients 1/10 the strength of high field

(clinical) imaging gradients, but the drop of nearly three orders of magnitude in

the main field B0 implies a hundred-fold improvement in reducing artifacts arising

from susceptibility heterogeneity. In addition to distortions, variations in χ lead

to spectral line broadening. For example, let χ be characterized by a Gaussian

spatial distribution with mean χ0 and standard deviation ∆χ. The susceptibility

deviation ∆χ causes decoherence for stationary nuclei precessing in the resultant

varying fields. This decoherence is characterized as a contribution to T2
∗ of the form

1/T ∗2 = 1/T2 + γ∆χB0/2. (4.12)

For diffusing nuclei (with diffusion coefficient D), one must consider a random walk

of the ensemble’s phase, providing an additional contribution to T ∗2

1/T ∗2diff = [γ(∆χ/l)B0]2 Dτ 2/3, (4.13)

where l is a characteristic length over which χ varies by ∆χ, and τ is related to

the echo time used in the imaging sequence. Strictly speaking, this expression is

relevant for diffusion through a steady gradient field. In practice, susceptibility-

induced gradients can fluctuate, with an upper bound on phase shifts they induce.

The result is a “restricted random walk” that can only be described by Eq. [4.13] in
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a “slow diffusion” regime where the characteristic diffusion time is large compared

to the frequency shifts due to susceptibility heterogeneity, i.e., (γ∆χB0)(l2/D)À 1.

In a “fast diffusion” regime, (γ∆χB0)(l2/D) ¿ 1 and Eq. [4.13] is no longer valid;

instead, the correct expression is of the form

1/T ∗2diff = (γ∆χB0)2(l2/D). (4.14)

Both Eqs. [4.13] and [4.14] depend on the main field B0 squared, unlike Eq. [4.12]

which is linear in B0.

Clearly, at low fields there will be significantly less decoherence due to magnetic

susceptibility gradients than at high fields, in addition to the reduction in imaging

distortions. This has been demonstrated experimentally in a previous report [119]

and will be particularly effective for low field noble gas NMR in heterogeneous

samples such as the lung or reservoir rocks [124].

(iii) Imaging Resolution Considerations

An immediate benefit of the reduced magnetic susceptibility at low fields is the long

T ∗2 for heterogeneous samples. As mentioned earlier, T ∗2 was measured to be greater

than 100 ms for LP 3He at STP when infused into a sample of excised rat lungs

at 20.6 G; however, this value does not fully demonstrate the aforementioned B2
0

improvement over high field because of both B0 inhomogeneity and uncertainties

due to the influence of radiation damping (discussed below). Thus one can expect

even longer LP 3He T ∗2 at low fields with better magnetic field shimming and reduced

radiation damping. The positive effect of a longer T ∗2 on imaging resolution (∆x)
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can be seen in the expression from Callaghan [72]

∆x(T ∗2 − limited) = [(γG/(2π))× πT ∗2 ]−1

= 2/(γGT ∗2 ), (4.15)

where γ is the gyromagnetic ratio in angular units and G is the applied gradient

strength. Weak gradients are used at low fields to keep field variations across the

sample small relative to the main magnetic field, and hence to validate the secular

approximation used to generate undistorted images from MRI data [109,110]. Typ-

ically, 0.1 G/cm gradients were used in our low field setup. At high fields, gradients

for human subjects are limited to ∼1 G/cm by safety considerations. Assuming T ∗2

is 100 and 5 ms at low and high fields, respectively, one obtains a corresponding

∆x(T ∗2 − limited) = 0.1 and 0.2 mm for LP 3He. It is important to note that the

high and low field T ∗2 values used in this estimate were measured in “bulk” LP 3He

imbibed in the lungs; locally, T ∗2 may differ in a given voxel. Nonetheless, assuming

that these times are reasonable for an average voxel, the calculated values serve as

a basis of comparison for low and high field noble gas MRI, and will be referred to

as ∆xopt .

Next, consider the image resolution set by finite data acquisition time. At low

fields we typically acquire NMR imaging data for 128 ms, corresponding to a fre-

quency resolution of 1/(128 ms) = 7.8 Hz. For comparison, assume that we use the

same acquisition time at high field and employ the same imaging gradient values as

above (respectively). This frequency resolution then translates to an image resolu-

tion of 0.2 mm at low field, and 0.02 mm at high field. Clearly, given the quoted

values for T ∗2 , one could use a longer acquisition time at low fields, while a shorter

acquisition time at high field would not degrade resolution.
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The effect of diffusion for gases is quite significant. At STP, 3He has a diffusion

coefficient D = 1.8 × 10−4 m2/s. A simple calculation gives the one-dimensional

distance an 3He atom will diffuse in a data acquisition time taq of 128 ms

∆xdiff = (2Dtaq)1/2 = 6.8 mm. (4.16)

As Callaghan notes [72], one should not consider ∆xdiff as a strict limit on resolution;

rather, it results in spectral broadening that, in the presence of imaging gradients,

will degrade resolution in a manner weighted toward the T ∗2 -limited value. Therefore,

ignoring the small effects of a finite data acquisition time, we find the effective image

resolution of LP 3He gas in the lung at STP to be

∆x = 1.34[∆xdiff ∆x2
opt ]

1/3

= 0.6 mm for low fields

= 0.9 mm for high fields (4.17)

(4.18)

This analysis shows that low and high field MRI of laser-polarized gas offer compa-

rable resolution for human lung imaging (of course, sufficient NMR SNR is required

to realize such resolution – see discussion above). The relatively weak gradients used

at low fields are compensated by the intrinsically longer T ∗2 . However, because of the

high degree of diffusion, gas phase imaging at both high and low fields only allows

for resolution just under 1 mm. For nonliving subjects, this resolution can be im-

proved in principal by increasing the gas pressure; and, at high fields, by increasing

the strength of the imaging gradients.
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(iv) Reduced RF Shielding at Low Frequencies

Another advantage for low field imaging is that oscillating electromagnetic fields

can penetrate much deeper into conducting materials at the low Larmor frequencies

resulting from the reduction in field strength. The “skin depth” δ that characterizes

the distance RF can propagate inside a conductor before it is attenuated by 63%

(1/e) is given by [125]

δ =
1√
πfσµ

, (4.19)

where f is the Larmor frequency, σ is the conductivity of the conductor, and µ is

the magnetic susceptibility of the conductor. For example, at 100 kHz, δ is 400 µm

for brass and 200 µm for copper. On the other hand, δ is 13 µm and 7 µm for brass

and copper, respectively, at 100 MHz. Thus the imaging of spaces surrounded by

conductive materials, which is not feasible with high field NMR, may be achieved

with low field MRI of LP noble gas. This capability has also been demonstrated in

the previous report [119].

(v) Radiation Damping

Radiation damping in NMR is well known [70,126] and is generally observed at high

fields where liquid-phase magnetization due to thermal polarization is large, T ∗2 is

long, and pickup coil Q is very high. Briefly stated, radiation damping describes the

effect of the “back reaction” field of the pickup coil on the sample magnetization.

The precessing spins cause a current to flow in the pickup coil, which in turn produces

a field that acts on the sample magnetization and brings it back into the longitudinal

direction in the lower energy configuration (i.e., aligned with the main magnetic
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field). The characteristic time for this process is τrd

τrd = (2πηγQ|M|)−1 (4.20)

where η is the filling factor, and M is the magnetization vector. For LP gases,

radiation damping is in stark contrast to T1 and T ∗2 processes, which act to reduce

the magnitude of M (recall that T1 relaxation restores the magnetization to thermal

equilibrium, which is much smaller than the magnetization achieved with laser-

polarization). In comparison, radiation damping does not affect the magnitude of M,

but its direction. Because radiation damping is observed for large magnetizations,

it is not surprising that we observed this effect at low fields in our LP 3He samples.

In fact, optically pumped 3He Zeeman masers rely on radiation damping to sustain

an active oscillation, as was first demonstrated at 32 G [127]. A related device we

have developed is a cohabitating, two-species 3He/129Xe Zeeman maser operating at

fields ∼1–3 G [14].

Due to long T1 and nonrenewable polarization of the LP noble gases, one gen-

erally utilizes small flip angles to acquire NMR imaging data. If the flip angle α is

held constant, the longitudinal LP noble gas magnetization M is depleted each pulse

by a factor of (1− cosα) and by T1 relaxation between pulses. Radiation damping

acts to restore M back along the Bz axis, resulting in an effectively smaller flip

angle α in the case where the interpulse spacing TR is much less than T1 and the

noble gas is laser-polarized in the lower energy state. This radiation damping effect

is clearly seen in Fig. 4.12, which shows flip angle calibration data taken with the

pickup coils tuned both on and off resonance with the 3He Larmor frequency (i.e.,

with a high and low pickup coil Q, respectively). Recall that our drive coils are

independent from and orthogonal to our pickup coils; thus we can be confident that
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Figure 4.12: The effect of coil tuning on LP 3He flip angle measurements at 20.6 G in
a sealed glass cell, demonstrating radiation damping in our low-field system. The (•)
data were taken with pickup coils tuned on resonance with the 3He Larmor frequency
(67 kHz). With exactly the same RF pulse power and duration, a dramatically
increased flip angle (◦) was observed when the pickup coils are detuned far off-
resonance (i.e., with a greatly reduced pickup coil Q). Fits to the (•) and (◦) data
yield apparent flip angles of 4.2◦ and 12.8◦, respectively.

the same RF power over the same duration is delivered to the sample regardless

of the pickup coil tuning. However, by changing the pickup coil tuning, the “back

reaction” field generated while M has a transverse component precessing around

Bz is also changed. As expected, the detuned case minimizes the effect of radiation

damping, and the effective flip angle is greater.

Another way to examine the situation is to vary the acquisition time between

LP 3He flip angle calibration data. The flip angle calibration sequence employs

“crusher” gradients directly after each acquisition period to effectively remove any

residual transverse magnetization. Consequently, one expects to see a larger effective

flip angle when shorter acquisition times are chosen, because the crushers dephase
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any residual transverse magnetization that radiation damping could have restored

to the longitudinal direction. Figure 4.13 shows three data sets supporting this

expectation, with acquisition times of 1024, 256, and 64 ms. There is a clear trend

of larger effective flip angles for shorter acquisition times. Finally, Fig. 4.14 shows

τrd measurements made from 64 successive FIDs from LP 3He in excised rat lungs

at 20.6 G. It is well known that FIDs follow a decay of the form sech(t/τrd) when

radiation damping dominates over the usual T ∗2 exponential decay (i.e., τrd ¿ T ∗2 ).

From Eq. [4.20], τrd depends on |M|, which is decreasing after each FID acquisition

due to magnetization dephased by the subsequent crusher gradients. Since τrd is

inversely proportional to |M|, one expects τrd to increase with each successive FID,

which is observed in the data. (Note: based on Fig. 4.14, which shows τrd increasing

from 50 to 120 ms, one can assume that T ∗2 > 100 ms for 3He imbibed into excised

rat lungs at 20.6 G, as we stated earlier. Values of T ∗2 greater than 100 ms have also

been measured with the coils detuned off resonance.)

While these results are unsurprising, they do raise the question of how to quantify

parameters of interest for low field noble gas NMR. For example, T1 data shown in

Fig. 4.11 for a sample rat lung was taken with the pickup coils tuned on resonance.

If the coils were tuned off resonance, both a larger apparent flip angle would have

resulted, as well as a shorter apparent T1. As for imaging, the previous discussion on

resolution leads one to expect better resolution with decreasing magnetization (i.e.,

less radiation damping), since dephasing times will increase as M decreases. This

is counterbalanced by the loss of SNR as M decreases, and the fact that radiation

damping plays less of a role when imaging gradients are applied (this last effect

enabled better than 1 mm2 resolution in our low field LP 3He imaging, despite large

M).
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Figure 4.13: The effect of data acquisition time on LP 3He flip angle measurements
in a sealed glass cell, demonstrating the effect of radiation damping in our low-field
system. All data were taken at 20.6 G with the pickup coils tuned on-resonance with
the 3He Larmor frequency (67 kHz), and with exactly the same power and duration
RF pulse. The upper data (•) had an FID acquisition time (acq) of 1.024 s; the
middle data (×) had acq = 256 ms; and the lower data (◦) had acq = 64 ms.
Apparent flip angles are 2.4◦, 3.9◦, and 5.6◦, respectively.

4.2.6 Conclusion

Low field imaging of laser-polarized noble gas offers many advantages while retaining

the resolution one expects from a high field system. Setting up a low field appa-

ratus is straight-forward and inexpensive, utilizing easy-to-manufacture equipment

and off-the-shelf electronic components of modest cost. Furthermore, a low field

MRI system is robust and portable and does not require specialized accommoda-

tions (e.g., a shielded room or cryogenic cooling for the magnet). Operating at low

fields (<100 G) results in low Larmor frequencies (kHz), which reduces both RF

power requirements and simplifies the electronics required. Also, these low frequen-
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Figure 4.14: Measurements of radiation damping time (τrd) for LP 3He inside excised
rat lungs at 20.6 G are shown for each of the FIDs acquired from sequential low flip
angle pulses. With each successive FID, the 3He magnetization is reduced, hence
radiation damping is lessened (i.e., τrd increased).

cies have longer RF skin depths, thus allowing gas-space imaging inside conductive

materials. At low magnetic fields there is a reduced effect of magnetic susceptibility

heterogeneity, resulting in longer T ∗2 and improved noble gas image resolution and

distortion reduction. This reduced susceptibility effect is also relevant to restricted

gas diffusion experiments conducted in porous media, where sample heterogeneity

limits the technique’s effectiveness at high fields [78]. Finally, the long T ∗2 at low

fields and the high spin polarization in LP 3He make radiation damping effects ob-

servable (e.g., during low flip angle calibrations), which must be taken into account

when interpreting LP noble gas NMR data.
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Chapter 5

Persistence in 1-D diffusion

Nothing in the world can take the place of persistence.
Talent will not; nothing is more common than unsuccessful men with talent.
Genius will not; unrewarded it’s almost a proverb.
Education will not; the world is filled with educated derelicts.

Persistence and determination alone are omnipotent.

- Calvin Coolidge

5.1 Introduction to Chapter 5

Recently, we used a novel NMR scheme to observe “persistence” in one dimensional

(1-D) gas diffusion [128]. In this context, persistence is defined as the probability

p(t) that for an initially random distribution of spin magnetization, a given region

will not change sign after some amount of time t. Calculations have shown that

p(t) ∼ t−θ, where the persistence exponent θ is dependent on both the dynamics

and dimensionality of the system under study. For 1-D diffusion, we measured

θ ∼ 0.118 ± 0.008, in agreement with theoretical and numerical calculations that

found θ ∼ 0.12 [129–131]. Persistence is an interesting phenomena in the general
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class of first passage events in non-equilibrium dynamics, and has been the focus

of statistical physicists in recent years [132–138]. Notably, our report [128] joins

a small pool of experimental results [139–141], in contrast to the relatively larger

body of analytical and numerical progress in persistence research. In particular, our

persistence measurement is the first performed in a diffusing system and the first to

examine a one-dimensional configuration.

In this chapter, we begin by presenting a reprint of our paper, Measurement of

persistence in 1-D diffusion [128], which concisely describes both our experiment

and results. In later sections, we discuss in more detail (i) the NMR sequence used

to create the required initial conditions; (ii) the numerical simulations used to check

both the experiment and analysis method; and (iii) additional details that we had

to take into account (i.e., signal-to-noise).

5.2 Measurement of persistence in 1-D diffusion

Glenn P. Wong, Ross W. Mair, Ronald L. Walsworth, and David G. Cory

Physical Review Letters vol. 86, pp. 4156–4159 (2001).

This article has been reformatted to conform to Harvard dissertation guidelines.

Using a novel NMR scheme we observed persistence in 1-D gas dif-
fusion. Analytical approximations and numerical simulations have indi-
cated that for an initially random array of spins undergoing diffusion,
the probability p(t) that the average spin magnetization in a given re-
gion has not changed sign (i.e., “persists”) up to time t follows a power
law t−θ, where θ depends on the dimensionality of the system. Using
laser-polarized 129Xe gas, we prepared an initial “quasirandom” 1D ar-
ray of spin magnetization and then monitored the ensemble’s evolution
due to diffusion using real-time NMR imaging. Our measurements are
consistent with analytical and numerical predictions of θ ≈ 0.12.

The dynamics of non-equilibrium systems is a field of great current interest,
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including such topics as phase ordering in binary alloys, uniaxial ferromagnets,

and nematic liquid crystals, as well as coarsening of soap froth and diffusion of

inhomogeneous fluids (e.g. [142]). The evolving spatio-temporal structures in these

non-equilibrium systems depend crucially on the history of the system’s evolution

and are not completely characterized by simple measures such as two-time corre-

lation functions. Therefore, an important problem in the study of non-equilibrium

dynamics is the development of simple and easily measurable quantities that give

nontrivial information about the history of the system’s evolution. The recently

identified phenomenon of “persistence” may be such a quantity: it characterizes

the statistics of first passage events in spatially extended non-equilibrium systems

[129–141,143–149]. Persistence is being actively studied in statistical physics; e.g., in

the search for universal behavior in non-equilibrium critical dynamics [135,146,149].

Practically, persistence may be important in determining what fraction of a system

has reached a threshold condition as a function of time; e.g., in certain chemical

reactions or disinfectant procedures.

Consider a non-equilibrium scalar field φ(x, t) fluctuating in space and time ac-

cording to some dynamics (e.g., a random array of interdiffusing spins). Persistence

is the probability p(t) that at a fixed point in space the quantity [φ(x, t)−〈φ(x, t)〉]

has not changed sign up to time t. It has been found that this probability decays as

a power law p(t) ∼ t−θ, where the persistence exponent θ is generally nontrivial and

has been suggested as a new universal dynamic critical exponent [135, 146]. This

exponent depends both on the system dimensionality and the prevalent dynam-

ics [129, 130], and is difficult to determine analytically due to the non-Markovian

nature of the phenomena. Although θ has been calculated – largely using numer-

ical techniques – for such systems as simple diffusion [129–131], the Ising model

[133, 134, 148], and the more generalized q-state Potts model [132, 133, 144], few
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Dim. Diffusion Ising q-Potts

1 0.12, 0.118‡ 3/8∗, 0.35 −1
8

+ 2
π2

[
cos−1

(
(2−q)√

2q

)]2
∗

2 0.19 0.22, 0.19† 0.86, 0.88† (large q)
3 0.24 0.26

refs [129–131] [133, 134] [140]† [132, 133, 144] [141]†

Table 5.1: A sample of reported persistence exponents. All values except those in-
dicated are derived from numerical simulations; (∗) denotes exact analytical results,
(†) experimental measurements, and (‡) the result reported here.

measurements of persistence have been performed (see Table 5.1). In particular,

“breath figures” [139], 2-D soap froth [141], and twisted nematic liquid crystals [140]

are the only systems for which experimental results have been reported. Further

experimental investigation is needed to probe the utility of persistence in studies of

fundamental and applied non-equilibrium dynamics.

In this paper we present the first measurement of persistence in a system under-

going diffusion (i.e., dynamics governed by Fick’s Law φ̇ = Dφ′′). Our experiment

is also the first to observe persistence in one dimension (1-D). We employed a novel

NMR technique to create an initial “quasi-random” spatial variation in the nuclear

spin magnetization of a sample of laser-polarized 129Xe gas. Subsequent 1-D NMR

imaging allowed us to monitor the temporal evolution of the ensemble. We ob-

served persistence by noting mean magnetization sign changes at fixed locations of

constant size (i.e., imaging pixels) as a function of time. Using a simple theory (the

“independent interval approximation”) and numerical simulations, both Derrida et

al. [130] and Majumdar et al. [129] independently found that θ ≈ 0.121 for 1-D

diffusion. Newman and Toroczkai [131] found θ ≈ 0.125 in 1-D using an analytic

expression for the diffusion persistence exponent. Our measurements are consistent

with these calculations.

Recently, laser-polarized noble gas NMR has found wide application in both
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the physical and biomedical sciences. Examples include fundamental symmetry

tests [16], probing the structure of porous media [19], and imaging of the lung

gas space [18]. These varied investigations, as well as the experiment reported

here, exploit special features of laser-polarized noble gas: the large nuclear spin

polarization (∼ 10%) that can be achieved with optical pumping techniques; the

long-lived nuclear spin polarization of the spin-1/2 noble gases 129Xe and 3He; and

rapid gas-phase diffusion.

We performed laser-polarization of xenon gas using spin-exchange optical pump-

ing [10]. We filled a coated cylindrical glass cell [150] (∼ 9 cm long, 2 cm I.D.)

with approximately 3 bar of xenon gas isotopically enriched to 90% 129Xe, 0.5 bar

of N2 gas, and a small amount of Rb metal. We heated the sealed cell to ∼ 100◦C

to create a significant Rb vapor. Optical pumping on the Rb D1 line was achieved

with 15 W of circularly-polarized 795 nm light (FWHM ∼ 3 nm) from a fiber-

coupled laser diode array. After 20 minutes the 129Xe gas was routinely nuclear

spin-polarized to 1% by spin-exchange collisions with the Rb vapor. We next cooled

the cell to room temperature in a water bath and placed the cell inside a home-

made RF solenoid coil (2.5 cm diameter, 15 cm long, Q ∼ 900) centered in a 4.7 T

horizontal bore magnet (GE Omega/CSI spectrometer/imager) with 129Xe Larmor

frequency = 55.345 MHz. To allow the gas temperature to reach equilibrium, we

left the cell in place for 20 minutes before starting the persistence measurements.

At equilibrium under these conditions, the 129Xe polarization decay time constant

(T1) was in excess of 3 hours, with a 129Xe diffusion coefficient of 0.0198 cm2/s [78].

(Note that changes in the sample gas pressure, and hence the diffusion coefficient,

simply cause a rescaling of the time variable and do not affect the persistence power

law p(t) ∼ t−θ [129].)

The NMR pulse sequence we used to observe persistence in laser-polarized 129Xe
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Figure 5.1: NMR pulse sequence used to encode a 1-D “quasi-random” pattern on
the average magnetization of laser-polarized 129Xe gas. Temporal evolution of the
magnetization pattern is monitored with n repetitions of a 1-D FLASH imaging
routine [82]. For example, with m = 8 encoding RF pulse/gradient pairs, the
encoding pulse angles αi = [30◦, 35◦, 37◦, 41◦, 45◦, 50◦, 63.5◦, and 90◦] while the
encoding gradient amplitudes gi were chosen randomly. The imaging pulse angle βj
was fixed at 8◦ and the diffusion times τj were varied from 2.4 ms up to ∼ 2 s. The
encoding gradients and the transverse magnetization dephasing “crusher” gradient
were pulsed for 1 and 20 ms, respectively. Imaging gradients were applied for a total
of 7.56 ms. The maximum gradient available was 6.7 G/cm.

gas diffusion is shown schematically in Fig. 5.1. The first portion of the pulse se-

quence encodes a 1-D “quasi-random” pattern on the transverse magnetization of

the laser-polarized 129Xe gas sample by using m pairs of variable-strength RF and

magnetic-field-gradient pulses, repeated in rapid succession (see Fig. 5.1). Each

pair of RF and gradient pulses adds different spatial Fourier components to the 1-D

transverse magnetization pattern, with wavenumbers given by the gradient pulse

area and Fourier component amplitudes set by the RF pulse area. Next, a π/2 RF

pulse “stores” this quasi-random 1-D magnetization distribution along the longitu-

dinal (z) direction while a subsequent strong (crusher) gradient pulse dephases any

remaining transverse magnetization. The quasi-random longitudinal magnetization

distribution then evolves with time due to diffusion and is monitored by a series of

1-D FLASH (Fast Low Angle SHot) NMR images [82,151] (see Fig. 5.1).

The initial pattern of longitudinal 129Xe magnetization is quasi-random in that

there must be a minimum length scale to the induced variations in the 129Xe mag-
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netization, i.e., a maximum wavenumber in the pattern, for there to be sufficient

NMR signal for useful imaging. (This minimum length scale was ≈ 0.6 mm in our

experiment.) Nevertheless, at longer length scales the induced pattern must be ran-

dom enough that persistence behavior can be expected. Ideally, 〈φ(x, 0)φ(x′, 0)〉 =

δ(x− x′); however, calculations indicate that it is sufficient for the initial condition

correlator to decrease faster than |x−x′|−1 for 1-D persistence [129]. We found that

six to eight RF/gradient pulse pairs (m = 6–8) were optimal for the desired quasi-

random 1-D patterning of the 129Xe magnetization. m < 6 resulted in a pattern

that was not sufficiently random, while m > 8 significantly reduced the signal-to-

noise ratio (SNR) of the NMR images. The requirement of m ≥ 6 is supported

by numerical calculations in which we modeled the NMR encoding sequence and

simulated the subsequent gas diffusion using a finite difference first-order forward

Euler scheme [130, 152]: we found persistence behavior (i.e., p(t) ∼ t−θ) only when

m ≥ 6. The requirement of m ≤ 8 was set by the available NMR signal (i.e., the

finite 129Xe magnetization), the necessity of rapid data acquisition to avoid excessive

diffusion during the imaging sequence itself, the limitation of approximately 2π×(0.6

mm)−1 for the maximum wavenumber, and the maximum imaging gradient strength

available.

For NMR imaging, we used a field of view (FOV) of 31.5 cm with 0.6 mm

resolution, which thus divided the 9 cm cell into about 150 imaging pixels, each

corresponding to a discernible spatial region of fixed size and location. We typically

employed 8◦ excitation RF pulse angles and acquired 32 1-D images spaced loga-

rithmically in time from ∼ 3 ms to 5 s for a single experimental run. Longitudinal

magnetization depletion due to imaging was highly uniform across the sample and

did not affect the persistence measurement, since the relative magnetization am-

plitudes in neighboring imaging pixels was unchanged. An example of the images
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Figure 5.2: (a) Typical quasi-random initial pattern of 129Xe magnetization resulting
from 8 encoding RF pulse/gradient pairs. (b) 32 images of the evolving magnetiza-
tion pattern were acquired at logarithmically increasing times. White (black) indi-
cates average positive (negative) magnetizations for each of the 150 fixed-location
imaging pixels of width ≈ 0.6 mm. Gray indicates pixels whose magnetization has
changed sign at least once. The persistence exponent is determined from the growing
fraction of gray pixels as a function of time.

acquired in a typical run are shown in Fig. 5.2. For each pixel, we derived aver-

age magnetizations (aligned or anti-aligned to the main magnetic field) from the

phase information contained in the time-domain NMR image data, and spatial po-

sitions from the frequency information [153]. An experimental run thus provided a

record of the 129Xe gas magnetization in each pixel as a function of time proceeding

from the initial quasi-random pattern to the equilibrium condition of homogeneous

(near-zero) polarization.

To measure persistence, we noted the sign of the 129Xe magnetization in each

fixed spatial region (i.e., in each 1-D image pixel) and counted how many remained

unchanged as a function of time. We equated the probability p(t) with the fraction

of pixels that had not changed sign up to time t. We chose t = 0 to coincide with
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the first image and assigned the time index for each image to be the start time

of the imaging RF pulse. Images with SNR < 40 were excluded from the data

to minimize uncertainty in pixel sign changes. We conducted about 30 experiments

with image SNR > 40, each with a unique set of randomly chosen encoding magnetic

field gradients {gi}. We observed that pixel sign changes occurred smoothly, so it

was unlikely we missed sign changes with an error of more than one step in the

imaging sequence. We employed two averaging schemes to combine the results from

different experimental runs. In the first method, we used a linear least-squares fit

of log[p(t)] vs. log[t] for each run, resulting in a distribution of power law exponents

with a weighted mean θ = 0.119± 0.048. With our numerical simulations of quasi-

random initial conditions, we found that this averaging scheme results in a gaussian

distribution of exponents with a mean value θ ≈ 0.12 in agreement with previous

calculations for 1-D diffusion [129–131] and our experimental results. In the second

averaging scheme, we combined the data from all experimental runs; hence p(t)

represented the fraction of total pixels from all experiments that had not changed

sign up to time t. We found p(t) ∼ t−θ with θ = 0.118± 0.008 for 0.1 s ≤ t ≤ 1 s.

Figure 5.3 shows a log-log plot of p(t) vs. t when the data is averaged using this

method.

The observed deviations from power law behavior for t . 0.1 s and t & 1 s

are explained by image resolution and finite size effects, respectively. At short

times persistence is not observed because 129Xe atoms have not yet diffused on av-

erage across a single 1-D image pixel (≈ 0.6 mm). The relevant diffusion time is

(0.6 mm)2/(2DXe) ≈ 0.1 s for our typical experimental conditions. At long times,

the coarsening of the 129Xe magnetization pattern by diffusion results in large “do-

mains” of adjacent pixels with the same sign of the magnetization. Our simulations

indicate that persistence is not observed when there are few domains in the finite
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Figure 5.3: A log-log plot of p(t), the fraction of regions (pixels) with 129Xe spin
magnetization that had not changed sign up to a time t, representing the sum of ∼
30 different experimental runs. The solid line is a weighted linear least-squares fit
to the data for 0.1 s ≤ t ≤ 1 s, and yields θ = 0.118± 0.008. Error bars are derived
from the number of pixels with amplitudes close to the image noise level and are
shown when they exceed the plot symbol diameter.

size sample because the number of magnetization boundaries is greatly reduced;

hence the rate of pixel sign-changing (i.e., the growth of the gray area in Fig. 5.2)

is curtailed. Both the short and long-time deviations are seen in Fig. 5.4, where the

average length L of like-signed magnetization domains from all experimental runs is

plotted against time. For 0.1 s . t . 1 s, our data are in reasonable agreement with

the expected power law L ∼ t1/2 for diffusion [142]. For t & 1 s, we find L & 1 cm,

implying there are typically less than 10 magnetization boundaries in the 9 cm long

sample cell.

In conclusion, we experimentally measured a persistence exponent θ ≈ 0.12 for

1-D diffusion, consistent with analytical and numerical studies. We performed the

measurement using a novel NMR scheme with laser-polarized 129Xe gas which al-

lowed us to both encode a spatially “quasi-random” magnetization pattern and
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Figure 5.4: The average size L of domains of adjacent pixels with uniform magneti-
zation orientation, as a function of time t, derived from all experimental runs. For
0.1 s ≤ t ≤ 1 s, L ∼ tα where α = 0.45±0.02 (solid line). The dotted line shows the
expected L ∼ t1/2 behavior for an infinite system. The error in L is shown where
it exceeds the plot symbol size. The finite size limit on L is evident in the four
late-time points (4), which were taken from the only two runs with sufficient SNR
at long times.

monitor its evolution over several seconds. We also observed the effect of finite

sample size for long-time diffusion. In future work the experimental technique em-

ployed in this study may allow measurements of persistence in 2 and 3-D diffusion,

in heterogeneous systems (e.g., porous media) infused with noble gas, and in ‘pat-

terns’ [154].
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for useful discussions. This work was supported by NSF Grant No. CTS-9980194,

NASA Grant No. NAG9-1166, and the Smithsonian Institution Scholarly Studies

Program.

117



5.3 Quasi-random spatial encoding

5.3.1 Introduction

Persistence is observed when the initial magnetization configuration is random; how-

ever, such a situation is incompatible with NMR signal detection. We address this

issue by creating a “quasi-random” distribution of magnetization; in other words, a

distribution of magnetization that is random at long length scales, but is sufficiently

non-random at short length scales (i.e., on the order of an imaging pixel) to allow

sufficient ensemble magnetization for NMR detection. The purpose of this section

is to describe in greater detail the NMR pulse sequence we employed to achieve

this. Furthermore, we shall use the k-space formalism introduced by Hennig [155]

and developed by Sodickson and Cory [156] to facilitate the understanding of the

sequence and resulting magnetization distribution.

In addition, we shall briefly present experimental 1-D images of the quasi-random

spatial magnetization in a sample of laser-polarized 129Xe. While in principle this

experiment could be performed in a thermally-polarized sample, the laser-polarized

noble gas offered distinct advantages for the purposes of this experiment, including

high polarization (∼ 1%), fast diffusion (∼ 0.02 cm2/s at 3 atm.), and long T1 at

4.7 T (≈ 3 hours in an OTS-coated glass cell [150]).

5.3.2 Theory

Figure 5.1 shows the pulse sequence we used for our persistence measurement.

It consists of the following three parts: first, m repetitions of variable-strength

RF/gradient pulse pairs encodes the quasi-random transverse spin magnetization;

next, a π/2 pulse followed by a strong dephasing (crusher) gradient pulse effectively
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stores the quasi-random pattern in the longitudinal spin magnetization and dephases

any residual transverse magnetization; finally, a series of n 1-D FLASH (Fast Low

Angle SHot) images acquired at varying times monitor the temporal evolution of

the magnetization pattern.

Review of the k-space formalism

As mentioned earlier, the reciprocal or k-space formalism provides a clear and con-

venient framework for understanding how the encoding portion of the sequence

results in a “quasi-random” spatial magnetization distribution. We present here a

brief review of the relevant concepts of the formalism as described by Sodickson and

Cory [156].

In the presence of a magnetic field gradient Gu = ∂Bz/∂u, transverse magneti-

zation accumulates varying amounts of phase along the û direction in the laboratory

frame. Assuming Gu is constant, the phase varies linearly and can be described by

a spatial wavenumber (or frequency) k, which changes as follows:

∆ktrans
u = γ

∫
Gudt. (5.1)

where k= 2π/λ, λ being the wavelength of the modulation. Note that the magnetic

field gradients do not affect longitudinal magnetization.

For convenience, it is useful to map the transverse magnetization Mtrans to the

complex plane, with the convention that (in the rotating frame) Mx is real and My

is imaginary. Phase modulations due to a gradient pulse result in a spatial “helix” of

magnetization described by ei(kuu+θ), where θ is a global phase offset. Note that by

simply inverting one component of the transverse magnetization (e.g., with a π|x RF

pulse) or applying a magnetic field gradient of opposite sign instead, it is possible
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to reverse the sense of the helix. Consequently, phase modulations of the transverse

magnetization can be described by either right or left-handed helices ei(±kuu+θ). It

is common to refer to them as “magnetization gratings” with wavenumbers ±ku.

In contrast to gradient pulses, which only affect the transverse magnetization

phase gratings, RF pulses mix the longitudinal and transverse magnetization grat-

ings and affect their relative amplitudes. On-resonant RF pulses have a fixed phase

in the transverse (complex) plane, and cause the orthogonal components of mag-

netization to precess. For example, a π/2|x pulse will cause a π/2 rotation in Mz

and My, but not Mx. RF pulses (of angle α) thus mix transverse gratings (i.e.,

A1e
±i(kuu+θ) α→ A′1e

±i(kuu+θ) + A′2e
∓i(kuu+θ′)) while also creating (from a portion of

the transverse magnetization) a longitudinal magnetization grating of amplitude

modulation given by A′′ sin(±kuu + θ′′)ẑ. Similarly, preexisting longitudinal grat-

ings of wavenumber k′u and phase θ′′′ are rotated into the transverse plane, resulting

in linear combinations of the transverse gratings e±ik
′
uu+θ′′′ . The strength of the RF

pulse (i.e., the flip angle α) determines the amount of mixing between longitudinal

and transverse magnetizations.

It is possible to express any spatial magnetization modulation by using the three

basis functions m+(ku, θ) = ei(+kuu+θ),m−(ku, θ) = ei(−kuu+θ), and mz(ku, θ) =

sin(kuu + θ)ẑ. With these basis functions, the transformations due to an RF pulse

αφ can be written as follows:


m+(ku, θ)

m−(ku, θ)

mz(ku, θ)

 αφ⇒


cos2(α2 )m+(ku, θ) sin2(α2 )m−(ku,−θ + 2φ) sin(α)mz(ku, θ − φ)

sin2(α2 )m+(ku,−θ + 2φ) cos2(α2 )m−(ku, θ) sin(α)mz(ku,−θ + φ+ π)

1
2 sin(α)m+(ku, θ + π + φ) 1

2 sin(α)m−(ku,−θ + φ) cos(α)mz(ku, θ)


(5.2)
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where φ is the phase of the RF pulse (φ = 0 is equivalent to having an RF pulse

along the x̂ axis in the rotating frame, i.e., αx).

When using a homogeneous RF coil for detection in a homogeneous spin-density

sample, only the k=0 grating of Mtrans yields an observable NMR signal; non-zero k

gratings result in spatially phase-modulated RF signals that destructively interfere

when integrated over the volume of the coil. In order to detect the non-zero k

gratings, one must apply a gradient to “unwind” the phase until k=0.

A useful tool for visualizing the k-space formalism is to graph k-components

as a function of time. As an example, Fig. 5.5 illustrates the simple case of a

two-pulse spin echo sequence in the presence of a constant field gradient1. The

first π/2|y pulse2 places all the magnetization into the transverse plane. In the

presence of the gradient Gu, the magnetization “winds” up with increasing k; in

particular, ∂k/∂t = γGu, and when t = τ , one has k = k1 ≡ γGuτ . Assuming

a global phase factor of zero, the second π/2|y pulse then transforms m+(k1, 0)

into a mixture that includes m+(k1, 0), m−(k1, 2φ), and the longitudinal grating

mz(k1,−φ). The relative amplitudes of each grating can be computed using eq. 5.2:

for the gratings m+ and m− we have cos2(π/4), sin2(π/4), respectively, while the

longitudinal grating mz has an amplitude of sin(π/2). These values are found in

Fig. 5.5 on the appropriate pathways.

Note that a spin echo is detected at t = 2τ when the negative k grating

passes through zero. Furthermore, the diagram shows that the longitudinal grating

mz(k1, θ) (dashed line) does not evolve in the presence of the gradient. Similarly

the transverse k-values remain fixed once the gradient is turned off.

1This example represents the famous Hahn spin echo experiment [69].
2recall, φ = π/2 for a α|y pulse.
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Figure 5.5: Two-pulse spin echo pulse sequence in the presence of a constant field
gradient Gu. On the k-space diagram, the solid lines represent the wavenumbers
of transverse magnetization gratings; the dashed line is the wavenumber of the
longitudinal amplitude grating. The numbers represent the relative amplitude of
the different gratings following the second π/2 pulse.

Quasi-random encoding

We are now prepared to discuss the details of the quasi-random encoding sequence.

As shown in Fig. 5.1, there are m iterations of a variable strength RF pulse αi, fol-

lowed by a gradient pulse of random magnitude gi. The random magnitude gradient

pulse creates and changes the wavenumbers of transverse magnetization gratings,

while the RF pulses continually mix between longitudinal and transverse magnetiza-

tions. Consequently, the entire ensemble is transformed into gratings with different

k-values at a geometric rate, resulting in a quasi-random spatial magnetization that

is predominantly in the transverse plane (i.e., in Mtrans). The storage π/2 pulse

and subsequent crusher pulse places the pattern in Mz and dephases any remaining

transverse magnetization. The resulting quasi-random pattern in Mz is then free to

evolve by diffusion. Using fast, low flip-angle imaging along the û direction in the
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laboratory frame (i.e., FLASH imaging [82]; see also sec. 3.3.3), we could monitor

the evolution of the pattern as a function of time. As a final note, it should be clear

that the “quasi-randomness” of the pattern depends on m (the number of encoding

RF pulse/gradient pairs) and the different choices for αi and gi.

The sequence is fairly straightforward to understand in the trivial case where

m = 1. After some initial RF pulse α1 (we will assume for simplicity and without

loss of generality that all RF phases are aligned with x̂ [i.e., φ = 0] and the initial

phase factor θ = π/2), eq. 5.2 can be used to show that Mz = M0 cos(α1) while the

transverse magnetization Mtrans = M0(sin(α1)/2) [m+(0, π/2 + π) + m−(0,−π/2)]

= M0 sin(α1)m+(0,−π/2), as expected (recall, imaginary values are aligned along

ŷ). After the gradient pulse of strength g1, the transverse magnetization has been

“wound up” to a k-value given by k1 = γgi
∫
f(t)dt, where f(t) is the shape of the

gradient pulse (to avoid eddy currents resulting from fast gradient switching, it was

more convenient to use half-sine shaped pulses rather than rectangular pulses). As

mentioned above, Mtrans is stored in Mz after encoding via a π/2 RF pulse, so with

m = 1, we are left with a single sinusoidal modulation in Mz with wavenumber k1

and amplitude M0 sin(α1).

For m > 1, the situation becomes more complicated, but is straightforward to

analyze with the above formalism. As before, the first α1 RF pulse and g1 gradient

pulse leave a k=0 magnetization grating in Mz and a k=+k1 grating in Mtrans .

The next RF pulse (α2) transforms the +k1 grating into a linear combination of

±k1 transverse gratings and a +k1 longitudinal grating, while a new transverse

grating with k=0 emerges from Mz. After the second (g2) gradient pulse (which

adds k2 to preexisting transverse wavenumbers), Mtrans becomes a combination of

k1+k2,−k1+k2, and k2 transverse gratings. On the other hand, Mz is now comprised

of gratings with wavenumbers k1 and k=0. Additional RF and gradient pulses create
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Figure 5.6: A k-space diagram for the encoding sequence when m = 4. Solid
lines represent the wavenumbers of transverse gratings; dashed lines are k-values for
longitudinal amplitude gratings. The different slopes reflect the randomly chosen gi
gradient strengths. RF pulses were applied at each point in time where new grating
wavenumbers appear.

yet more gratings, with wavenumbers that are linear combinations of the different

[ki].

Figure 5.6 shows an example of how quickly different magnetization gratings

appear during the encoding sequence. To maximize the number of gratings for a

given m, two conditions are necessary:

(i) the different gradient strengths gi should not be multiples or linear combina-
tions of one another, otherwise a “new” grating may overlap with a previous
one;

(ii) the RF pulse angles αi should not be multiples of π/2. If they are, some
of the mixing amplitudes from eq. 5.2 would equal zero, thus reducing the
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number of gratings created.

We can analytically determine the maximum number of gratings present in the

ensemble after m repetitions of the encoding sequence. Let lm and tm represent the

number of longitudinal and transverse gratings present after m RF and gradient

pulse pairs, assuming the above conditions are satisfied. For m = 1, l1 = 1 and

t1 = 1, corresponding to a longitudinal grating with k=0 and a transverse grating

with k=k1. For m = 2, the longitudinal grating creates a new transverse grating

(k2), while the transverse grating is the source for 2 new transverse gratings (k1 +

k2,−k1 + k2) and a new longitudinal grating (k1). Generalizing for all m > 1, we

obtain the following difference equations:

tm = 2tm−1 + 2 (lm−1 − 1) + 1

lm = tm−1 + lm−1. (5.3)

These equations can be solved to yield the following:

tm = 3m−1

lm =
1

2

(
3m−1 + 1

)
(5.4)

The relative strength of each transverse and longitudinal grating is dependent

on the RF pulses [αi] in a nontrivial way. However, it is possible to calculate each

amplitude using eq. 5.2 in an iterative fashion. For example, the transverse grating

with the largest k-value (i.e., kmax =
∑m

1 ki) after m > 1 iterations of the encoding

sequence will have an amplitude:

Ammax k = sin(α1)
m∏
i=2

[
cos2 (αi/2)

]
. (5.5)
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Similar expressions can be derived for any of (tm + lm) transverse and longitudinal

gratings.

As mentioned earlier, our definition of “quasi-randomness” is a pattern uncorre-

lated at long length scales, but sufficiently non-random at a length scale compara-

ble to an imaging pixel so that NMR imaging is possible. Translating that into the

present formalism, we want a pattern with as many (transverse) gratings as possible,

each with a different k-value, subject to the condition that kmax . 2π/(dx), where

dx is the imaging pixel size. Furthermore, the mean difference between “adjacent”

k-values must not exceed a minimum value that is determined by the acquisition

parameters. In other words, one cannot set m arbitrarily high and use vanishingly

small values for gi such that
(
γ
∑m

i=1 gi
∫
f(t)dt

)
. 2π/(dx), since this would result

in indiscernibly different k-values. Experimentally, this means that the number of

points acquired to form an image sets a limit on the number of discernible gratings,

while the strength of the imaging gradient determines the imaging pixel size, and

hence kmax . Of course, an overriding consideration is the amount of magnetization

available and the level of signal-to-noise (SNR) which is acceptable to form an im-

age. It should be noted that our discussion of kmax should not be taken as a hard

upper limit on k. In fact, because of the high spin polarization of the laser polarized

noble gas, we could afford to exceed kmax (which results in less overall signal) to

ensure a more random initial configuration. Further details will be discussed in the

following section.

5.3.3 Experiment

Experiments were as described in section 5.2 [128]. In particular, we used a 4.7 T

horizontal bore magnet (GE Omega/CSI spectrometer/imager), where the 129Xe
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Imaging parameters value
flip angle 8◦

points acquired 512
sweep width 200000 Hz

gradient pulse duration 2 ms
refocus (acquisition) time 2.56 ms

field of view (FOV) 310 mm
max. gradient avail. 6.7 G/cm

Table 5.2: Parameters used for 1-D FLASH imaging of the longitudinal magnetiza-
tion following the quasi-random spatial encoding sequence. Key priorities in imaging
include resolution and rapidity, with constraints given by maximum available gra-
dient strength and the maximum digitizer rate.

Larmor frequency is 55.345 MHz. The sample was a sealed cylindrical glass cell (∼

9 cm long, 2 cm i.d.) filled with 3 bar of enriched (90%) 129Xe, 0.5 bar N2, and a

macroscopic amount of Rb (the 129Xe diffusion coefficient DXe = 0.0198 cm2/s).

Laser polarization was accomplished in the fringe field of the magnet as described

in sec. 2.3.

We used a transverse solenoid, optimized for high homogeneity over the length

of the sample cell, as the RF excitation and NMR signal detection coil3. The axis of

the coil was coincident with the Gx gradient (i.e., ∂Bz/∂x), which we used for both

quasi-random encoding and 1-D FLASH imaging. Therefore, û = x̂ in the above

formalism. The maximum field gradient possible from the available hardware was

6.7 G/cm. Typical imaging parameters are listed in Table 5.2.

The earlier discussion on the quasi-random encoding sequence assumed no diffu-

sion or T2 decoherence; in reality, these are important factors and to minimize their

impact on the sequence, we made the encoding sequence as short as possible. The

encoding gradient was pulsed for 1 ms in a half-sine waveform (to minimize eddy

currents), and we found that setting m = 6− 8 resulted in a sufficiently “random”

3A detailed discussion of the solenoid design is found in Appendix A.
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magnetization pattern. We support this claim in a number of ways:

(i) given the imaging parameters listed in table 5.2, the imaging resolution is

0.06 cm, which sets both the minimum length scale for signal detection and

the maximum detectable k-grating, i.e., kresolution
max = 2π/(2 × 0.06 cm) =

52 cm−1. Assuming 〈gi〉 = 3.3 G/cm, the maximum k-value after m = 6

iterations of the encoding sequence yields kmmax = γ(6 × 3.3 G/cm)(0.001

s/π)
∫ π

0
sin(x)dx = 95 cm−1. Similarly, for m=7 and 8, kmmax = 110 and

126 cm−1, respectively. Thus, the encoding sequence with m = 6 − 8 has

the potential to create gratings that exceed the detection resolution. Ideally,

the largest k-values generated match kresolution
max , since any k-values above the

resolution limit are undetectable and only degrade the SNR by using up

valuable polarization.

(ii) the time domain signal acquired during the imaging sequence is essentially

a map of the spatial fourier (k) space; thus, by acquiring 512 points, we can

discern at most 512 different k-valued gratings (half of which have k < 0 and

the other half have k > 0). By choosing m = 6, 7, 8, we can generate up to

243, 729, and 2187 gratings with the encoding sequence (see eq. 5.4)4.

We therefore create close to the maximum number of modulation components

we can detect with m = 6, and in the case of m = 7 or 8 we potentially exceed

the limit by a fair amount. Having too many magnetization gratings in the

sample is not a problem so long as the overall SNR is acceptable (in the

4Actually, the imaging sequence transforms a portion of the stored longitudinal gratings into
transverse gratings that may be detected as they pass through k=0; in particular, eq. 5.2 shows
that a longitudinal k-grating goes to both m− and m+ in equal proportions. Hence the detected
number of unique gratings is halved. In our case, because we acquire 512 (time) data points, we
can discern 512/2 = 256 different longitudinal gratings, even though the signal is comprised of up
to 512 transverse gratings.
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extreme case of infinite gratings, the sample would be fully randomized but

have an SNR = 0).

5.3.4 Results

Figure 5.7 shows an example 1-D NMR image of an initial magnetization configura-

tion generated using the quasi-random encoding sequence with m = 7. To illustrate

clearly the randomness of such a configuration, we analyzed the autocorrelation of

several independent initial configurations that were appended to each other. In other

words, we artificially created a much larger sample by pasting together the results

from numerous experiments such as that shown in Fig. 5.7. Figure 5.8 presents the

autocorrelation of an array consisting of 7 separate initial configurations (4 of them

were created with m = 7; the other 3 had m = 8).

Figures 5.7 and 5.8 illustrate an important point we have yet to address. In

particular, the quasi-random encoding scheme creates a magnetization configuration

that is symmetric about the center of the magnetic field gradient (in our experiments,

this coincides with the geometric center of the cell). This occurs because of the odd

symmetry of the magnetic field gradient (i.e., Gxx = −Gx(−x)), and results in a

configuration that is effectively only half as random as originally desired. Of course,

one way to create a fully quasi-randomized configuration would be to simply place

one end of the cell near the magnetic field gradient center. However, as the cell is

placed off center in such a fashion, the homogeneity of the main magnetic field may

not be very good or the linearity of the magnetic field gradient may deteriorate, thus

causing other problems with the configuration and later image analysis. We believe

that in our experiments, the symmetry in each initial configuration was actually

beneficial, as it served as a way for us to run the experiment twice – simultaneously

129



-4 -3 -2 -1 0 1 2 3 4

-3

-2

-1

0

1

2

x 10
4 Apr25_00:polxe_p1_g7e32_3.dat

Cell position (cm)

m
ag

ne
tiz

at
io

n 
(a

rb
 u

ni
ts

)

Figure 5.7: Example of a quasi-random initial condition created in laser-polarized
129Xe, cell P-1. 7 encoding gradient pulses were used, with gi = (6.7 G/cm×)[0.335
.13 .121 .327 .362 .456 .219]; each pulse was a shaped half-sinusoid lasting 1 ms.

– with the same initial conditions. In this way small random fluctuations across the

cell are averaged out, but we have yet to confirm this hypothesis; future studies will

address this issue.

As a final comment, we note that the quasi-random encoding sequence (Fig. 5.1)

is very similar to the single-shot diffusion measurement (SSDM) sequence described

by Peled et al. [26] (see Fig. 5.9). In fact, SSDM can be considered a special case

of the quasi-random encoding sequence with the following two constraints: first, all

the RF pulses (αi) must be small, and second, the encoding gradient is constant in

magnitude and continuously on; this is equivalent to setting all the quasi-random

encoding gradients (gi) to the same value.

The first constraint is meant to limit the mixing of k-gratings; the SSDM mea-
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Figure 5.8: Comparison autocorrelations of the initial conditions. (a) The auto-
correlation 〈M(x′)M(x′ − x)〉 of 7 independent (normalized) experimental initial
configurations linked together to form a “macro” configuration array M(x′). The
apparent undulations have a period equal to the length of the sample cell, and result
from the symmetrized nature of the magnetization configuration about the cell cen-
ter. (b) The autocorrelation 〈M ′(x′)M ′(x′ − x)〉 of a computer-generated random
array M ′(x′) of length equal to the “macro” array M(x′). The heavy line in both
plots is the function 1/x, which is the ideal autocorrelation function of the initial
configuration [129].
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Figure 5.9: Pulse sequence for the single-shot diffusion measurement (SSDM) [26].
Similar to the quasi-random encoding sequence, SSDM “winds” a number of trans-
verse magnetization gratings and then “stores” them in the longitudinal magneti-
zation. The different longitudinal k-gratings decay at different rates as dictated by
diffusion (i.e., exp(−k2Dt)), which are simultaneously detected during the readout
portion of the sequence. See ref. [26] for more details.

surement only examines the +k–components of the transverse magnetization origi-

nally created from the k=0 longitudinal magnetization, and minimizes/ignores -k–

components or any +k transverse magnetization resulting from k 6= 0 longitudinal

magnetization. The second constraint means that the k-gratings created by the

SSDM are multiples of one another and thus simplify the determination of the dif-

fusion coefficient.
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5.4 Numerical simulations

This section describes the numerical simulations we used to investigate the feasibility

of our persistence experiment and to validate the analysis schemes we used. We begin

by describing the simple difference algorithm for modeling the diffusion equation; by

using this algorithm, we are able to reproduce the published results for persistence in

a diffusive system. Next, we model the quasi-random encoding scheme and simulate

its effectiveness for producing persistence behavior. Finally, we present the results

from simulated NMR experiments and describe the analysis schemes we used to

derive a persistence exponent. Because we did not have unlimited access to an NMR

facility, these numerical simulations expanded our ability to conduct “experiments”

off-line, and for example, enabled us to ascertain the extent to which the data block

size would play a role in determining the experimental resolution.

5.4.1 Numerical simulation of the diffusion equation

To simulate the 1D diffusion equation ∂u
∂t

= D ∂2u
∂x2 , we used the “Forward Time

Centered Space” (FTCS) algorithm5 as described in Numerical Recipes [152]:

un+1
j − unj

∆t
= D

[
unj+1 − 2unj + unj−1

(∆x)2

]
(5.6)

where n denotes the time step index and j is the spatial coordinate index. We can

easily solve for un+1
j :

un+1
j = unj

[
1− 2

D∆t

(∆x)2

]
+

D∆t

(∆x)2

[
unj+1 + unj−1

]
(5.7)

5This is also known as the finite difference first-order forward Euler scheme [130].
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Note that this is a generalized version of the expression used by Majumdar et al. [129]

and Derrida et al. [130] in their back-to-back papers presenting the first calculations

of persistence in diffusion. The only difference is that the expressions cited in their

papers make the assumption that D
(∆x)2 = 1. von Neumann stability analysis [152]

requires that

2D∆t

(∆x)2
≤ 1. (5.8)

this requirement simply means that the difference equation is only valid for simulat-

ing the diffusion equation if the timestep used is smaller than 1/2 the time needed

to diffuse across a cell of width ∆x.

The diffusion simulation algorithm was coded into MATLAB6 running on an

Apple Macintosh7 computer. Random initial spin configurations were created from

a random gaussian distribution of zero mean and unit standard deviation8; the

evolution of the configuration was then simulated using eq. 5.7. We determine the

probability p(t) of a spin not flipping up to time t by noting the sign of each spin

(i.e., “bin”) in the initial configuration, and then keep track of when the first sign

change occurs in each bin. Figure 5.10 shows a plot of log(p(t)) vs. log(t) for a

system with 104 bins and tmax = 102. 300 separate simulations were performed with

different initial configurations, and the results are summed together in Fig. 5.10

(except for the 2× 300− 2 boundary points, this is roughly equivalent to simulating

a system that consists of 104 × 300 = 3 × 106 bins). The log-log plot is linear and

thus follows a power law p(t) ∼ t−θ, where we find that θ = 0.1209 ± 0.0003 for

these simulations (the first few points plotted were excluded from the linear fit, since

6version 5.2, The Mathworks Inc., 3 Apple Hill Drive, Natick, MA 01760-2098.
7Apple, 1 Infinite Loop, Cupertino, CA 95014.
8Similar results were obtained using a uniform distribution of random numbers between -1 and

1, which agrees with the findings of Majumdar et al. [129]. In addition, they tested a number of
different random number generators and did not notice any effect on the simulations.
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Figure 5.10: Numerical simulation results, showing persistence behavior in 1D dif-
fusion. p(t) is the fractional number of spins not flipped up to time t, and for
long times, p ∼ t−θ, where θ ≈ 0.1209 ± 0.0003 for the data shown (plotted as
solid line). The simulation used an array of 104 bins, tmax = 100, ∆t = 0.1 and
a = D/(∆x)2 = 1. The plot shown represents the accumulation of 300 runs, each
of which used a different random initial configuration drawn from a gaussian dis-
tribution of zero mean and unit standard deviation. On an Apple iMac computer
(233 MHz G3 processor), the 300 simulations took ∼ 100 minutes of processing time.

they represent short times where the diffusion length (
√
Dt) has not exceeded the

bin size (∆x)). The result from these simple simulations is in good agreement with

the results published by Majumdar et al. (θ1D = 0.1207± 0.0005 [129]) and Derrida

et al. (θ1D ∼ 0.1203 [130]), and verify that both the diffusion simulator and the

analysis scheme have been appropriately implemented.

An alternate way to examine the data is to extract a persistence exponent for

each individual simulation, and then calculate the mean value of the distribution

of exponents (see Fig. 5.11). The different persistence exponents obtained from the
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Figure 5.11: Histogram of θ values derived from each of the separate 300 simulations.
The mean value of the distribution is 0.1209, with a standard deviation of 0.0046.
The solid line represents a gaussian with this mean and standard deviation.

300 simulations are roughly distributed as a gaussian, and have a mean value equal

0.1209 with a standard deviation of 0.0046. Again, this is in good agreement with

our former averaging scheme and published results.

5.4.2 Modeling of the quasi-random encoding scheme

We created a numerical model of the NMR quasi-random encoding scheme, which

we then used with the diffusion simulator and persistence analysis code to test and

verify the feasibility of the NMR experiment. There were numerous inputs to the

model, including (in no particular order):

(i) cell length
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(ii) imaging resolution

(iii) maximum magnetic field gradient available

(iv) number of (and/or) magnitude of encoding gradients for the quasi-random
encoding scheme

(v) encoding gradient pulse duration

(vi) a list of RF flip angles [αi] to use during quasi-random encoding

(vii) diffusion coefficient

(viii) Larmor frequency of NMR nuclei

The primary role of the NMR model was to create the quasi-random initial

configuration; the diffusion simulator would then take this configuration and evolve

it in time. The output consists of a history of sign changes in the ensemble and from

this data we determine the “amount” of persistence that occurred. The algorithm

for the NMR model is as follows:

(1) initialize a 2D magnetization array; one dimension denotes spatial position
while the other represents the 3 orthogonal magnetization components Mx,
My, and Mz. Set (Mx = 0,My = 0,Mz = 1) for all positions;

(2) model the RF pulse αi by mixing Mx,My, and Mz using eq. 5.2;

(3) model the gradient pulse of strength gi by determining the spatial phase that
each position accumulates due to the gradient pulse;

(4) mix Mx and My so that they accumulate the phase calculated in the previous
step appropriate to their position;

(5) loop back to step (2), until steps 2–4 have been executed m times (where m
specifies the number of encoding gradients to use);

(6) simulate a π/2 (storage) pulse.

The resulting configuration in the Mz portion of the magnetization array repre-

sents the initial conditions for the NMR persistence experiment, and is used as the

input for the diffusion simulator. Analysis proceeds as before.
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There are several factors missing from the NMR model. First, we did not in-

corporate diffusion into the model; in effect, we set D = 0 while generating the

quasi-random configuration array, and then turn diffusion back on when going

through the diffusion simulator. However, since the encoding gradients are pulsed

for only 1 ms and the RF pulses themselves last only ∼ 10 µs, the total encoding

scheme takes less than 10 ms to execute. This is less than 10% of the diffusion time

((∆x)2/D ∼ 0.125 sec) across an imaging pixel (∼ 0.05 cm) in a 3 atm xenon cell,

and thus is not an effect that should skew our results. Another factor we did not

model is the effect of random noise, especially with respect to our ability to image

the magnetization at different times. Random noise is expected to cause erroneous

sign changes in the imaging, thus making the magnetization appear to “persist” less

than it does in reality, which could be manifested by a larger value for θ. Rather

than investigate this in our simulations, we examined our experimental data for the

effect that noise (or rather, signal-to-noise) had on our analysis (see section 5.5).

Finally, we did not incorporate into this model the effect of RF coil inhomogene-

ity, which would result in spatial variations in both the flip angle and detection

sensitivity. Our NMR coil (“X-2”) was designed for high B1 homogeneity and mea-

surements indicate that variations in B1 across the length of the cell were less than

5%, which we estimate is insignificant for the current persistence measurement (see

appendix A).

How quasi-random is random enough?

Though somewhat idealized, the NMR model allows us to investigate some funda-

mental questions about the design of the experiment. In particular, we used the

NMR model to verify our earlier analysis (see section 5.3.2) concerning the degree

to which we could generate a quasi-random configuration. Practically, we address
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the question, “how many encoding gradients are required?”

In section 5.3.2, we claimed that using m=6–8 encoding gradients of random

magnitude were suitable for creating the desired quasi-random initial configuration.

Using our numerical model and simulator, we were able to show that this assessment

is correct. Figure 5.12 shows a plot of the -(“mean slope”) from a distribution of

linear fits of log(p(t)) vs. log(t) as a function of m. If the initial configuration

is sufficiently (quasi)random, we expect that for the simulation parameters used,

the -(mean slope) will approach the 1-D diffusion persistence exponent 0.12 with

a standard deviation9 of ∼ 0.033. For m < 6, we see that both the mean slope

and standard deviation of the distribution do not fit our expectations; however, for

m ≥ 6, the expected standard deviation and mean slope appear, showing that the

system is sufficiently random to exhibit persistence behavior. Also, the mean slope

appears to be insensitive to the value of m ≥ 6, and from this, one could deduce that

using m = 9 or 10 would be acceptable; however, doing so would reduce the mean

absolute magnetization in the sample, and thus degrade SNR. Of course, we do not

see any such problem in these noiseless simulations, but practically it becomes an

issue and we chose to avoid using such large m values in the actual experiment.

Effect of finite data set

Given that m=6–8 creates a sufficient random initial configuration, we next used

the NMR model and diffusion simulator to evaluate the effect of different data block

sizes. In particular, with the same simulation settings as listed in the caption of

Fig. 5.12, we varied the number of data points used in the magnetization array (i.e.,

9This is a simple scaling from Fig. 5.11, where σ = 0.0046 is taken from 300 simulations of
arrays with 104 points. On the other hand, each data point shown in Fig. 5.12 is taken from 100
simulations of a 2000 point array; furthermore, only ∼ 570 of those 2000 points contribute to the
persistence simulation, since we assumed a 9 cm long cell and an imaging FOV (field of view) of
31.5 cm.
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Figure 5.12: Persistence exponent θ derived from simulated data with variable m
quasi-random initial configurations. m denotes the number of random-magnitude
encoding gradients used. For these simulations, we set D = 0.0198 cm2/s, field of
view = 31.5 cm, cell length = 9 cm, number of data points = 2000. 100 different
simulation runs (each with random encoding gradient magnitudes [gi]) were com-
pleted for each m value. For every individual simulation, p(t) was determined and
the slope of a linear least squares fit of log(p(t)) vs. log(t) was found. Thus, we
obtained a distribution of 100 slopes for each m value. If the ensembles created
with a given m are random enough for persistence to occur, their distribution of
slopes from the linear fit should have a mean to equal −θ(∼ −0.12) and a standard
deviation σ ∼ 0.033 (which is scaled from the data shown in Fig. 5.11 - see text for
detail). From the plot, this condition occurs when m ≥ 6.
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Figure 5.13: Average persistence exponent θ derived from simulated data with vary-
ing array sizes. 100 simulations with different random-magnitude encoding gradients
were used to determine a mean θ value. The error bars represent the standard de-
viations of the θ distributions for the 100 simulations, and are proportional to the
(array size)−1/2. Results for m = 6, 7, 8 are shown, with no significant difference
between them within the errors of the θ values.

[75 150 500 2000 10000] points). Figure 5.13 represents the mean θ for different

data array sizes. For each array size, θ was derived from 100 different simulations

(each with different random encoding gradient magnitudes). Unsurprisingly, θ does

not change noticeably with array size, but the error bars do. In fact, the error bars

simply decrease with array size in a familiar form: σ ∝ (array size)−1/2.
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5.5 Signal-to-Noise

As stated in our persistence paper (section 5.2/ref. [128]), we used images with

signal-to-noise (SNR) ≥ 40 in our analysis; images with lower SNR were discarded

because they yielded erroneous sign change events. In this final section we describe

our procedure for filtering the data based on SNR, and justify the cutoff used.

To assign an SNR to each image, we examined the raw time domain echo data.

We considered the “signal” as the peak amplitude of the absolute value of the

(complex) echo data. “Noise” was calculated taking the mean of a signal-less region;

i.e., in the wings of an NMR echo. See Figure 5.14 for an example of how SNR is

determined.

In total, we conducted 59 experiments, each with a different quasi-random initial

configuration. As specified in 5.2, we expected persistence behavior between 0.1 s.

t .1 s (due to image resolution and finite size effects, respectively). To examine the

effect of SNR on the analysis, we attempted to determine a persistence exponent θ

from all the data that met a minimum SNR threshold. For low values of the SNR

threshold, we found that θ thus derived was much larger than expected, which we

attribute to erroneous sign changes arising from low SNR data (i.e., noisy data that

made it appear that there were more sign changes occurring than were happening

in reality, hence making our θ appear larger). As we increased the SNR threshold,

we observed that θ decreased and then leveled off for a SNR threshold & 35 (see

Figure 5.15). We chose to use a more conservative threshold of 40 for the results

quoted in the paper.

Similarly, we examined the domain growth exponent α (i.e., domain size L ∼

tα) as a function of SNR threshold. Unsurprisingly, we found that for low SNR

thresholds the domains appeared to grow less quickly (i.e., noise made domains
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Figure 5.14: Time domain echo data illustrating the manner in which we calculated
SNR. The plot shows the absolute value of the last NMR image (time domain echo)
recorded from a persistence experiment. The maximum value, A, is taken as the
“signal,” while the noise is computed from the mean of region B. For this particular
echo data, SNR ∼ 42.

appear smaller) and hence resulted in smaller values of α; however, as the SNR

threshold was increased, α also increased and reached a value of ∼ 0.44 for all SNR

thresholds & 30.

Because the SNR threshold criteria was applied to each NMR echo, it was pos-

sible for some of the data from a given experiment to be excluded (usually from

late times) while higher SNR echoes in the same experiment were retained in the

analysis. However, in some cases only a few or none at all of the echoes from a

given experiment met a given SNR threshold, thus effectively reducing the number

of experiments on which the analysis was based. Hence, in our paper [128] we state

that our results with SNR > 40 are derived from ∼ 30 experiments, instead of the 59
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Figure 5.15: Plot of θ vs. SNR threshold, where θ is derived from all data with
SNR > (SNR threshold).

total experiments conducted. Roughly half of our experiments were found to have

unacceptably low SNR, probably due to poor noble gas polarizations or excessively

quasi-random initial configurations when using larger m values (i.e., 7 or 8).
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Chapter 6

Low field 129Xe relaxation

measurements

This chapter describes 129Xe relaxation experiments performed in OTS-coated1 glass

cells at low magnetic fields (< 70 G). Our goal was to determine whether the 1H-

129Xe dipolar interaction (between OTS coating protons and the nuclei of 129Xe ad-

sorbed on the walls) was the dominant spin relaxation mechanism for laser-polarized

129Xe in the OTS-coated cell. In SurfaSil-coated cells, Driehuys, Cates, and Hap-

per [49] found that such a dipolar interaction was indeed the dominant 129Xe re-

laxation mechanism. In their experiment, polarized 129Xe is spin-locked to a weak

rotating magnetic field H1K ∼ 1.1 G. By driving surface protons at increasing Rabi

frequencies, they were able to decouple the 1H-129Xe interaction and observe a signif-

icant decrease of the 129Xe relaxation rate. In a subsequent experiment [157], Sauer,

Fitzgerald, and Happer successfully used a Hartmann-Hahn double-resonance tech-

nique [158] to increase the 129Xe spin relaxation rate and thereby verify the dominant

effect of the dipolar coupling of 129Xe and 1H in a SurfaSil-coated cell. In this ex-

1OTS=octadecyltrichlorosilane.
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periment, the Rabi frequency (ΩH) of surface protons was matched to the 129Xe

Larmor frequency (ωXe), i.e.,

γHB1 = −γXeB0, (6.1)

where B1 denotes the strength of the magnetic field rotating at the 1H Larmor fre-

quency γHB0, and B0 is the magnitude of the main applied magnetic field (the minus

sign arises from the opposite orientation of the 1H and 129Xe magnetic moments).

In the work presented here, we used this double resonance technique to charac-

terize 1H-129Xe dipolar coupling in OTS-coated glass cells. We find that 1H-129Xe

coupling is a minor contributor to 129Xe spin relaxation in OTS-coated cells, as ev-

idenced by a modest increase in the relaxation rate when the matching condition

(eq. 6.1) is satisfied. In addition, the correlation time (i.e., the characteristic time of

random fluctuations in the 1H and 129Xe dipolar interaction) that we derive from the

resonance experiment is much greater than the correlation time we determine from

B0-dependent T1 measurements, consistent with the conclusion that the dominant

relaxation mechanism is not simply dipolar 129Xe-1H coupling. We list some of the

possible candidates for this discrepancy and suggest ways to further investigate this

issue.

These experiments were performed at the Center for Astrophysics using our

home-built low field NMR system, with improvements and modifications made since

the work reported in Chapter 4 (low field imaging). We begin with a summary of

dipolar relaxation theory. Then we proceed to describe the relevant changes to

the low field system, describe the double resonance technique we used, and present

results obtained to date. The chapter concludes with a discussion of future studies.
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6.1 Dipolar Relaxation

The dipole-dipole relaxation of unlike spins I and K has been treated in great detail

by Abragam [70], with additional treatment by Sauer [159] in the case of a rotating

magnetic field oscillating at one of the spin Larmor frequencies. Here we present

the functional form of the dipolar relaxation rates (following Sauer’s notation) and

briefly describe the key assumptions used in deriving them with and without the

rotating field.

The Hamiltonian H1 for the dipole-dipole coupling

3(µK · r̂)(µI · r̂)

r3
(6.2)

can be expressed as a sum of products between spatial functions F (q)(t) and spin

dependent functions A(q), i.e.,

H1 =
∑
q

F (q)(t)A(q), (6.3)

where

F (0) =
1− 3 cos2 θ

r3
, F (1) =

sin θ cos θe−iφ

r3
, F (2) =

sin2 θe−2iφ

r3
(6.4)

A(0) = α

[
−2

3
KzIz +

1

6
(K+I− +K−I+)

]
,

A(1) = α [KzI+ +K+Iz] ,

A(2) =
α

2
K+I+ (6.5)

and α = −3
2
γKγI~. Important assumptions made when determining the relaxation

rate are that (i) the orientation vector r undergoes isotropic random motion, and
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(ii) the reduced temporal correlation functions of F (q) are the same for all q and

vary as e−τ/τc , where τc is the correlation time. This last point is responsible for the

frequency dependent lorentzian line shape of the relaxation rate (see eq. 6.6 and 6.9

below).

It is straightforward to solve for d〈K(t)〉
dt

, which is linear in (〈K(t)〉−K0)
T1

(e.g., see

[49,70,159]). One can show that the relaxation rate due to dipolar-coupling between

I and K spins is given by

1

T1

=
1

10T0

(
1

1 + (ω0K − ω0I)2τ 2
c

+
3

1 + ω2
0Kτ

2
c

+
6

1 + (ω0K + ω0I)2τ 2
c

)
. (6.6)

ω0K and ω0I are the Larmor frequencies of the K and I spins, respectively, and the

zero field relaxation rate 1/T0 is given by

1

T0

=
4

3
I(I + 1)

γ2
Kγ

2
I~2

r6
τc. (6.7)

Next, consider an applied rotating magnetic field at the Larmor frequency of the

I spins (B1(ω0I)), which leads to an interaction Hamiltonian

Hrot = ~ω1I (Ix cosω0It+ Iy sinω0It) , (6.8)

where ω1I = γIB1(ω0I) is the Rabi frequency of the I spins. Transforming into the

doubly rotating frame2, Sauer [159] derives an expression for the K spin relaxation

rate 1/T1 as a function of the I spin Rabi frequency ω1I :

2i.e., first transforming into the frame of the unperturbed Hamiltonian H0 = ~(ω0KKz+ω0IIz),
and then into the frame of the Rabi oscillation, Hrot.
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1

T1

=
1

40T0

[
6

1 + (ω1I + ω0K)2τ 2
c

+
6

1 + (ω1I − ω0K)2τ 2
c

+
12

1 + (ω0I + ω0K)2τ 2
c

+
6

1 + (ω0I − ω1I + ω0K)2τ 2
c

+
6

1 + (ω0I + ω1I + ω0K)2τ 2
c

+
1

1 + (ω0I + ω1I − ω0K)2τ 2
c

+
2

1 + (ω0I − ω0K)2τ 2
c

+
1

1 + (ω)i − ω1I − ω0K)2τ 2
c

]
. (6.9)

For 1H-129Xe coupling, the first resonance condition is met when the sum (ω1I +

ω0K) goes to zero. This is equivalent to the matching condition mentioned earlier

in eq. 6.1.

6.2 Experimental

Figure 6.1 illustrates the low field NMR configuration for the experiments described

in this chapter. Using the same wire-wound solenoid as described in our low field

imaging experiments, we constructed several current monitoring circuits and care-

fully oriented the solenoid with respect to the Earth’s magnetic field. We tested the

magnetic field stability by acquiring FIDs from a polarized 129Xe cell at different

times and recording the change in the 129Xe Larmor frequency over time (∼ 0.5 Hz

drift over ∼ an hour at 60 kHz). Furthermore, when the magnet was properly

shimmed we observed long 129Xe transverse dephasing times (T2
∗ ∼ 1–2 seconds).

Thus, we improved the stability and homogeneity of the magnetic field by at least

a factor of 2 as compared to the arrangement for our earlier low field imaging.

We also constructed a new detection and excitation coil setup that is specifically

designed for dual frequency operation (i.e., for driving 1H’s and detecting 129Xe NMR

signals; see Fig. 6.5). The NMR experiment was controlled by an Apple Macintosh
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Figure 6.1: Low field NMR system block diagram. In contrast to the setup shown in
Fig. 4.1, the setup shown here has no imaging gradients installed. Instead, another
pair of RF coils (for driving 1H at different Rabi frequencies) is in place.
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Figure 6.2: LabVIEW VI for experimental control and data collection. The lockin
amplifier and two frequency synthesizers could be configured remotely from this VI,
while two digital-to-analog outputs sent by the VI triggered RF pulses and ramped
up/down the applied 1H drive field. Acquisition parameters, including iterative
control of the experiment, could also set from this VI. The two graphs on the right
side of the VI show the components of the acquired FID and its power spectrum.

computer running LabVIEW3 – in contrast to the commercial Bruker AMX console

used in the low field imaging. Figure 6.2 shows the LabVIEW “virtual instrument”

(VI) created for controlling the experiments.

To improve the stability and ease of control for the main magnetic field, we con-

structed current regulator circuits which allowed us to control the current supplied

to the solenoid and shim coils. As we described in section 4.2.2, the original scheme

powered the solenoid directly from two HP6200B DC power supplies that provided

∼0.4 A to each of the four winding layers. Using a single HP6274B DC power supply

with a simple current monitoring circuit (see Fig. 6.6), we achieved greater magnetic

3version 4, National Instruments, 6504 Bridge Point Parkway, Austin TX 78730.
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Figure 6.3: Photo of the low field solenoid and associated electronics. This is the
same solenoid used for the low field imaging experiments described in Chapter 4
(see section 4.2.2). The pre-amplifier for the pickup coils, audio amplifier for the
proton drive field, and the temperature controller for the cell holder are seated at
the bottom of the cart.
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Figure 6.4: Photo of the low field instrumentation and computer console at the CfA.
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Figure 6.5: Low field pickup assembly drawing. Pickup coils for NMR detection
were small to allow the closest proximity to the cell and each one was wound with
approximately 150 turns of 32 gauge copper wire. Coils used to drive a strong
oscillating field at the 1H Larmor frequency were also fairly close to the cell in order
to obtain a large B1 with reasonable current. The xenon RF drive coils were made as
large as possible to maximize the homogeneity of the flip angle inside the spherical
cells.
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fields (up to ∼70 G) with better stability than previously possible with the HP6200B

supplies4. Furthermore, we oriented the axis of the solenoid perpendicular to the

local magnetic field in the laboratory (see Fig. 6.7) which resulted in the longest T2
∗

dephasing times observed.

Figure 6.8 illustrates the pulse sequence used for the double resonance 129Xe

relaxation measurements. This sequence is similar to the one for determining flip

angles and T1’s (see Fig. 3.3). One difference is that instead of a crusher gradient

pulse after FID acquisition, here we have a strong magnetic field applied for a time

τ that is oscillating at the 1H Larmor frequency. The 1H Rabi frequency is directly

proportional to the amplitude of the “1H-drive,” and was powered by a commercially

available audio amplifier5. Flip angles and T1 values were determined as described

in Section 3.3.1.

As a final experimental note, we constructed a temperature controlled cell holder

to maintain the 129Xe cell at a constant temperature during a T1 measurement

(this was necessary because as Fig. 6.9 shows, the 129Xe T1 varies significantly with

temperature in our OTS-coated cell). Compressed air was blown through the cell

holder, which had an interior volume only slightly larger than a cell. A 100 Ω

platinum RTD was placed inside the holder (without touching the walls or cell) to

sense the temperature of the air, which could be heated by a cartridge heater placed

upstream of the cell holder. Temperature monitoring and control was performed

with an Omega CN8500 controller.

Our first step was to measure the 129Xe relaxation rate as a function of the main

4Magnetic field stability was frequently better than 1 part in 105 over ∼ hour timescales, with
significantly less transient warm-up drift than shown in Fig. 4.6. Short of incorporating active
feedback from an in situ magnetometer, the field stability of this solenoid could probably be
improved by better temperature regulation of the resistive elements (including the solenoid itself)
in the current supply circuit.

5Model RB-981, Rotel of America, 54 Concord Street, North Reading, MA 01864-2699.
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Figure 6.6: Schematic of the current regulator circuit. This circuit was used to
control the current supplied to the main solenoid, and with slight modification was
also used for the shim coils. The diodes and variable resistors used depended on the
range of the output current desired (i.e., ∼100 mA for the shim coils and ∼1 A for
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right is directly proportional to the current through the solenoid. For supplying
current to the main solenoid, it was important to heat sink the IRF510 MOSFET
and provide blown air to keep it cool. Vref was provided by a REF01C precision
voltage chip.
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Figure 6.7: Rotational shimming of the solenoid. The solenoid was rotated in the
laboratory through 180◦ in 10◦ increments, and at each position a 3He free induction
decay (FID) was acquired from a polarized 3He cell (TS-2) centered in the solenoid.
From the FID we could determine the 3He Larmor frequency, which is plotted above
as a function of rotation angle (◦). The frequency shifts reflect the change in orien-
tation of the solenoid field (∼ 17 G) relative to the component of the local Earth’s
magnetic field in the plane of the solenoid rotation. From this plot, we determined
that the horizontal component of the Earth’s field is ∼ 0.128 G. The solid line in the
plot is a χ2 (least squares) fit to the frequency data using a sine function with phase
φ. χ2 is minimized when φ = +14◦, thus indicating the direction of the Earth’s
magnetic field with respect to the laboratory. We have found that T2

∗ is optimized
when the solenoid is oriented perpendicular to the Earth’s magnetic field, and is
therefore situated at an angle ∼ 14◦ relative to the lab “zero” (which runs across
the width of PG-07).
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Figure 6.8: Pulse sequence for 129Xe relaxation measurements with an applied 1H
RF oscillating field. The upper part shows RF excitation pulses (α) and FIDs at the
129Xe Larmor frequency repeated at intervals TR. A strong 1H drive field is applied
for time τ in the deadtime between α pulses. The amplitude of the 1H drive field
determines the 1H Rabi frequency.

magnetic field B0. This allows us to use eq. 6.6 to determine a correlation time

τc of the 1H-129Xe coupling, if that is indeed the dominant relaxation mechanism.

Once we have determined a representative τc, we chose a magnetic field such that

ω0Kτc > 1. At such a field, the 1H-129Xe coupling should be reduced and effectively

“turned off” because there will be no Fourier components of the fluctuating dipolar

interaction at the 129Xe Larmor frequency. We can then turn a portion of the 1H-

129Xe coupling back “on” by driving the protons with a sufficiently strong rotating

magnetic field such that its Rabi frequency matches the 129Xe Larmor frequency.

From eq. 6.9, we see that varying the 1H Rabi frequency will result in a lorentzian

resonance in the 129Xe relaxation rate.

For these measurements, we used OTS-coated cell G-2, which contained ∼1 atm

of 90% enriched 129Xe ∼80 torr of N2, and a small amount of rubidium.
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Figure 6.9: Temperature dependence of 129XeT1 at ∼17 G. Over a 30◦C range the
129Xe T1 in OTS-coated cell G-2 varies by more than 25%. The line is a guide to
the eye.

6.3 Results

Figure 6.10 shows the 129Xe relaxation rate 1/T1 as a function of main magnetic field

B0. The data was poorly fit by a single function of the form of eq. 6.6. However,

using a sum of two such expressions with different amplitudes and correlation times

(plus a constant background), the fit was much better. In particular, we compared

fits using one, two, and three correlation times, and calculated

Fχ =
χ2(m1)− χ2(m2)

χ2(m)/(N −m2)
=

∆χ

χ2
ν

, (6.10)

which is the difference between χ2’s of two different fitting functions (with m1 < m2

number of terms) divided by the reduced χ2 of the fit with m2 terms (see Beving-
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ton, section 11.4 [160]). Comparing the results to calculated F distribution tables

(see Tables C.5 and C.6 of [160]), it was clear at least two correlation times were

needed. However, adding a third correlation time to the fit yielded a value of Fχ∼ 0,

indicating that two correlation times were sufficient to fit the data. Similarly, both

Driehuys et al. [49] and Sauer et al. [157] found that using two correlation times

gave the most reasonable fit to their measurements. Sauer determined that the

two correlation times were 9.3± 0.6 µs and 0.6± 0.2 µs for 129Xe in their SurfaSil-

coated cell at 250 K (in agreement with Driehuys’ earlier work). In contrast, we

find τc1 = 28.1 ± 2.5 µs and τc2 = 1.04 ± 0.02 µs for 129Xe relaxation data in an

OTS-coated cell (G-2) at 40◦C. The amplitude of the expression with τc2 is about

twice that of the expression with τc1.

We measured the 129Xe relaxation rate at 25.535 G as a function of 1H Rabi

frequency. Assuming τc = 28µs, ω0Kτc > 1 at this main magnetic field strength.

When we applied an increasing strength rotating magnetic field at the 1H Larmor

frequency, we observed a resonance peak at the point where the matching condition

eq. 6.1 is fulfilled (see Fig. 6.11). However, the extracted correlation time from

this data (τc = 197 ± 49 µs) is significantly different from the 28 µs found in the

field-dependent T1 measurement. Furthermore, the 129Xe relaxation rate continues

to increase with increasing 1H Rabi frequency (see Fig. 6.11).

6.4 Discussion

In contrast to the experiments performed by Driehuys et al. [49] and Sauer et al. [157]

for SurfaSil-coated cells, we conclude that 1H-129Xe coupling is not the dominant

relaxation mechanism in our OTS-coated cell. Specifically, when matching the 1H

Rabi frequency to the 129Xe Larmor frequency, we observed a small enhancement of
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Figure 6.10: 129Xe T1 in an OTS-coated cell as a function of applied magnetic field
B0. The solid line is a fit using a sum of two expressions of the form of eq. 6.6, each
with an independent amplitude and τc (see text). All measurements shown were
made at 40◦C.

the 129Xe relaxation rate, indicating that the 1H-129Xe coupling is a modest contrib-

utor to 129Xe relaxation. It may be worth noting here that the low magnetic field

129Xe relaxation rates in our cell are approximately four times faster than the rates

reported in Sauer’s SurfaSil-coated cell; however, at high fields (∼1 T) the difference

between 129Xe relaxation rates in OTS and SurfaSil-coated cells is small.

The mismatch of correlation times determined from the field dependent 129Xe

T1 measurements and the double resonance technique τc suggests that the former

is unlikely to be the result of pure 1H-129Xe dipolar coupling, and either involves

a more complex interaction between 129Xe and 1H, or impurities in the coating or

glass. For example, Saam and coworkers very recently identified ferromagnetism in
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Figure 6.11: 129Xe relaxation rate at 25.535 G as a function of 1H Rabi frequency.
The line shown is a fit to the data of a sum of eq. 6.9 and a polynomial (cubic)
background. The strength of the Rabi frequency was calibrated by using a small
pickup loop and measuring the induced EMF by the 1H-drive coils. This calibration
resulted in an x-axis scale with about 10% accuracy and was close to what is shown
here. In this figure, we have assumed that the peak is exactly on resonance (i.e.,
γHB1 = −γXeB0), and the x-axis is scaled accordingly. The least-squares fit yields
a value of τc = 197± 49µs.
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glass cells as a previously unrecognized source of 3He nuclear spin relaxation [161].

This ferromagnetism is a function of the cell’s past exposure to high magnetic fields,

and is reversible with a standard “de-Gaussing” procedure. It is possible that such

cell ferromagnetism has played a role in our 129Xe relaxation experiments. In fact,

preliminary data indicates that this is certainly an interesting point to investigate.

We recently noticed that after placing our OTS-coated 129Xe cell (G-2) briefly in

the bore of a high field 4.7 T magnet (for about a minute), the measured 129Xe T1

back at 25.535 G decreased by ∼ 100 s (∼ 17% decrease in 129Xe T1). Attempts to

degauss the cell improved the 129Xe T1, but only by 40–50 s.

It is clear that further studies of 129Xe relaxation in OTS-coated cells are needed.

To begin with, it would be useful to make many more cells and test for repeatability.

Having said that, a few other cells of similar quality were made and exhibited similar

129Xe T1’s at low fields to the G-2 cell. Also, it would be interesting to continue

129Xe relaxation rate measurements with increasing 1H Rabi frequencies; Fig. 6.11

does not extend past a 1H Rabi frequency of 55 kHz because that is the limit of

the present amplifiers in use. However, should another resonance peak be observed

at a greater 1H Rabi frequency, it would shed light on the appropriate interaction

expression between 129Xe and 1H. It would also be helpful to repeat these exper-

iments at different temperatures in the OTS-coated cell to see if the variation of

129Xe relaxation rate is indicative of the 129Xe dwell time on the coating surface.

Finally, there is certainly a strong possibility of ferromagnetism in our glass cell,

and investigating this point may yield some very important insights concerning the

relaxation mechanisms which limit 129Xe T1 in glass cells.
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Appendix A

RF solenoid coil design:

minimizing field variance

This appendix presents an analytical calculation for determining the optimal wind-

ing of an RF solenoid coil by minimizing the variance in its axial field. Constraints

include: (i) the winding must be made from a single conductor (no composite wind-

ings)1, and (ii) the winding cannot double back on itself (i.e., winding should be

consistent in its helical sense).

Using the law of Biot-Savart, an expression is derived for the axial solenoid field

where the pitch of the winding is allowed to vary as a polynomial. By examining

an expression for the variance of this field from the mean, one can numerically

determine the coefficients of the winding polynomial.

Special thanks to Patrick Ledden for insightful conversations.

1This constraint exists because at high frequencies (tens of MHz), the inductance and self-
capacitance of composite windings limit the achievable resonance frequency of the coil.

165



A.1 Definitions

We begin by defining position l along the conductor path in cartesian coordinates;

it is easily parameterized by φ and z

l = (R cos(φ), R sin(φ), z)

where φ = φ(z), R = coil radius. Thus, we can write

dl = (−R sin(φ)φ′, R cos(φ)φ′, 1)

where φ′ = dφ/dz. Recall that the law of Biot-Savart is

dB =
Idl× r

cr3
(A.1)

Assume we want to look at B along the z-axis; denote the observation point r′ =

(0, 0, z′). The displacement vector r is then given by

r = l− r′ = (R cos(φ), R sin(φ), z − z′)

Using these expressions, we can now write equation [A.1] in cartesian coordinates:

dB =
I

c[R2 + (z − z′)2]3/2

∣∣∣∣∣∣∣∣∣∣
î ĵ k̂

−Rφ′ sin(φ) Rφ′ cos(φ) 1

R cos(φ) R sin(φ) z − z′

∣∣∣∣∣∣∣∣∣∣
=

I

c[R2 + (z − z′)2]3/2


(φ′R cos(φ)(z − z′)−R sin(φ))̂i

+(Rφ′(z − z′) sin(φ) +R cos(φ))̂j

+(−R2φ′ sin2(φ)−R2φ′ cos2(φ)))k̂
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=
IR

c[R2 + (z − z′)2]3/2


(φ′ cos(φ)(z − z′)− sin(φ))̂i

+(φ′(z − z′) sin(φ) + cos(φ))̂j

−(Rφ′)k̂

 (A.2)

The z-component of the field, Bz(r
′), can be written as follows:

Bz(r
′) =

∫
dB · k̂

=
IR

c

∫ +L/2

−L/2

−Rφ′dz
[R2 + (z − z′)2]3/2

(A.3)

for a coil of length L.

The problem now is to find a suitable function for φ(z) which will optimize the

field profile Bz′(r
′). For a regularly wound solenoid, φ(z) = γz, where γ is a constant

in units [radians/unit distance]. It is therefore reasonable to ”tweak” φ(z) by adding

higher order terms. In particular, because we should not have the coil wind back on

itself, only odd powers are acceptable. (Note that Bz(r
′) is an even integral of [φ′×

(even function)], and thus φ must be an odd function of z)

If we define φ(z) as

φ(z) =
α

5
z5 +

β

3
z3 + γz (A.4)

then we have

φ′(z) = αz4 + βz2 + γ (A.5)

using Eqn [A.5] in Eqn [A.3], and factoring out constant terms, we can write:

Bz(z
′) ∝ F(z′) (A.6)
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F(z′) ≡
∫ L/2

−L/2

αz4 + βz2 + γ

[R2 + (z − z′)2]3/2
dz

= αF1(z′) + βF2(z′) + γF3(z′) (A.7)

where we have made the following definitions:

F1(z′) ≡
∫ L/2

−L/2

z4dz

[R2 + (z − z′)2]3/2

F2(z′) ≡
∫ L/2

−L/2

z2dz

[R2 + (z − z′)2]3/2

F3(z′) ≡
∫ L/2

−L/2

dz

[R2 + (z − z′)2]3/2
(A.8)

A.2 Selection Criteria

A reasonable selection criteria to use is the variance σ of the axial field Bz(z
′) along

the axis away from its mean value, 〈Bz〉, along some length of the axis L′. Note

that, while L′ can be set equal to the coil length L, it is more general to allow L′

to be an independent variable, and may be chosen to reflect the length over which

a homogeneous field is desired (e.g., the length of the sample). In particular, let us

define σ as follows:

σ = 〈(Bz(z
′)− 〈Bz〉)2〉

=
1

L′

∫ L′/2

−L′/2
[Bz(z

′)− 〈Bz〉]2dz′ (A.9)

Since we have Bz(z
′) ∝ F(z′) (see Eqn [A.6]), we can use a variance σ′:

σ′ =
1

L′

∫ L′/2

−L′/2
[F(z′)− 〈F〉]2dz′ (A.10)
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We can write the average field over the length L′ as

〈F〉 =
1

L′

∫ L′/2

−L′/2
F(z)dz

=
1

L′

(
α

∫ L′/2

−L′/2
F1(z)dz + β

∫ L′/2

−L′/2
F2(z)dz + γ

∫ L′/2

−L′/2
F3(z)dz

)
≡ 1

L′
(αI1 + βI2 + γI3) (A.11)

Putting together Eqns [A.10] and [A.11], we can write σ′ as

σ′ =
1

L′

∫ L/2

−L/2

(
αF1(z′) + βF2(z′) + γF3(z′)− 1

L′
(αI1 + βI2 + γI3)

)2

dz′

=
1

L′

∫ L′/2

−L′/2

(
α(F1(z′)− I1

L′
) + β(F2(z′)− I2

L′
) + γ(F3(z′)− I3

L′
)

)2

dz′

(A.12)

We proceed by assuming that γ is given; this is not unreasonable, and shows that

we have some baseline (linear) coil winding parameter in mind. α and β are the

coefficients for the higher order corrections, and will naturally depend on the value

of γ chosen. Thus, in order to reach an extrema of σ′ (i.e., a minima), the partial

derivatives of σ′ with respect to α and β must go to zero:

∂σ′

∂α
= 0

and

∂σ′

∂β
= 0 (A.13)

169



Taking the partial derivatives of Eqn [A.12] with respect to α, we have:

∂σ′

∂α
=

2

L′

∫ L′/2

−L′/2

(
α(F1(z′)− I1

L′
) + β(F2(z′)− I2

L′
) + γ(F3(z′)− I3

L′
)

)
×

(F1(z′)− I1

L′
)dz′

= αa1 + βb1 + γc1 (A.14)

where we have define a1, b1, and c1 as

a1 ≡
∫ L′/2

−L′/2

(
F1(z′)− I1

L′

)2

dz′

b1 ≡
∫ L′/2

−L′/2
(F2(z′)− I2

L′
)(F1(z′)− I1

L′
)dz′

c1 ≡
∫ L′/2

−L′/2
(F3(z′)− I3

L′
)(F1(z′)− I1

L′
)dz′ (A.15)

In a similar fashion, we can write

∂σ′

∂β
= αa2 + βb2 + γc2 (A.16)

where a2, b2, and c2 are given by equations analogous to Eqns [A.15]

a2 = b1 ≡
∫ L′/2

−L′/2
(F2(z′)− I2

L′
)(F1(z′)− I1

L′
)dz′

b2 ≡
∫ L′/2

−L′/2

(
F2(z′)− I2

L′

)2

dz′

c2 ≡
∫ L′/2

−L′/2
(F3(z′)− I3

L′
)(F2(z′)− I2

L′
)dz′ (A.17)

The coefficients a1, b1, c1, a2, b2, and c2 may all be determined through numerical

integration, once the coil radius, coil length, and length of interest (namely, R, L,
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and L′) are chosen.

Using Eqns [A.13, A.14, A.16], we can solve for α and β in terms of γ:

α =
−γ
a1

[
c1 +

(
a1c2 − a2c1

a2b1 − b2a1

)
b1

]
β = γ

(
a1c2 − a2c1

a2b1 − b2a1

)
(A.18)

A.3 Examples

A.3.1 Coil X-1

For the persistence experiments at the Omega/CSI 4.7 T horizontal bore magnet

at the Brigham and Women’s Hospital, the sample cell (containing 129Xe gas) is a

glass cylinder, roughly 2.5 cm in diameter and 10 cm long. ”Coil X-1”, the first coil

made using the calculations presented here, was based on the following parameters:

R = 1.6 cm

L = L′ = 15 cm

γ = 4.94739 radians/cm

The magnet bore diameter, with gradient coils and an RF shield inserted, re-

stricts the length of the transversely placed solenoid coil to under 18 cm; thus a

length of 15 cm is chosen for convenience. The value of γ is equivalent to 2 turns

per inch, and is roughly the same as a similar coil I had been using that John

Montalbano made for me. This turn density was known to allow the coil to be

tuned to 55.38 MHz (the resonance frequency of 129Xe) while requiring a reasonably

low amount of capacitance. Table A.1 lists the resulting values given the above

parameters.

Figure A.1 shows a plot of F(z’) (Eqn [A.7]) over the length of the coil L; Figure
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a1 = 1.33386× 106 a2 = 29109.2
b1 = 29109.2 b2 = 680.556
c1 = −327.5 c2 = −6.12894
α = 0.00364136 σ′ = 0.031568
β = −0.111196
γ = 4.94739

Table A.1: Calculated values for L = L′ = 15 cm, R = 1.6 cm, γ = 4.94739 rad/cm.

Figure A.1: Optimized field profile F(z′) for L = L′ = 15 cm, R = 1.6 cm, γ =
4.94739 rad/cm.

A.2 shows a plot of the parameter φ(z′) (Eqn [A.4]) given the calculated values of

α, β, and γ.

A.3.2 Coil X-2

As another illustration, I include the calculations for the same parameters, except

that the length L′ over which the σ′ is minimized has been reduced to 11 cm,

reflecting the fact that the Xe sample cells are in fact slightly shorter than the coil’s

total length (of 15 cm). By using L′ < L, it is possible to achieve a much more

uniform field over the desired length L′, as we shall see below. “Coil X-2” is the coil
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Figure A.2: Optimized φ(z′) for L = L′ = 15 cm, R = 1.6 cm, γ = 4.94739 rad/cm.

a1 = 357748 a2 = 10454.7
b1 = 10454.7 b2 = 316.258
c1 = −35.7632 c2 = −1.0235
α = 0.000786011 σ′ = 0.000047
β = −0.00997243
γ = 4.94739

Table A.2: Calculated values for L = 15 cm, L′ = 11 cm, R = 1.6 cm, γ =
4.94739 rad/cm.

we built according to the calculations in this section.

A.4 Other practical considerations

This section includes some practical notes for using the calculations presented here

to construct an RF solenoid coil. Examples from coil X-2 are included.
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Figure A.3: Optimized field profile F(z′) for L = 15 cm, L′ = 11 cm, R = 1.6 cm,
γ = 4.94739 rad/cm.

Figure A.4: Optimized φ(z′) for L = 15 cm, L′ = 11 cm, R = 1.6 cm, γ =
4.94739 rad/cm.
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A.4.1 Winding the coil

To wind a solenoid coil in accordance with the calculations made in section A.3,

we wrote a macro for TurboCAD2 running on an Apple Macintosh computer. The

macro is listed below:

{ TurboCad macro for drawing a coil winding pattern }
{ used for Persistence Measurement expt }
{ gpw, 10/28/99 }
{ based on a phase equation given by alpha/5*z∧5 + beta/3*z∧3 + gamma*z }
{ where alpha, beta, gamma are determined elsewhere, and are functions }
{ of both the coil radius R and length L of the solenoid }

&pi = 3.1415927
&twopi = 2 * &pi;

{ the following would give a constant pitch winding of }
{ 2 turns/inch = 0.7874 turns/cm }
&gamma = 4.94739
{ in units radians/cm }

{ the following are determined from &gamma and assuming R=1.6 cm, L=15 cm }
{ L’ = 11 cm }
&alpha = 0.000786011
&beta = -0.00997243

&length = 15
&radius = 1.6
&xoffset = 10
&yoffset = 10

{ set work units to cm }
SETUP Work=cm

&zincr = .01;
&zz = -(&length/2);

LOOP TOP:
&phi = &alpha/5*(&zz**5) + (&beta/3)*(&zz**3) + (&gamma)*(&zz);

2ver. 3, IMSI, 1895 Francisco Blvd. East, San Rafael, CA 94901.
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&psi = MOD(&phi &twopi)
&sign = 1
if (&psi < 0), &sign = -1
if ((&sign * &psi) > &pi), &psi = &psi - (&sign*(2 * &pi))

Point marker=period [a,(&zz + &xoffset),((&radius * &psi) + &yoffset),0,‘ ‘]
[a,(&zz + &xoffset),((&radius * &psi) + &yoffset),0,‘;‘]
&zz = &zz + &zincr

if (&zz < (&length/2)), GOTO LOOP TOP:

return

Figure A.5 shows a plot that this macro produced; to use it, we printed it and

were able to overlay it directly on our acrylic solenoid form. By perforating the

pattern, we could trace it to the form underneath, and then wind the solenoid using

1/4” copper tape.

15.00 cm

10
.0

5 
cm

Figure A.5: Coil X-2 winding plan. This plot was produced with TurboCAD, as-
suming L′=11 cm, L=15 cm.
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Figure A.6: Photo of Coil X-2. Cell P-2 (3 atm enriched 129Xe, 0.5 atm N2, Rb) is
shown in the foreground, along with a ruler for scale.

A.4.2 Capacitors

Low leakage, non-magnetic capacitors were important for producing a high-Q coil3.

For tuning and matching the coil, we used Johanson4 variable capacitors. Chip

capacitors by ATC5 were uniformly distributed along the length of the solenoid (see

Fig. A.7). Using these capacitors we achieved a coil Q of ∼ 380 (see Fig. A.8).

3It is important that they be non-magnetic! I struggled with shimming the 4.7 T magnet for a
day or two before realizing the coil I had just made used the wrong type of capacitors (they were
magnetic).

4part no. 5641 (1.0–30 pF) Johanson Mfg. Corp., Rockaway Valley Road, Boonton, NJ 07005
55.6 pF, 22 pF, 47 pF (± 2 pF, 250 VDC), American Technical Ceramics, One Norden Lane,

Huntington Station, NY 11746, www.atceramics.com.
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22 pF 47 pF 5.6 pF 47 pF 22 pF

Figure A.7: Schematic for capacitor placement on Coil X-2.

53 53.5 54 54.5 55 55.5 56 56.5 57
-18

-16

-14

-12

-10

-8

-6

-4

-2

0

R
ef

le
ct

ed
 p

ow
er

 (
dB

)

Frequency (MHz)

Figure A.8: Tuning plot for Coil X-2. Shown is the reflected power from Coil X-2
as a function of frequency using an HP8712C network analyzer. The linear FWHM
of the coil resonance at 55 MHz is ≈ 0.145 MHz (note: the plot shown is on a log
scale); this gives a Q of ∼ 380.
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Figure A.9: B1 (partial) profile for Coil X-2. This is a normalized plot of the B1

profile for RF Solenoid coil X-2. It was created by taking the 1-D FLASH image of
a polarized 129Xe cell (∼ 9 cm cylindrical sample), which is proportional to B2

1 given
a homogeneous sample; the point-wise square root of the image is shown above, and
indicates that B1 varies by at most 5% along the length of the 129Xe sample.
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