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Abstract
We explore the phenomenology of potential violations of Lorentz symmetry for

electromagnetic fields. In particular, we focus on ways to constrain effects that

would lead to isotropic variations of the vacuum speed of light from its canonical

value c, which defines the Lorentz coordinate transformation. Using the frame-

work provided by the Standard Model Extension (SME), we consider the conse-

quences of such isotropic Lorentz symmetry violations on the saturation spectra of

relativistic ions, the resonances of passive optical cavities, and the engineering of

and observations made at high energy particle colliders. We show that fractional

deviations of the speed of light in vacuum from c are constrained about zero by

−5.8× 10−12 ≤ κ̃tr ≤ 1.2× 10−11. This improves upon previous limits by a factor of

1.2 million, implying that −4 mm/s ≤ ∆c ≤ 2 mm/s.

This thesis is written from the standpoint of AMO physics, which has histori-

cally dedicated significant attention to the relativistic properties of light. We make

the phenomenological predictions of the SME more accessible to the AMO and bur-

geoning Quantum Information communities by deriving the quantized Hamiltonian

representation of the free Lorentz-violating electromagnetic potentials.

We also present theoretical studies of electromagnetically induced transparency

(EIT) and the classical transport of quantum coherence in warm atomic ensembles

enclosed in anti-relaxation coated vapor cells. We demonstrate that random classical

transport of quantum coherence can be harnessed to coherently couple two or more

optical modes. These coherent couplings are optically controllable, and can in the

idealized limit be used to simulate the action of arbitrary optical elements.

Finally, we report on experiments regarding the stability of atomic frequency

standards based on coherent population trapping (CPT) resonances. We demonstrate

that the error signal produced by a CPT reference, used to stabilize a clock’s electronic
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oscillator, is the sum of many signals produced by the several optical sidebands used

to produce and interrogate the CPT resonance. These sideband signals are generally

more sensitive to fluctuations in the properties of the interrogating laser than the

total clock signal. Our results suggest that these sidebands can be used to stabilize

the laser without sacrificing the clock’s short-term stability.
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Chapter 1

Introduction

The atomic, molecular, and optical (AMO) physics community relies heavily upon

the principle of Lorentz invariance in the pursuit of its research goals, as does the

broader scientific community. Nature appears to hold Lorentz symmetry in high re-

gard, and so we typically do not concern ourselves with the absolute orientation or

motion of our experimental apparatus with respect to an unknown preferred coor-

dinate system. Nor must we worry about the physical properties of our equipment

subtly changing on a day to day basis as the Earth moves around the Sun. We can

thus focus our attention on the more mundane variations that may be caused by

changes in the local environment and component degradation.

The properties of light are of particular importance because, aside from gravity,

electromagnetism dominates every aspect of our personal interactions with Nature.

It is of particular importance to AMO physics, in that light is often the most precise

standard of measure available to experimenters. This is in part the reason that the

speed of light, c ≡ 2.99792458× 108 m/s has been elevated to the status of a funda-

mental constant, providing the basis for the definition of length in the International

System of Units [1]. Experimental measures of the frame-independent isotropy of the

speed of light have been carried out in one form or another since the early 1880’s,

and provided the inspiration for Special and General Relativity, which together have

formed the cornerstone of our present extremely successful (if nevertheless incomplete)

understanding of the laws of Nature.

3



4 Chapter 1: Introduction

Tests sensitive to Lorentz symmetry violations giving rise to shifts and anisotropies

in the speed of light are of general interest to the study of high energy physics, since

such symmetry breaking is a general feature of non-commutative field theories [2]

and can also appear in theories which break the gravitational equivalence principle

[3]. These effects can be phenomenologically understood using the effective field

theory framework provided by the Standard Model Extension (SME) [4, 5]. The

properties of the SME most relevant to this thesis are reviewed in Chapter 2. Modern

versions of the famed Michelson-Morley experiment have ruled out anisotropies in the

speed of light to the level of one part per 1018 [6, 7]. Given such results, it is then

somewhat surprising that as late as 2005 [8–10], comparatively little could be said

about the degree to which the speed of light might evidence isotropic deviations from

its canonical value. As late as 2005, the best constraints on such isotropic violations

of Lorentz symmetry were at the part per 105 level [8]. In Chapter 3 of this thesis, we

demonstrate an improvement of this limit by more than five orders of magnitude, such

that we can rule out the presence of an isotropic shift in the vacuum speed of light

at the level of a few mm/s [10]. At the time of submission of this thesis, our result

constitutes the world’s best direct experimental constraint on isotropic variations in

the speed of light [11].

As evidenced in the following chapters, the wide range of classical and quantum

effects that even minute violations of Lorentz symmetry can generate is a testament to

the deep impact that Einstein’s Relativity postulates have had on the development

of modern physics. In an effort to expand our understanding of how deeply these

effects might be felt, we present in Chapter 4 a derivation of the quantized Hamilto-

nian for the free Lorentz-violating electromagnetic potential. Although the quantized

Lagrangian representation of this theory has been known for some time [4,5], compar-

atively little has been known about the Hamiltonian representation of the quantized

theory. This is of some concern, since most modern investigations of physics at low

energy scales rely heavily on the Hamiltonian formalism. Such is the case for the

AMO and quantum optics communities, and is doubly true of the relatively young

field of quantum information. It is our hope that the work presented in Chapter 4

may be an aid in relating advances in the field of quantum information to a new
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understanding of fundamental physics.

1.1 Historical Overview

Since Einstein’s seminal work on the electrodynamics of moving bodies [12], where

the theory of special relativity was first put forth, the properties of light, and in par-

ticular its speed of propagation through space, have played a central role in the

development of modern physics. In his 1905 publication, Einstein offered the princi-

ple of relativity in the form of two postulates. i) the speed of light c is the same in all

inertial frames, and ii) the laws of physics take the same form in all inertial frames.

The first postulate was first used to define a system of time and space coordinates in

one inertial frame S, and then to derive a relation between the coordinates of S and a

similarly defined set of coordinates in the moving frame S ′. This represented a com-

paratively simple derivation of the Lorentz-Fitzgerald [13] coordinate transformation,

which replaces the Galilean transformation

t′ = t, y′ = y,

x′ = x− vt, and z′ = z,
(1.1)

where the origin of S ′ moves with constant velocity ~v = vx̂ in the coordinates of S,

with

t′ =
1√

1− (v/c)2

(
t− vx

c2

)
, y′ = y,

x′ =
1√

1− (v/c)2
(x− vt) , and z′ = z.

(1.2)

This step, in conjunction with the requirement that the laws of physics be defined

identically in all frames, allowed Einstein to straightforwardly demonstrate the the-

oretical unification of the electric and magnetic forces, by showing that the force

exerted on a moving charge q by interaction with the magnetic field generated by an

electric current could be understood as a purely electrostatic force after making the

transformation (1.2) into the charge q’s rest frame.
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Since 1905, special relativity, also known as the principle of Lorentz invariance,

has been demonstrated to apply extremely well to the physics of every known par-

ticle or field. Its broad application to virtually every field of scientific endeavor has

significantly informed our present understanding of the Universe and made possible

one of the greatest and most rapid expansions of mankind’s theoretical and tech-

nological capabilities in human history. At this point, experience strongly suggests

that Lorentz invariance is at least an approximate symmetry of Nature. The ques-

tion as to whether it may be an exact symmetry, however, has yet to be answered.

Although this problem must ultimately be resolved experimentally, our theoretical

understanding of the properties of Lorentz symmetry have changed significantly since

1905. In particular, our view of the potential underlying causes of Lorentz violation

has changed dramatically over the past century. Thus we begin this portion of the

thesis with a brief historical review.

1.1.1 Early Demonstrations of Lorentz Invariance

The earliest experimental test of Lorentz invariance was carried out by Albert A.

Michelson in 1881 [14], nearly a quarter century prior to Einstein’s publication of the

theory inspired by its results. Working under the assumption that electromagnetic

waves represented propagating excitations of an underlying physical medium known

as the ether, Michelson reasoned that the distance traveled by light moving back and

forth between two fixed points on the Earth, as measured in the rest frame of the

ether, must depend upon the orientation of the optical path relative to the Earth’s

motion through the ether. Specifically, if the Earth moves with velocity ~v through

the ether, and V is the speed at which light propagates through the ether, then

the time required for light to travel a distance D between two points on Earth is

simply 2D/V if the light travels perpendicularly to ~v, and 2DV/(V 2−v2) if it travels

parallel to ~v. By constructing an apparatus to interfere two beams of light which

have traveled back and forth along perpendicular paths, and subsequently rotating

this apparatus relative to the Earth, Michelson was able to demonstrate that the

speed with which the Earth moves through the ether could be no larger than half of
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the Earth’s orbital velocity, provided that (1.1) holds. Subsequent experiments by

Michelson and Morley [15] placed stronger constraints upon ~v, while more recent tests

have limited our speed relative to the ether to be no more than |~v| ≤ 0.3 nm/s [6,7].

The null result of the Michelson-Morley experiments was explained in 1904 by

Hendrik A. Lorentz under the hypothesis that the linear dimension of an object mov-

ing with velocity ~v with respect to the ether must contract in the direction parallel to

the motion [13]. This Lorentz-Fitzgerald contraction had the same functional form

as the relativistic length contraction put forth by Einstein, and was thus formally

consistent with special relativity, although the Lorentz-Fitzgerald model lacked the

broader applicability of the postulates of relativity. These theoretical developments

ultimately motivated the Kennedy-Thorndike experiments, in which one arm of a

Michelson interferometer was shortened so as to make the resulting interference pat-

tern sensitive to deviations of the time-dilation factor from that predicted by the

Lorentz-Fitzgerald/relativistic coordinate transformations (1.2) [16].

As noted by Kennedy and Thorndike in [16] and derived in detail by Herbert

E. Ives [17, 18], in the absence of additional constraints motivated by the theory,

the null results of the Michelson-Morley and Kennedy-Thorndike experiments only

constrained the properties of the Lorentz transformation such that the ratio of any

relativistic length contraction along the boost velocity ~v to that which may occur at

right angles to the motion must be(√
1− (v/c)2

)n+1

:
(√

1− (v/c)2
)n
, (1.3)

and that the frequency shift due to time dilation experienced by a moving clock

relative to a stationary one must be(√
1− (v/c)2

)1−n
: 1. (1.4)

The uncertainty regarding the proper value of n motivated Ives and G. R. Stilwell

to make a direct measurement of the relativistic time dilation factor by isolating the

transverse Doppler shift from light emitted by rapidly moving atoms, yielding results

consistent with n = 0, and thus consistent with the Lorentz-Fitzgerald transformation

[19].
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1.1.2 Kinematic Models: The RMS Framework

Taken together, the results of the Michelson-Morley, Kennedy-Thorndike, and

Ives-Stilwell tests provided experimental evidence that Nature’s laws are consistent

with the principle of Lorentz invariance. Indeed, as H. P. Robertson showed in 1949,

it is possible to infer the principle of Lorentz invariance solely from their results [20].

Building upon Robertson’s work, Reza Mansouri and Roman U. Sexl constructed a

kinematic framework, commonly referred to as the Robertson-Mansouri-Sexl (RMS)

framework, to test the postulates of relativity. In this model, the existence of a pre-

ferred frame Σ in which light travels isotropically at speed c is postulated, while the

properties of light in all other frames is left undefined. The RMS Lorentz transfor-

mation from a frame S moving with velocity −vx̂ relative to Σ becomes

T =
1

a
(t+ vx/c2),

X = x/b+
v

a
(t+ vx/c2),

Y = y/d,

Z = z/d,

(1.5)

or in terms of a boost from the preferred Σ frame into S,

t = aT − bv(X − vT )/c2,

x = b(X − vT ),

y = dY,

z = dZ,

(1.6)

where a, b, and d are arbitrary even functions of v/c which tend to 1 as v → 0.

The form of the infinitesimal RMS-framework Lorentz transformation can then be

determined at any order in v/c by taking their expansion

a = 1 + (α̂− 1/2)
(v
c

)2

+O
[(v
c

)4
]
, (1.7)

b = 1 + (β̂∗ + 1/2)
(v
c

)2

+O
[(v
c

)4
]
, (1.8)

d = 1 + δ̂
(v
c

)2

+O
[(v
c

)4
]
. (1.9)
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where we intend the symbol β̂∗ to be distinct from the usual relativistic meaning

of β = v/c. Comparison of (1.6) with (1.2) reveals that to second order in v/c,

special relativity predicts α̂ = β̂∗ = δ̂ = 0. If this condition is not met, then the

speed of light must generally be anisotropic in any but the preferred frame Σ. By

2003, modern versions of the Michelson-Morley, Kennedy-Thorndike, and Ives-Stilwell

tests had constrained |β̂∗ − δ̂| ≤ 1.5 × 10−9 [21], |α̂ − β̂∗| ≤ 6.9 × 10−7 [22], and

|α̂| ≤ 2.2× 10−7 [23].

The kinematic RMS framework provides a means to make predictions about the

manner in which the two postulates of relativity may be violated, but is of limited

use in determining the physics that such violations should be attributed to. Were a

modern-day Michelson-Morley experiment to provide evidence that any of the RMS

parameters were non-zero, it would immediately prompt us to ask whether massive

particles obeyed the same velocity and time transformation laws. Questions of this

kind cannot be adequately addressed by purely kinematic model with three parame-

ters.

1.1.3 Dynamical Models: The Standard Model Extension

The principle of Lorentz invariance has been a cornerstone of both General Rel-

ativity (GR) and the Standard Model (SM) of particle physics. These theories have

been used with great success to describe the laws of Nature, but have not as yet been

fully reconciled with one another. Both GR and the SM are commonly believed to

represent the low-energy limit of a single theory, unified at energies approaching the

Planck scale (1019 GeV). The development of string theory has presented us with a

variety of ways in which this unification might occur, but there is presently no way to

directly probe physics at the Planck scale. This fact, coupled with the realization in

the late 1980’s that string theories could potentially give rise to spontaneous Lorentz

symmetry violation at low energy scales [24, 25], has driven a resurgence of interest

in tests of Lorentz invariance.

Such spontaneous Lorentz violation could occur if the vacuum states of the com-

plete theory required some tensor-valued fields to acquire nonzero vacuum expectation
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values (vevs) [24, 25]. Under these circumstances, the behavior of any fields which

couple to such vevs would vary according to the orientation and boost of the chosen

coordinates. Any low energy effective field theory that fails to account for the detailed

(high energy) dynamics of the fields with nonzero vevs could then appear to violate

the second postulate of Relativity.

The idea that physics at high energy scales can lead to broken symmetries at

low energies is not new. In the context of the Standard Model, for example, the

existence of a Higgs boson can be inferred from spontaneous violation of electroweak

symmetry. Another example is presented by the phenomenon of ferromagnetism,

where rotational symmetry in a system of fermions is spontaneously broken as it is

cooled past the Curie temperature. Thus experimental searches for evidence of broken

Lorentz symmetries are motivated by what light they may shed upon the properties

of physics at high energy scales, much as we now use the breaking of the electroweak

symmetry to infer the properties of the Higgs. In this context, experimental probes

of Lorentz invariance can be motivated by the prospect of completing, rather than

falsifying a Lorentz invariant theory.

As an aid to the development of a new generation of Lorentz symmetry tests,

V. Alan Kostelecký and his collaborators have developed an effective field theory

framework capable of describing arbitrary violations of Einstein’s second postulate of

Relativity, termed the Standard Model Extension (SME) [4,5,26]. The framework of

the SME preserves both General Relativity and the Standard Model as limiting cases,

while also providing all Lorentz-scalar operators that can be constructed from the SM

fields which nevertheless violate Lorentz invariance. By systematic characterization of

the physical consequences of Lorentz symmetry violation, the SME permits particular

unification theories to be indirectly excluded on the basis of the effective field theory

they produce at low energies. The SME has been the basis for the analysis of many

experimental probes of Lorentz symmetry [11], including tests involving photons [6,

8, 9, 21, 27–45], electrons [46–62], protons and neutrons [63–77], as well as mesons,

muons, neutrinos, the Higgs, and gravity [11].Note that since the SME makes no

particular distinction as to the root cause of any Lorentz symmetry violations, it may

also be used to describe Lorentz violation that does not arise spontaneously. It may
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also be used to interpret the results of experimental measurements of the α̂, β̂∗ and δ̂

coefficients of the kinematic RMS framework (see (1.9)), provided that a sufficiently

detailed understanding of the experiment’s physical components exists. The SME,

however, offers us far greater specificity in understanding and constraining various

underlying causes and consequences of Lorentz violation than is afforded by purely

kinematic models.

1.2 Observer vs. Particle Lorentz Invariance

When evaluating a theory which is said to satisfy the twin postulates of relativity,

i.e. that is Lorentz invariant, it is important to note that these postulates may be con-

sidered independently. The first postulate, when stripped of its specific relationship

with the speed of light, simply indicates that the time and spatial coordinates of one

inertial frame may be related to those of another inertial frame via a Lorentz trans-

formation (equation (1.2)). The second postulate adds the further requirement that

the laws of physics take the same form in all inertial frames related by the Lorentz

transformation.

Theories which satisfy the first postulate may be said to be Lorentz invariant

under changes in the observer’s rest frame: things which move at the speed of light c

will be observed to have the same speed in all inertial observer frames. This is often

described as “observer Lorentz invariance”. That this should be the case has more to

do with our freedom to use an arbitrary set of coordinates to describe the behavior of

a physical system without fear of affecting the experimental outcome by mere virtue

of having made that choice. A more formal example of this fact may be found in [78],

where the action for two massless scalar fields Ψ and Φ is written as:

S =
1

2

∫ √−g d4x
(
gαβ∂αφ∂βφ+ (gαβ + ταβ)∂αψ∂βψ

)
, (1.10)

where gαβ and ταβ are arbitrary symmetric tensors which represent fixed (and poten-

tially Lorentz-symmetry violating) background fields which are not necessarily equal

to one another. If the action S is to be a physically meaningful quantity in a theory
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describing the behavior of systems which do not particularly care about the coor-

dinate system in which we describe them, it must be a Lorentz scalar. That is, S

is invariant under all transformations applied equally to the coordinates xµ, the Ψ

and Φ fields, and the background fields gαβ and ταβ. At the outset, we are free to

choose coordinates such that either gαβ or gαβ + ταβ equal ηαβ = diag(1,−1,−1,−1).

After making this selection, we find that transformations of the defined coordinates

of the form (1.2), leave both ηαβ and the quantity S invariant. This implies that the

evolution of any particular system, e.g. , particle velocities, sequences of events, as

expressed in one inertial frame can be related to how that evolution would appear in

any other inertial observer frame by a Lorentz transformation. Thus postulating that

a physical theory must be invariant under Lorentz transformations of an observer’s

coordinates is actually an extremely powerful statement, as it implies that the evo-

lution of a physical system is independent of the representation we choose for it.

Although this idea is now commonly taken for granted by of the scientific community

to the extent that it is rarely articulated, it should be noted that this was not the

case for much of human history, and even today is not universally appreciated.

While Einstein’s first postulate can be understood as being related to the funda-

mental problem of separating reality from our theoretical representations, his second

postulate places a far stronger constraint upon those representations. It requires that

the detailed form of each term in the integrand of (1.10) must be invariant under

a Lorentz transformation. That is, the outcome of an experiment must not depend

upon the inertial rest frame in which it is performed. In general, the second postulate

can be enforced upon either the Ψ or the Φ fields by suitable choice of our initial

coordinates. If ταβ is not the same (up to an overall constant) as gαβ, however, the

second postulate cannot hold for both Ψ and Φ in any one set of coordinates. This

situation can occur if the dynamics of one or both of the two underlying ταβ or gαβ

fields explicitly violate the second postulate, and also if ταβ and gαβ represent different

vacuum expectation values of fields whose dynamics are fully Lorentz covariant. As

noted in part 1.1.3, examples of such symmetry violations in fully consistent physical

theories are easily found in both high energy and condensed matter physics.
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The Standard Model Extension

In this chapter, we provide an overview of the subset of the Standard Model Ex-

tension (SME) most relevant to this thesis, and outline some of the physical effects

which are caused by violations of particle Lorentz covariance. Specifically, we focus

upon the terms in the photon sector of the SME which do not give rise to birefrin-

gence, as described in part 2.2. Prior to the work described in Chapter 3, the isotropic

contribution of these terms, parameterized by κ̃tr, was one of the most poorly con-

strained parameters in the SME. Several of the results described in Chapter 3 rely

upon the fact that Lorentz violation manifests itself as a frame-dependent variation

in the laws of physics, and that the inertial frame which best approximates the co-

ordinate system of an Earthbound laboratory changes slowly over the course of the

sidereal day and year. This time-dependence is given in [28] to first order in the

Earth’s boost velocity ~β, but the precision of the most recent experiments (see part

3.2) is such that useful bounds on Lorentz-violation can be obtained from doubly

suppressed terms at second order in ~β. Thus part 2.3 outlines the derivation of the κ̃

boost transformation to all orders in ~β, leaving the derivation of the exact expression

for Appendix A. In part 2.4, we review a subset of the matter-sector SME coefficients

which have been shown [27,28,39,79] to be equivalent up to a coordinate redefinition

with the non-birefringent photon-sector SME coefficients, and describe the properties

of the coordinate transformation that relates them in part 2.5. We begin by specify-

ing the standard reference frame in which experimental constraints on the SME may

13
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be conveniently related to one another.

2.1 The Sun-Centered Celestial Equatorial Frame

Observer Lorentz covariance requires the action to be a Lorentz scalar. As a result,

Lorentz symmetry violation for particle transformations implies that the coefficients

describing that violation be frame-dependent. This implies that all experimental con-

straints on Lorentz-violating couplings are invariably tied to the specific inertial frame

in which the apparatus was constructed. Since the inertial frame approximating that

of a laboratory fixed to the Earth’s surface changes with time and geographic location

as the Earth orbits the Sun (see part 2.3), comparisons between the constraints de-

rived by different experiments cannot be accomplished without taking account of how

the contributing SME parameters transform when written in different inertial frames.

By convention, experimental bounds on terms in the SME are typically reported in

terms of their values in the Sun-Centered Celestial Equatorial Frame (SCCEF).

The choice of the SCCEF, depicted in Figure 2.1, as the standard reference frame

has a number of advantages. First and most obviously, the velocity of the Earth with

respect to the Sun is well known, and can be straightforwardly tied to the date and

time that experimental observations are made. Because the North-South polar axis of

the SCCEF is aligned with the apparent rotation of the celestial sphere as seen from

Earth, observations of astrophysical sources as seen from Earth can be easily related

to how they would appear in the SCCEF by a simple boost and rotation about this

axis.

For experiments performed in laboratories affixed to the Earth’s surface, the trans-

formation from the SCCEF to a laboratory frame in which the z-axis points vertically

upwards, the y-axis points east, and the x-axis points south is given in [28] by the

rotation matrix

RjJ =


cosχ cosω⊕T⊕ cosχ sinω⊕T⊕ − sinχ

− sinω⊕T⊕ cosω⊕T⊕ 0

sinχ cosω⊕T⊕ sinχ sinω⊕T⊕ cosχ

 , (2.1)



Chapter 2: The Standard Model Extension 15
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Y

Z

Figure 2.1: Schematic diagram of the Sun-Centered Celestial Equatorial
Frame. Z is aligned along the Earth’s orbital axis, while X points in the
direction of the vernal equinox depicted with the Earth at point a. The
dashed ellipse is aligned along the celestial equator, and is thus contained
in the XY -plane. The solid ellipse represents the Earth’s orbit, which is
inclined relative to the celestial equator by η ' 23.4◦. Shown at point b is
the summer solstice for the northern hemisphere, while c lies between the
autumnal equinox and the northern hemisphere’s winter solstice.

where the upper case J denotes an index in the SCCEF, while the lower-case roman

index j applies to an index in a frame which does not rotate relative to the laboratory.

Here, χ is the colatitude of the laboratory, ω⊕ ' 2π/(23 h 56 min.) is the angular

sidereal frequency of the Earth’s rotation about its axis, and the time T⊕ is that

measured in the SCCEF since the laboratory y-axis coincided with the Y -axis in the

SCCEF. This rotation is followed by a boost ~β. Taking Ω⊕ as the Earth’s orbital

angular frequency, the speed of a fixed laboratory due to the Earth’s daily rotation

as βL = ω⊕r⊕ sinχ ∼< 1.5× 10−6, and the time defined in the laboratory as T , we find

that

~β = β⊕


sin Ω⊕T

− cos η cos Ω⊕T

− sin η cos Ω⊕T

+ βL


− sinω⊕T⊕

cosω⊕T⊕

0

 , (2.2)
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where β⊕ ' 10−4 is the orbital speed of the Earth around the Sun, and η ' 23.4◦

is the angle between the plane of the ecliptic and the equatorial XY plane of the

SCCEF [28]. This transformation approximates the Earth as a perfect sphere in a

circular orbit around the Sun.

By repeating a given experimental test of Lorentz symmetry at different times

while the orientation and velocity of the laboratory varies in the SCCEF, different

combinations of terms parameterizing Lorentz violation (as defined in the SCCEF)

may be constrained. This not only broadens the reach of a given experiment, but can

also serve to isolate the observed signals (or their absence) from common sources of

systematic error. Since the laboratory frame returns to the same absolute orientation

and velocity as measured in the SCCEF once every sidereal day and once a sidereal

year, we may conclude that the physical effects of Lorentz symmetry violation must

appear at harmonics of ω⊕ and Ω⊕ [5, 28]. This permits experimental analyses to

straightforwardly ignore potentially spurious signals that may appear at other fre-

quencies. For example, perturbations due to solar heating of the area surrounding

the laboratory as well as most man-made sources of noise tend to repeat once every

24 hour solar day, which is not quite the sidereal day (∼ 23.93 hrs). Shifts in the

laboratory horizontal due to tidal effects or loading of the local water table will re-

peat after a period of the lunar cycle or solar year [80,81], which are not exactly the

same in sidereal time. Further isolation of the signal from particularly strong source

of external noise can sometimes be achieved by active rotation of the experimental

apparatus [31, 82].

2.2 Photon Sector

In the photon sector of the minimal SME, the conventional −1
4
F 2 electromagnetic

Lagrangian is augmented to become

L = −1

4
FµνF

µν − 1

4
(kF )κλµνF

κλF µν +
1

2
(kAF )κεκλµνA

λF µν , (2.3)

where both (kF ) and (kAF ) break particle Lorentz symmetry. The (kAF ) term also

breaks CPT symmetry, and has units of mass. The best constraints upon (kAF )
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are derived from polarization studies of the cosmic microwave background, and are

presently such that the magnitude of each of the four components is estimated to

be no larger than ∼ 10−43 GeV [11, 83]. This is far below the scale at which the

elements of (kF ) have been constrained, and is indeed far below the reach of any

proposed experimental investigations, which are sensitive to (kAF ) at the level of

∼ 10−21 GeV [83, 84]. Accordingly, we will consider only models in which (kAF ) = 0

in our subsequent analyses. The (kF ) tensor has the symmetries of the Riemann ten-

sor and a vanishing double trace, and thus actually represents only 19 independent

parameters. The dimensionless (kF ) does not generate a photon mass, but instead

imparts fractional variations in the phase velocity of electromagnetic waves propagat-

ing in a Lorentz-symmetry violating vacuum. These variations can depend upon the

both the direction and polarization of the propagating wave. In [28], the (kF ) tensor

is re-expressed in the more phenomenologically transparent form as

L =
1

2

[
(1 + κ̃tr)| ~E|2 − (1− κ̃tr)| ~B|2

]
+

1

2

[
~E · (κ̃e+ + κ̃e−) · ~E − ~B · (κ̃e+ − κ̃e−) · ~B

]
+ ~E · (κ̃o+ + κ̃o−) · ~B,

(2.4)

where κ̃tr is a scalar; and the 3×3 κ̃e+, κ̃e−, κ̃o− matrices are traceless and symmetric,

while κ̃o+ is antisymmetric. In terms of (kF ), the κ̃’s are given by

(κ̃e+)jk = −(kF )0j0k +
1

4
εjpqεkrs(kF )pqrs

(κ̃e−)jk = −(kF )0j0k − 1

4
εjpqεkrs(kF )pqrs +

2

3
δjk(kF )0l0l

(κ̃o+)jk =
1

2

(
(kF )0jpqεkpq − (kF )0kpqεjpq

)
(κ̃o−)jk =

1

2

(
(kF )0jpqεkpq + (kF )0kpqεjpq

)
and κ̃tr = −2

3
(kF )0l0l.

(2.5)

Sums on the repeated roman indices j, k,m, p, q, r, s = 1, 2, 3 are implied. We then

define the electromagnetic fields, as originally outlined in [3–5] and [27,28], as(
~D

~H

)
=

(
1 + κ̃e+ + κ̃e− + Iκ̃tr κ̃o+ + κ̃o−

κ̃o+ + κ̃o− 1 + κ̃e+ − κ̃e− − Iκ̃tr

)(
~E

~B

)
, (2.6)
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then the Lagrangian equations of motion derivable from (2.4) reduce to the form of

the Maxwell equations in an anisotropic medium

~∇× ~H − c ∂t ~D = 0, ~∇ · ~D = 0

~∇× ~E − c ∂t ~B = 0, ~∇ · ~B = 0.
(2.7)

This implies that the general form of the solution to the wave equation in the Lorentz-

violating vacuum is similar to that of a plane wave propagating in an anisotropic

medium. We can immediately see that κ̃tr gives rise to an isotropic shift in the effective

permeability and permittivity of the vacuum, and thus an isotropic and helicity-

independent shift in the speed of light [28]. To determine the effects of the other κ̃’s,

we need to solve the full dispersion relation. The analogy with electromagnetism in

anisotropic media leads us to write the ansatz

~E = ~E0e
−iωt+i~k·~r and ~B = ~B0e

−iωt+i~k·~r, (2.8)

and require that ω, ~k, and the fields satisfy the modified Ampère law [4, 5, 27,28,52](−δpqk2 − kpkq − 2(kF )pβγqkβkγ
)
Eq = 0. (2.9)

To leading order in (kF ), this modifies the dispersion relation between ω and ~k,

yielding

ω± = (1 + ρ± σ)|~k|c. (2.10)

The ± subscript on ω and between ρ and σ denotes whether the wave has positive

or negative helicity, so that ρ represents a polarization-independent shift of the phase

velocity, while σ is a birefringent shift. In terms of (kF ), these parameters are

ρ = −1

2
k̃ α
α , σ2 =

1

2
k̃αβk̃

αβ − ρ2, (2.11)

where

k̃αβ = (kF )αµβν k̂µk̂ν , k̂µ = kµ/|~k| (2.12)

and kµ is the four-vector (ω/c,~k), and the relativistic inner product is implied by

pairs of repeated subscripted and superscripted greek indices: AµB
µ = A0B0 −
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A1B1 − A2B2 − A3B3. The ρ and σ governing the dispersion relation for a plane

wave propagating in the +ẑ direction may be written in terms of the κ̃’s as [8]

ρ = −κ̃tr +
1

2
κ̃33
e− + κ̃12

o+ (2.13)

and

σ2 =
1

4

(
κ̃11
o− − κ̃22

o− − 2κ̃12
e+

)2
+

1

4

(
κ̃22
e+ − κ̃11

e+ − 2κ̃12
o−
)2
. (2.14)

Note that κ̃tr, κ̃o+, and κ̃e− govern the polarization-independent shifts, while κ̃e+ and

κ̃o− describe birefringence. Because the theory is invariant under observer rotations,

this division holds for waves propagating in any direction. The division persists under

boosts of the observer frame, since observer Lorentz covariance requires that observing

birefringent phenomena in one inertial frame implies birefringence in all frames, while

its absence in one frame implies its absence in all other frames1.

The ten birefringent parameters κ̃o− and κ̃e+ components of the (kF ) tensor have

been constrained at the level of 10−37 by spectropolarimetric studies of light emitted

from distant stars [27, 28,37]. A comparatively weak constraint of 10−16 on the bire-

fringent κ̃’s was obtained in [28] by searching for evidence of birefringence-induced

time-splitting of short pulses of light emitted from distant millisecond pulsars and

gamma-ray bursts. The far stronger constraint of 10−32 [28] and even 10−37 for some

combinations of κ̃o− and κ̃e+ [37] is derived from searches for characteristic correla-

tions between the polarization and wavelength of light observed from distance sources.

These constraints are far stronger than the best limits on the nine non-birefringent

κ̃tr, κ̃o+, and κ̃e− parameters, and thus the contribution of the κ̃o− and κ̃e+ matrices

will be neglected in our subsequent analyses. Taking this approximation, we may

write down the fractional shift ρ(~k) in the vacuum phase velocity of light moving in

arbitrary directions in terms of its transverse polarization vectors

ρ(~k) =
[
~ε1(~k) · κ̃o+ · ~ε2(~k)

]
− 1

2

2∑
r=1

[
~εr(~k) · (κ̃e− + Iκ̃tr) · ~εr(~k)

]
, (2.15)

1This division does not persist when the dispersion relation is solved to second order in (kF ). In
particular, taking (2.9) to second order in κ̃33

e− reveals a fractional difference of 1
2

(
κ̃33
e−
)2 between

the phase velocities of the two transverse modes propagating in the +ẑ direction.
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where for each ~k, the transverse unit polarization vectors ~ε1(~k) and ~ε2(~k) satisfy

~ε1(~k) = ~ε1(−~k) ~ε2(~k) = −~ε2(−~k),

and ~ε1(~k)× ~ε2(~k) = k̂.
(2.16)

As an illustrative example of the roles played by the different non-birefringent κ̃

parameters, we see that for light traveling along the z-axis in the +z direction, with

~ε1( ~kẑ) = x̂ and ~ε2( ~kẑ) = ŷ,

ρ(kẑ) = κ̃xyo+ − κ̃tr −
1

2

(
κ̃xxe− + κ̃yye−

)
= κ̃xyo+ − κ̃tr +

1

2
κ̃zze−, (2.17)

where we have taken advantage of the vanishing trace of κ̃e−. For light traveling in

the −z direction, however, we find that

ρ(−kẑ) = −κ̃xyo+ − κ̃tr +
1

2
κ̃zze−, (2.18)

since (2.16) specifies the sign of ~ε1,2(~k) relative to ~ε1,2(−~k). Thus we see that κ̃tr
represents an isotropic fractional reduction in the vacuum phase velocity of light, κ̃e−
describes the average shift in the speed of light propagating back and forth along a

given axis, and κ̃o+ governs the difference in the one-way speed of light along an axis.

The lack of extremely precise knowledge of the distance between the Earth and

distant stars, combined with the absence of a cooperative race of aliens providing

us with timing information, makes it difficult to directly discern the effects of the

non-birefringent κ̃s on the vacuum speed of light. Most existing constraints upon

these terms must therefore be derived from terrestrial experiments, although as we

note in part 3.3.1, new constraints on the photon sector of the SME are likely to

come from extended studies of the energy distribution and composition of ultra-high

energy cosmic rays.

2.3 Frame-Dependence of κ̃

Although the Standard Model Extension is used to describe potential deviations in

the behavior of physical systems from complete Lorentz symmetry, symmetry under

observer boosts and rotations is preserved. As discussed in part 1.2, this means that
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the action, i.e. , the value of the Lagrangian integrated over the course of a particular

system’s evolution in time from one configuration to another must be minimized in all

inertial observer frames. This means that the action, and the Lagrangian itself must

be a Lorentz scalar, and invariant under observer boosts. Because the Standard Model

is itself term by term Lorentz covariant, and the electromagnetic vector potential Aµ in

(2.3) transforms like any other covariant four-vector, we find that the transformation

of the κ̃’s is nontrivial, as it must be if particle Lorentz invariance is to be broken.

To gain a more intuitive understanding of the mixing between κ̃’s under boosts,

we may consider a simplified model for which, in a particular inertial frame F , only

κ̃tr is nonzero. As discussed above, this causes an isotropic shift in the speed of

light in the vacuum from its canonical value c. Since the theory is to remain Lorentz

invariant under boosts of the observer frame, we may infer that the shifted velocity cph
of any electromagnetic wave in F transforms like any other velocity when observed in

a boosted frame F ′. If cph 6= c of a wave is isotropic in F , then its measured velocity

in the boosted frame will be different, and in general anisotropic. To leading order in

β, the phase velocity component of a wave parallel to the boost will decrease, while

the anti-parallel component will be increased. The phase velocities of waves moving

perpendicular to the boost in F ′ are the same as in F at leading order, but acquire

identical shifts at second order in β. Thus we may conclude that κ̃tr and κ̃o+ mix

under boosts at leading order in β, while κ̃tr mixes with κ̃e− at second order. A similar

argument may be used to show that κ̃o+ and κ̃e− are also mixed at leading order in

β. In principle, the complete transformation law can be inferred in a cumbersome

fashion from the relativistic velocity addition formula applied to (2.15).

We will now use the Lorentz invariance of the Lagrangian (2.3) to derive the

general form of the transformation of the κ̃ coefficients under an arbitrary boost ~β

from one inertial frame to another. We are particularly interested in terms which

appear at second order in ~β. This work extends the perturbative treatment of such

boosts previously reported in [28]. There, the transformation is given in terms of a
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slightly different representation of the κ̃ matrices:

κDE = κ̃e+ + κ̃e− + Iκ̃tr

κHB = κ̃e+ − κ̃e− − Iκ̃tr
κDB = κ̃o+ + κ̃o− = −κTHE.

(2.19)

For a rotation in space described by the rotation matrix RjJ and a boost βQ, the

leading order transformation is then

(κDE)jk = T jkJK0 (κDE)JK − T jkJK1 (κDB)JK − T kjJK1 (κDB)JK ,

(κHB)jk = T jkJK0 (κHB)JK − T jkKJ1 (κDB)JK − T kjKJ1 (κDB)JK ,

(κDB)jk = T jkJK0 (κDB)JK + T kjJK1 (κDE)JK + T jkJK1 (κHB)JK ,

(2.20)

with

T jkJK0 = RjJRkK and T jkJK1 = RjPRkJεKPQβQ. (2.21)

Since the publication of [28], a number of extremely sensitive Michelson-Morley

tests have been carried out [6, 7, 21, 22, 29–31, 33, 82, 85]. Such experiments look for

differences between the resonant frequencies of a pair of orthogonally mounted opti-

cal cavities which depend upon the cavities’ orientation in space. Since the resonant

frequency is determined by the total phase accumulated by a wave making a round

trip within each cavity, and only the differences between the cavities’ resonance fre-

quencies contribute to the experimental observable, these tests are primarily sensitive

to anisotropic shifts in the average speed of light in space, and thus to κ̃e− [28]. By

repeating these experiments over extended periods as the laboratory frame is changed

by the rotational and orbital motion of the Earth, the resulting constraints on the

value of κ̃e− in a range of different (quasi) inertial frames may be used in conjunction

with (2.20) to place weaker constraints upon the κ̃o+ parameters. The sensitivity of

modern Michelson-Morley experiments to κ̃e− has improved to the extent that they

may be used (see part 3.2) to set useful constraints on the isotropic κ̃tr coefficient,

despite its second order suppression [86].

We begin with the Lagrangian (2.4) written in terms of κ̃. The birefringent κ̃e+ and

κ̃o− do not mix with κ̃e−, κ̃o+ or κ̃tr under boosts, and in any case their contribution



Chapter 2: The Standard Model Extension 23

to the physics has been constrained by [37] to be at least sixteen and in some cases

twenty-one orders of magnitude smaller than any of the most tightly constrained non-

birefringent parameters [11]. Dropping the birefringent terms, the Lagrangian in an

arbitrary initial frame F is given by

LF =
1

2

[
(1 + (κ̃tr)F )| ~E|2 − (1− (κ̃tr)F )| ~B|2

]
+

1

2

[
~E · (κ̃e−)F · ~E + ~B · (κ̃e−)F · ~B

]
+ ~E · (κ̃o+)F · ~B,

(2.22)

where we have assigned the subscript F to the Lagrangian and to the κ̃’s to distinguish

them from their values in other inertial frames. Given the dual requirements that the

Lagrangian be conserved and that the ~E and ~B fields transform normally, deriving

the transformation law is simply a matter of collecting terms. We may write the

Lagrangian in terms of the SME coefficients and field variables as seen in the frame

F ′ obtained by a boost of ~β from F as

LF = LF ′ =
1

2

[
(1 + (κ̃tr)F ′)| ~E ′|2 − (1− (κ̃tr)F ′)| ~B′|2

]
+

1

2

[
~E ′ · (κ̃e−)F ′ · ~E ′ + ~B′ · (κ̃e−)F ′ · ~B′

]
+ ~E ′ · (κ̃o+)F ′ · ~B′.

(2.23)

Then, since the transformed fields ~E ′ and ~B′ can be written in terms of

~E ′ = γ
(
~E + ~β × ~B

)
− γ2

γ + 1

(
~β · ~E

)
~β

~B′ = γ
(
~B − ~β × ~E

)
− γ2

γ + 1

(
~β · ~B

)
~β,

(2.24)

both LF and LF ′ can be written in terms of the unprimed fields. Since the particular

configuration of ~E and ~B is arbitrary, LF = LF ′ must be satisfied term by term for all

terms proportional to EjEk, BjBk and EjBk (with j, k ∈ {1, 2, 3}) which may appear.

The system of equations which results from imposing this term by term equality then

yields the relation between (κ̃)F ′ and (κ̃)F . From the form of (2.23), we see that many

of the resulting expressions are trivial: The expression relating (κ̃jke−)F to (κ̃jke−)F ′ for

j 6= k is obtained from the equality between the coefficients multiplying EjEk, while

that between (κ̃jko+)F and (κ̃jko+)F ′ may be read off by equating coefficients of EjBk.

From the form of the Lagrangian LF , we find that (κ̃tr)F is equal to a linear

function of the coefficients of E2
1 , E2

2 , and E2
3 . Defining the function coef(x, y) to be
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the coefficient of x in an expression y, we may write these coefficients as

C1 = coef(E2
1 ,LF ) C2 = coef(E2

2 ,LF ) C3 = coef(E2
3 ,LF ), (2.25)

and subsequently find that

(κ̃tr)F =
2

3
(C1 + C2 + C3)− 1,

(κ̃22
e−)F = −2

3
(C1 − 2C2 + C3) ,

(κ̃33
e−)F = −2

3
(C1 + C2 − 2C3) ,

(2.26)

where we have left out the redundant expression for κ̃11
e− = −κ̃22

e− − κ̃33
e−, since κ̃e− is

traceless in any frame. To second order in β, the resulting transformation law for the

non-birefringent κ̃ is

κ̃tr(~β) =

(
1 +

4

3
|~β|2
)
κ̃tr +

2

3
(β2

1 − β2
2)κ̃22

e− +
2

3
(β2

1 − β2
3)κ̃33

e−

− 4

3

(
β1β2κ̃

12
e− + β1β3κ̃

13
e− + β2β3κ̃

23
e−
)

+
4

3

(
β3κ̃

12
o+ − β2κ̃

13
o+ + β1κ̃

23
o+

)
,

(2.27)

κ̃22
e−(~β) =

2

3

(
|~β|2 − 3β2

2

)
κ̃tr +

1

3

(
β1β2κ̃

12
e− − 2β1β3κ̃

13
e− + β2β3κ̃

23
e−
)

+

[
1 +

1

3

(
|~β|2 + β2

2 − β2
3

)]
κ̃22
e− +

1

3

(
β2

1 − β2
3

)
κ̃33
e−

+
2

3

(
β3κ̃

12
o+ + 2β2κ̃

13
o+ + β1κ̃

23
o+

)
,

(2.28)

κ̃33
e−(~β) =

2

3

(
|~β|2 − 3β2

3

)
κ̃tr +

1

3

(−2β1β2κ̃
12
e− + β1β3κ̃

13
e− + β2β3κ̃

23
e−
)

+
1

3

(
β2

1 − β2
2

)
κ̃22
e− +

[
1 +

1

3

(
|~β|2 + β2

3 − β2
2

)]
κ̃33
e−

− 2

3

(
2β3κ̃

12
o+ + β2κ̃

13
o+ − β1κ̃

23
o+

)
,

(2.29)

κ̃12
e−(~β) =

(
1 +

1

2
(β2

1 + β2
2)

)
κ̃12
e− − 2β1β2κ̃tr − 1

2
β1β2κ̃

33
e−

+
1

2

(
β2β3κ̃

13
e− + β1β3κ̃

23
e−
)

+ β1κ̃
13
o+ − β2κ̃

23
o+,

(2.30)
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κ̃13
e−(~β) =

(
1 +

1

2
(β2

1 + β2
3)

)
κ̃13
e− − 2β1β3κ̃tr − 1

2
β1β3κ̃

22
e−

+
1

2

(
β2β3κ̃

12
e− + β1β2κ̃

23
e−
)− β1κ̃

12
o+ − β3κ̃

23
o+,

(2.31)

κ̃23
e−(~β) =

(
1 +

1

2
(β2

2 + β2
3)

)
κ̃23
e− − 2β2β3κ̃tr +

1

2
β2β3

(
κ̃22
e− + κ̃33

e−
)

+
1

2

(
β1β3κ̃

12
e− + β1β2κ̃

13
e−
)− β2κ̃

12
o+ + β3κ̃

13
o+,

(2.32)

κ̃12
o+(~β) =

(
1 +

1

2

(
|~β|2 + 3β2

3

))
κ̃12
o+

+ β3(2κ̃tr − κ̃33
e−)− β1κ̃

13
e− − β2κ̃

23
e−

+
3

2
β3

(
β2κ̃

13
o+ − β1κ̃

23
o+

)
,

(2.33)

κ̃13
o+(~β) =

(
1 +

1

2

(
|~β|2 + 3β2

2

))
κ̃13
o+

− β2(2κ̃tr − κ̃22
e−) + β1κ̃

12
e− + β3κ̃

23
e−

+
3

2
β2

(
β3κ̃

12
o+ + β1κ̃

23
o+

)
,

(2.34)

κ̃23
o+(~β) =

(
1 +

1

2

(
|~β|2 + 3β2

1

))
κ̃23
o+

+ β1(2κ̃tr + κ̃22
e− + κ̃33

e−)− β2κ̃
12
e− − β3κ̃

13
e−

− 3

2
β1

(
β3κ̃

12
o+ − β1κ̃

13
o+

)
.

(2.35)

The general form of the transformation valid to all orders in ~β is derived in Ap-

pendix A. It is important to note that the transformation law derived here and in

Appendix A is not necessarily valid for boosts with extremely large Lorentz factors.

The Standard Model Extension Lagrangian, like any effective field theory, should not

be confused with its exact form at energies high enough that corrections to known

low energy physics become significant. As a consequence, the relations presented

here and in Appendix A should be considered accurate for boosts with both small

and large γ, with the caveat that the energies of particles moving with Lorentz fac-

tor γ remain far below the level at which the details of physics at high energy scale

become important [87].
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2.4 Matter Sector

As noted in part 1.2, some forms of Lorentz symmetry violation in the physics of

a given particle can only be detected by comparison with the Lorentz symmetries of

another species. Such is the case for the non-birefringent κ̃’s in the photon sector of the

SME, since they may be written, using (2.11) and (2.12), as the symmetric (kF ) µαν
α

tensor coupled to the electromagnetic potentials. Tests of the non-birefringent κ̃’s

must therefore be understood as constraints on differences in Lorentz-violating effects

experienced by different particle species relative to one another, with the particular

values of the SME coefficients in our model determined by the coordinates we choose

to work in. It is sometimes convenient to choose to work in coordinate systems

for which parts of the photon sector or those of a particular portion of the matter

sector of the SME are manifestly Lorentz covariant. In part 3.3 of this thesis, we use

coordinates such that κ̃tr is mapped into its corresponding fermion-sector coefficients,

so as to facilitate a fully quantized representation of the photon-fermion interaction.

We therefore review a selection of the Lorentz-violating terms in the matter sectors

of the SME. The general form of the minimal SME Dirac fermion is given by [4, 5]

L = i
1

2
ψ

(
γν + cµνγ

µ + dµνγ5γ
µ + eν + ifνγ5 +

1

2
gλµνσ

λµ

)
↔
∂ν ψ

− ψ
(
m+ aµγ

µ + bµγ5γ
µ +

1

2
Hµνσ

µν

)
ψ,

(2.36)

where the 4× 4 γ-matrices are as usual defined in terms of the 2× 2 identity matrix

I and the Pauli matrices σk as

γ0 =

(
I 0

0 −I

)
, γk =

(
0 σk

−σk 0

)
, γ5 = iγ0γ1γ2γ3, (2.37)

and aµ, bµ, cµν , dµν , eν , fν , gλµν and Hµν parameterize violations of particle Lorentz

covariance. Here, we focus on the properties of the cµν coupling in the non-relativistic

limit. Like the photon-sector (kF ) couplings, the fermion cµν term is both C and CPT-

even, and includes both parity-even and parity-odd interactions.

Since the cµν , dµν , eν , fν and gλµν coefficients parameterize extra time-derivative

couplings, the modified Dirac equation resulting from (2.36) has a number of non-
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hermitian terms. Thus quantization of this theory must be preceded by a field re-

definition ψ = Aχ, where A is a constant term selected so that the Euler-Lagrange

equations for the evolution χ are Hermitian to leading order in cµν and other terms.

From [68], the field redefinition is given by

A = 1− 1

2
γ0cµ0, and A = 1− 1

2
cµ0γ

0. (2.38)

Note that since A = A† and A = A−1 to leading order in cµ0, this field redefinition may

also be understood as a redefinition of the inner product, or metric, on the Hilbert

space of fermion states. Such changes in metric are commonly necessary to find

Hermitian representations of theories with P-odd but PT-even couplings [88], and are

also used in the quantization of the electromagnetic potentials [89, 90]. Considering

only the cµν coefficients, this field redefinition maps the Lagrangian (2.36) into

L = iχ̄Ā(γν + cµνγ
µ)
↔
∂ν Aχ−mχ̄ĀAχ

' iχ̄γ0

↔
∂0 χ−mχ̄χ+ iχ̄

(
[1− c00] γj + (c0j + cj0)γ0 + ckjγ

k
) ↔
∂j χ,

(2.39)

to leading order in cµ0. The Euler-Lagrange equation

∂L
∂χ

= ∂α

(
∂L

∂(∂αχ)

)
(2.40)

then yields the form of the modified Dirac Hamiltonian:

i∂0χ
† = −mχ†γ0 − i∂jχ†γ0

([
1− c00

]
γj + (c0j + cj0)γ0 + ckjγk

)
. (2.41)

In the Lorentz-covariant theory of Dirac fermions, the non-relativistic Pauli Hamilto-

nian for the particle or antiparticle components of the fully relativistic Dirac Hamil-

tonian is obtained by a series of Foldy-Wouthuysen (FW) transformations [91]. The

FW transformation can be understood as a series of unitary transformations that

eliminate or suppress the particle-antiparticle interaction in terms of a transformed

Hamiltonian operator equivalent to the Pauli Hamiltonian. In [68], a series of FW

transformations is employed to obtain the relativistic free fermion Hamiltonian

H = γmc2(1− c00/γ) + (c0j + cj0)pjc− (cjl + c00δjl)
pjpl
γm

, (2.42)
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where γ is the fermion’s Lorentz factor (1−β2)−1/2. Note that unlike the theory arising

from the non-birefringent terms in the photon-sector of the SME, the Hamiltonian

(2.42) can be straightforwardly quantized by identification of the momenta pj as

operators, and has been demonstrated to be both stable and causal under observer

Lorentz transformations in some cases [68,87].

2.5 Coordinate Redefinitions

As noted in part 1.2, our freedom to choose the system of coordinates in which

we express the observer Lorentz covariant Lagrangian makes it impossible to define

some forms of particle Lorentz symmetry violation for one sector of the SME inde-

pendently of the others. Such is the case for the non-birefringent photon-sector (kF )

and the components of the matter-sector cµν interaction which contribute to the free

particle Hamiltonian (2.42). Both the non-birefringent (kF )’s and the fermion cµν ’s

parameterize derivative couplings with forms similar to terms appearing in the fully

covariant theory. As a consequence, they are susceptible to being eliminated to first

order by a simple coordinate transformation. As an illustrative example, we consider

the transformation which maps the non-birefringent (kF )’s to zero. As previously

noted [27,28,39,79], this transformation is given by

x′µ = xµ − 1

2
(kF )αµανx

ν , (2.43)

which maps the derivatives according to

∂′µ =
∂

∂x′µ
=
∂xλ

∂x′µ
∂λ (2.44)

or

∂′µ =

(
δµλ −

1

2
(kF )αµανδ

ν
λ

)
∂λ. (2.45)

Application of (2.43) to the photon-sector Lagrangian (2.3) and neglecting the bire-

fringent terms in (kF ) and the (kAF ) term maps the Lorentz-violating theory into

the fully covariant −1
4
F 2 theory at leading order in (kF ), although some terms per-

sist at second order. The effect of this transformation is perhaps more intuitively
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understood when it is written explicitly in terms of κ̃e−, κ̃o+, and κ̃tr. Defining

~κo+ ≡ (κ̃23
o+, κ̃

31
o+, κ̃

12
o+), (2.43) becomes

t =

(
1− 3

4
κ̃tr

)
t′ − 1

2c
~κo+ · ~x′,

~x = ~x′ − 1

2

(
κ̃e− − 1

2
κ̃tr

)
· ~x′ + c

2
~κo+t

′,

(2.46)

so that velocities are modified by

~v′ = ~v − 1

2
(κ̃e− − 2κ̃tr) · ~v + c~κo+ +O ((kF )2

)
. (2.47)

Comparison of (2.47) with (2.15) reveals that the speed of light is no longer anisotropic,

but is instead always equal to c in the new coordinates. This can be also confirmed

by examination of the transformed dispersion relation.

Although (2.43) eliminates most of the Lorentz violating physics from the photon

sector, it does not leave the matter sector unaffected. Under this redefinition of

coordinates, the matter-sector cµν coefficients are shifted to become c′µν = cµν −
1
2
(kF )αµαν [27,28,39,79]. For the case of an otherwise fully Lorentz covariant fermion,

this mapping can be written as
c′00 c′01 c′02 c′03

c′10 c′11 c′12 c′13

c′20 c′21 c′22 c′23

c′30 c′31 c′32 c′33

 =
1

2


−3

2
κ̃tr κ̃23

o+ κ̃31
o+ κ̃12

o+

κ̃23
o+ κ̃11

e− − 1
2
κ̃tr κ̃12

e− κ̃13
e−

κ̃31
o+ κ̃12

e− κ̃22
e− − 1

2
κ̃tr κ̃23

e−

κ̃12
o+ κ̃13

e− κ̃23
e− κ̃33

e− − 1
2
κ̃tr

 . (2.48)

The freedom to arbitrarily define the coordinates in which to analyze a given

experiment, coupled with the consequences of this choice for the non-birefringent κ̃’s

and cµν coefficients is a reflection of the fact that experimental measurements of the

speed of light (or indeed the of the maximum attainable speed of any particle species)

must always depend on the properties of the particles used to define a standard

reference. This means that any constraint on the non-birefringent components of

(kF ) is always more generally expressed as a constraint on the difference (kF )αµαν −
2cXµν , where cXµν is the SME c-coefficient for some species of fundamental particle, or

an effective c-coefficient for some composite particle which may serve as a standard

reference in the experiment it is derived from.
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Many reported constraints on various terms in the SME are derived under the

assumption that SME coefficients vanish for particles other than those targeted for

investigation. This step is often justified when prior constraints on the neglected

parameters rule out any significant contribution to the experimental observable, or

when the term specifically constrained by the analysis would clearly dominate all

other terms at the level to which it is ultimately constrained. Analyses in which the

cµν for just one species or the non-birefringent (kF ) coefficients are arbitrarily set

to zero are likewise unambiguous, as such assumptions are equivalent to specifying

the coordinate system. Results derived from analyses that arbitrarily ignore the c-

coefficients or other SME parameters in multiple species [44, 45] are typically not

directly comparable to other experimental limits.

In addition to the convenience afforded by being able to arbitrarily set the matter-

sector cµν coefficients of a particular species to zero [21], the freedom to choose coordi-

nates is also used to zero the non-birefringent components of (kF ) whenever quantized

descriptions of the SME are required. It should be noted that the geometry of an

experiment is generally not left unaffected by this coordinate redefinition.



Chapter 3

New Constraints on Isotropic

Violations of Lorentz Symmetry

We now turn to the subject of setting improved limits on isotropic violations of

Lorentz symmetry for light. In part 3.1, we demonstrate that constraints on the

RMS α̂ parameter (described in part 1.1.2) derived from Ives-Stilwell experiments

are equivalent to constraints on the isotropic κ̃tr coefficient from the photon sector

of the SME. This result is then used to set a baseline limit on any isotropic shift in

the vacuum speed of light as being no larger than 66 m/s [8, 9] based on saturation

spectroscopy of near-relativistic ions [23]. This limit was subsequently reduced to

25 m/s by an improved version of the same experiment [34]. We also propose several

radically new forms of the Ives-Stilwell experiment with the potential to overcome

some of the scaling limits closely approached by traditional experiments [34].

As we show in part 3.2, even tighter bounds on κ̃tr can be obtained from care-

ful analysis of potential sidereal variations in the results of Michelson-Morley experi-

ments. In particular, a reanalysis of the data from [6] yields the limit |κ̃tr| ≤ 1.8×10−8,

limiting shifts in the speed of light to be no larger than about 5.3 m/s. This also

marks the first time that a single Michelson-Morley experiment has provided new

constraints on all nine of the non-birefringent κ̃e−, κ̃o+ and κ̃tr parameters.

Finally, in part 3.3, we show that the best constraints on isotropic violations of

Lorentz symmetry for light may be obtained from collider physics. In particular, the
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stability of high-energy (340 GeV and above) photons observed by the D0 collabo-

ration at the Fermilab Tevatron, combined with the simple fact that center of mass

energies in excess of 206 GeV were attained in e+e− collisions at CERN’s LEP collider

can be used to set the limit −5.8×10−12 ≤ κ̃tr ≤ 1.2×10−11. This is equivalent to the

statement that the vacuum speed of light may be no more than 2 mm/s faster than

the canonical value of c as defined by the maximum attainable speed of electrons,

and no more than 4 mm/s slower [10, 92]. In the broader context of the SME, this

limit may be more generally understood as a constraint on the difference κ̃tr − 4
3
ce00,

between the photon-sector κ̃tr and the fully timelike component of the electron-sector

ce00 tensor, and presently represents the best known constraint on this difference.

3.1 Ives-Stilwell and Clock Comparison Tests

An important class of Lorentz symmetry tests are the so-called “Ives-Stilwell”

experiments, named for the first such experiment carried out and reported by H.

Ives and G. Stilwell in 1938 [19]. These experiments compare the laboratory-frame

frequency or wavelength of light emitted in a direction parallel to the motion of a

rapidly moving source particle to that emitted counter to the particle’s motion. The

Doppler shift resulting from a boost between the moving and laboratory frames is

different for light emitted in the two directions, and is compared with predictions from

special relativity. When combined with other experiments demonstrating the isotropy

of c, Ives-Stilwell measurements can directly measure the effects of time dilation on

the frequency of emitted light, and can thus be characterized as a comparison of the

rate of a moving clock (the atomic transition frequency) with that of a stationary one.

If instead the measurements are combined with results indicating the universality of

time-dilation, Ives-Stilwell tests can detect directional anisotropies in c.

As outlined in Figure 3.1, the goal of an Ives-Stilwell experiment is to simultane-

ously measure the relativistic Doppler shift for light traveling in opposite directions.

In the absence of Lorentz-violating effects, light emitted by a particle moving with ve-

locity ~β in a direction parallel to the motion is blueshifted, while light emitted in the

direction anti-parallel to the particle velocity is redshifted. The emitted frequencies
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νpνa β

ν0

Figure 3.1: Schematic of the original Ives-Stilwell experiment. In the lab
frame, an accelerated particle emits light in all directions. Light emitted
parallel to the particle’s motion is blue-shifted to νp and light emitted anti-
parallel to the motion is red-shifted to νa relative to the transition frequency
ν0 that would be measured in the particle rest frame. Light emitted parallel
and anti-parallel to the particle’s motion is compared on a spectrometer. The
shift of the centroid (dashed line) of the blue and red-shifted lines from the
same transition is due to time-dilation for the moving atom.

are given by

νp = ν0
1 + β√
1− β2

, and νa = ν0
1− β√
1− β2

. (3.1)

Once the frequencies of the light emitted parallel and anti-parallel to the particle

velocity are known, the time dilation factor 1/γ =
√

1− β2 can be obtained directly

from their average. In combination with the null results of the Michelson-Morley [14]

and Kennedy-Thorndike [16] experiments, the Ives-Stilwell test not only made a direct

measurement of relativistic time dilation, but also demonstrated that the relativistic

length contraction required to explain the KT result occurs only along the direction

of an object’s motion, and not across it [19].

Modern Ives-Stilwell tests [23,34,93–95] essentially run the experiment in reverse.

Moving atoms serve as frequency selective detectors of laboratory-generated light in

the boosted frame. A pair of counter-propagating lasers is tuned into simultaneous

resonance with a selected transition of a rapidly moving atom. The simultaneous

resonance condition for the two beams is accompanied by a reduction, or Lamb dip [96]

in fluorescent output as the transition is saturated. See also Figure 3.2. In terms of



34 Chapter 3: New Constraints on Isotropic Violations of Lorentz Symmetry

the applied laser frequencies, the simultaneous resonance condition is simply

νpνa
ν2

0

= 1 + ε, (3.2)

where ε = 0 for the fully covariant theory. As originally noted in [8,9], anisotropies of

ν
′

a

β

ν
′

p

νp νa

νa

ν
′

p

νp

ν
′

a

Laboratory Frame

Atom Frame

Figure 3.2: Schematic of a modern Ives-Stilwell experiment. In the lab frame,
atoms are illuminated with light propagating parallel (with freq. νp) and anti-
parallel (freq. νa) to their motion (v = βc). The frequencies of the applied
fields are tuned to simultaneous resonance ν ′p = ν ′a in the atoms’ frame.

the speed of light in the laboratory frame will typically generate a nonzero ε. Using

(2.10), we can respectively write the phase velocity of light in the directions parallel

and anti-parallel to the atoms’ motion as cp and ca, where

cp = νpλp = c(1 + ρp)

ca = νaλa = c(1 + ρa),
(3.3)

where ρa and ρp are defined in equation (2.15). We can determine the frequency ν ′p
and ν ′a that the moving atoms “see” by noting that in the laboratory frame, the rate at

which an atom moving parallel to the wave νp and anti-parallel to νa passes through

areas of peak field intensity is

ν ′′p = νp − v/λp = νp

(
1− β c

cp

)
,

ν ′′a = νa + v/λa = νa

(
1− β c

ca

)
.

(3.4)
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This can then be related to the frequency observed in the atoms’ rest frame by

applying the usual time-dilation factor γ, so that

ν ′p = νp
1− β(c/cp)√

1− β2
, ν ′a = νa

1− β(c/ca)√
1− β2

. (3.5)

The simultaneous resonance condition that ν ′p = ν ′a = ν0 is then

νp = ν0

√
1− β2

1− β(c/cp)
, and νa = ν0

√
1− β2

1 + β(c/ca)
. (3.6)

In terms of the Ives-Stilwell observable (3.2), this becomes

νpνa
ν2

0

=
1− β2

(1− β(c/cp)) (1 + β(c/ca))
, (3.7)

which to second order in β is

νpνa
ν2

0

= 1 + β

(
c

cp
− c

ca

)
+ β2

(
c2

c2
a

+
c2

c2
p

− c2

cacp
− 1

)
+O (β3

)
. (3.8)

Our purpose behind taking (3.8) to second order will shortly become apparent. From

the form of the term proportional to β in (3.8) and equations (2.15) and (2.16), we

immediately see that the Ives-Stilwell observable is dominated by the value of the

parity-odd κ̃o+ parameter in the laboratory frame. Similarly, the term proportional

to β2 will be dominated by the value of the parity-even κ̃e− and κ̃tr parameters, as

must be the case given the parity of the scalar νpνa/ν2
0 . We will assume, as will be

justified after the fact, that all photon-sector SME parameters other than κ̃tr may be

ignored. This means that the β2 term is proportional to κ̃tr. If only κ̃tr is nonzero in

the SCCEF (defined in part 2.1), then the parity-odd κ̃o+ in the laboratory frame is

given by the relation ~κo+ = 2~βlabκ̃tr. Thus the Ives-Stilwell observable becomes [8, 9]

νpνa
ν2

0

= 1 + 2κ̃tr

(
β2 + 2~β · ~βlab

)
+O(κ̃2

tr) +O(β3). (3.9)

From (3.9), we see that for Ives-Stilwell tests, κ̃tr plays the same role as the RMS

α̂ parameter, since the form of the Ives-Stilwell experimental observable using that

kinematic framework is [23, 97]

νpνa
ν2

0

= 1 + 2α̂
(
β2 + 2~β · ~βlab

)
. (3.10)
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This means that any reported constraint upon the RMS α̂ derived from an Ives-

Stilwell test is tantamount to an identical bound on κ̃tr, although it should be noted

that in the context of some measurements of α̂, the standard reference frame is defined

as the rest frame of the cosmic microwave background, and thus ~βlab may sometimes

be defined differently.

In [34], |νpνa
ν2
0
− 1| was experimentally measured to be no larger than 2 × 10−10.

Although this precision was insufficient to improve bounds on κ̃e− or κ̃o+, (which at

the time had been constrained to be no larger than 10−16 or 10−12), it was sufficient

to limit |κ̃tr| ≤ 8.4× 10−8.

3.1.1 New Directions for Ives-Stilwell

The construction of the standard model extension has greatly aided the devel-

opment of low energy experiments seeking to detect Lorentz violating physics by

enabling direct comparison of a wide variety of effects [28]. In the photon sector of

the SME, all but one of the Lorentz-violating coefficients have been constrained to

be less (in many cases far less) than 10−11 [8, 28, 33]. The exception, κ̃tr, has been

limited to be no larger than the relatively loose bound of 8.4 × 10−8 [34]. Thus far,

Ives-Stilwell experiments have offered the best measurements of κ̃tr [34].

Elements of the Ives-Stilwell experiment have seen significant improvement over

the past seventy years [19,23,34,93–95,98], but the core has remained unchanged. All

Ives-Stilwell experiments use continuous wave spectroscopy of fast-moving (~βat > ~βlab)

atoms to constrain the magnitude of anomalous Doppler shifts caused by violations

of Lorentz invariance. The improved constraints that these experiments have most

recently been able to place upon the isotropic κ̃tr parameter are largely the result

of using the most highly relativistic particles ever employed in such tests [23, 34].

With particle velocities already in excess of 6% of the speed of light [34], relativistic

Ives-Stilwell tests are fast approaching practical limits on the speeds at which atoms

with one or more bound electrons may circulate in an accelerator without becoming

fully ionized. Thus far, Ives-Stilwell tests using low-velocity atoms (i.e. those with
~βat < ~βlab) have not been performed since they have not been competitive with their
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relativistic counterparts –whatever increased precision they might offer has not been

sufficient to counterbalance their decreased intrinsic sensitivities to κ̃tr1. Here, we

outline a means by which low velocity experiments (βat ≤ βlab) can approach their

theoretical peak sensitivities, and propose the use of pulsed techniques to allow both

high and low velocity experiments to beat the single-particle Fourier transform limit.

3.1.2 Scaling of Ives-Stilwell

Ives-Stilwell experiments are based on spectroscopy of moving atoms. Although

the original Ives-Stilwell experiment analyzed the spectrum generated by the recom-

bination of moving ions [19], modern techniques use atoms as frequency selective

detectors of laboratory-generated light in the boosted frame [23, 34, 93, 99], outlined

in Figure 3.1. The simultaneous resonance of the co- and counter-propagating fields

νa and νp with an atomic transition of frequency ν0 in the atoms’ rest frame occurs

when
νpνa
ν2

0

= 1 + ε (3.11)

is satisfied. In the absence of anomalous Doppler shifts, ε = 0, while for nonzero κ̃tr,

ε = 2κ̃tr

(
~β2
at + 2~βat · ~βlab

)
, from equation (3.9).

Variations of ε from 0 are reflected in fractional variation of the resonance fre-

quencies νp, νa. The precision to which κ̃tr can be measured per interaction is thus

given by

δκ̃tr ∝
√

Γ/2

SNR
√
τ
(
β2
at + 2~βat · ~βlab

) , (3.12)

where SNR is the measurement’s signal to noise ratio, τ is the interaction time and

Γ is the measured linewidth. The precision of a resultant measurement of κ̃tr over N

interactions is then given by

δκ̃tr ∝
√

Γ/2

SNR
√
Nτ

(
β2
at + 2~βat · ~βlab

) . (3.13)

For low velocity experiments (where |βat| < |βlab|), the precision to which κ̃tr can

be measured improves with increasing |βat| until the measured linewidth Γ becomes
1or equivalently, the RMS framework α̂ parameter (see part 1.1.2)
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interaction time limited –that is, when Γ ' 1/τ = |βat|c/L, where L is the length of

the experiment’s interaction region. For βat < βlab, the maximum sensitivity scales

inversely with L, while the minimum velocity required to reach it is βat ≥ γL/c for

transitions with natural (or minimally imhomogeneously broadened) linewidth γ. For

modestly sized experiments (L ∼ 1 m), with atoms for which βat = βlab, this limit

is reached only if the width of the probed resonance is less than 30 kHz, while for

atoms from thermal sources with βat ∼ 10−6, the probed transition must be no more

than 300 Hz wide. In both cases, the optimal bandwidths are far less than a typical

optical transition linewidth.

For high velocity experiments, (|βat| � |βlab|), the attainable precision can be

shown to scale as 1/βatL, with an overall improvement by a factor of βlab/βat upon

experiments in the low velocity limit. Motivating the work described below is the fact

that the the best Ives-Stilwell measurements of κ̃tr to date are derived from tests on

relativistic Lithium ions with |βat| = 0.064 (high velocity) over an interaction length

L of approximately 1 meter [23,34]. Efforts to further increase βat in such experiments

are self-defeating in that one is soon left with stripped Lithium nuclei, whose energy

levels are more difficult to address with commonly available laser systems. It is

also unlikely that experiments with significantly larger interaction regions can be

straightforwardly constructed, and funding for such projects is even less certain. Thus

new approaches must be developed if Ives-Stilwell tests are to provide competitive

measurements in the coming years.

To improve upon existing measurement techniques, two problems need to be

solved. For low-velocity experiments to reach their full potential, we need experi-

ments using narrow linewidths. More importantly, both high and low velocity tests

will be enhanced if we can construct an experiment whose precision improves coher-

ently over timescales longer than the atoms’ time of flight through the apparatus.

In what follows, we outline several methods by which such enhancements might be

realized.
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3.1.3 Two-Photon Tests with Metastable Atoms

Narrow optical transitions may be realized using two-photon transitions. For

example, four-wave mixing processes (Figure 3.3) can be used to generate fields whose

bandwidths scale inversely with the lifetime of the ground state coherence which

generates them.

νp νp,S

νa,A νa

∆
Laboratory Frame

Atom Frame

βνp

νaνa,A

νp,S

ν
′

a,A − ν
′

p,S = 2∆

νa,A − νp,S = ∆(2 + ε̄)

Figure 3.3: Ives-Stilwell using Four Wave Mixing. As in Figure 3.1, counter-
propagating fields with frequencies νp and νa are applied to moving atoms.
The three level Λ-system, with ground electronic state splitting ∆, gener-
ates an anti-stokes field νa,A propagating anti-parallel, and a stokes field νp,S
propagating parallel to the atoms (angled for clarity). Generated fields are
compared in the lab frame. Here, ε̄ ≡ β2

at∆ + ∆
(

2β2
at − 4~βat · ~βlab

)
κ̃tr.

The frequency of the emitted field in the atoms’ rest frame is shifted by the

ground state frequency difference ±∆ from the applied field. Assuming the atoms’

internal energy levels are frame-independent, the frequencies of the generated fields

as measured in the laboratory frame are

νa,A =

(
νa

1 + βatc/ca√
1− β2

at

+ ∆

) √
1− β2

at

1 + βatc/ca
,

νp,S =

(
νp

1− βatc/cp√
1− β2

at

−∆

) √
1− β2

at

1− βatc/cp .
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If νa = νp, the lab-frame difference between νa,A and νp,S is, to lowest order in κ̃tr

and second order in βat,

νa,A − νp,S = 2∆ + β2
at∆ + ∆

(
2β2

at − 4~βat · ~βlab
)
κ̃tr. (3.14)

Using metastable states, we can generate fields with arbitrarily narrow-bandwidths,

limited only by the interaction time, the scattering rate of the applied fields, and exter-

nal sources of decoherence. Linewidths on the order of kHz are easily attainable [100],

allowing low-velocity experiments to approach their 1/L limit. One limiting factor

which should be considered, however, is that four-wave mixing is a nonlinear process

relying upon the collective interaction of many atoms. Efficient production of the

conjugate fields requires densities sufficient that many atoms lie inside the volume

defined by the beams’ transverse profile and the two-photon difference wavelength

c/∆. For thermal vapors near room temperature, this restricts us to systems with ∆

no larger than several tens of GHz. Improved signal to noise ratios made possible by

this experimental configuration may partially compensate for this restriction.

For an initial estimate of the sensitivity of such experiments, we consider an anal-

ysis of a thermal beam of 87Rb atoms. Such atoms have a metastable ground state

splitting of approximately 6.8 GHz, and have thermal velocities near room temper-

ature of about β = 10−6. Over a one meter interaction length, the interaction-time

limited bandwidth of the emitted light would be about 300 Hz. Using (3.14), we find

that the sensitivity to κ̃tr of an experiment using 87Rb is νa,A−νp,S ' 2.72κ̃tr. Signif-

icant improvements can be realized if the splitting between the involved metastable

states is increased, as in 208Pb. Lead 208 has a 6p2(3P0) ground state and a metastable

6p2(3P2) state which both couple to the short-lived 6p7s(3P1) or 6p9s(3P1) states. The

frequency splitting between the ground and metastable states of 208Pb is about 319

THz, and so even after accounting for a factor of
√

2 reduction in the mean thermal

velocity of 208Pb relative to 87Rb, the overall sensitivity to κ̃tr is νa,A−νp,S ' 9×104κ̃tr.

If this frequency difference can be constrained to within 0.9 mHz, then constraints on

κ̃tr at the level of 10−8 would be possible. Realization of such a continuous four-wave

mixing process in 208Pb might be challenging, however, as such nonlinear processes

have as yet only been observed in pulsed experiments [101]. As we shall see, however,
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working in the pulsed, rather than continuous-wave spectroscopy regime can prove to

be advantageous.

3.1.4 Pulsed Experiments

Practical size constraints are likely to limit the further development of continuous

wave spectroscopy based Ives-Stilwell experiments for the foreseeable future. To move

forward, it is desirable to conceive of new methods of measuring anomalous Doppler

shifts that do not rely on CW spectroscopy. With the development of extremely

stable octave-spanning optical frequency combs [102], it is now possible to generate

and measure extremely narrow resonances using many serially phase coherent pulses

rather than the long pulse of a conventional CW spectroscopic measurement. By

performing the same measurement repeatedly and coherently combining the results,

we can use a very short interaction region to obtain linewidths that would require

much larger experiments using CW spectroscopy.

3.1.5 Raman Comb Spectroscopy

One possible implementation of a pulsed anomalous Doppler shift experiment

involves using a frequency comb to generate a train of Raman scattered pulses in an

inverted atomic medium. Phase coherence between the generated pulses would give

rise to a generated spectrum with features narrower than a single pulse’s Fourier-

transform limit. The short duration of each pulse means that only a small interaction

length along the axis of the atoms’ motion will be required.

Using an analysis similar to that presented previously, it can be shown that the

frequency differences ∆p and ∆a of the Raman scattered fields relative to the fre-

quencies of the applied driving fields νp and νa are, in the laboratory frame, given

by

∆p = ∆

√
1− β2

at

1− βatc/cp (3.15)

∆a = ∆

√
1− β2

at

1 + βatc/ca
. (3.16)
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To lowest order in βat, and κ̃tr, the sum of the frequency differences ∆a and ∆p are
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Figure 3.4: Pulsed Ives-Stilwell using a generated Raman comb. Atoms in a
long-lived metastable state move at βat, and interact with a frequency comb
with repetition rate νr and comb-width ΓP , generating a chain of anti-stokes
Raman pulses. Anomalous Doppler shifts of the applied field from the lab
frame to the boosted frame are preserved in the frequency of the generated
Raman field in the lab frame, as described in the text. We expect individual
comb line widths to be limited by velocity dispersion of the atomic beam (see
text).

∆p + ∆a =
2∆√

1− β2
at

+ ∆
(

2β2
at − 4~βat · ~βlab

)
κ̃tr. (3.17)

Because the measured signal is a component of a generated frequency comb rather

than the Fourier transform of a single pulse, the limiting precision of such an exper-

iment is not a function of the interaction length, provided that length is sufficient

to contain the atoms interacting with a single pulse. For example, for an octave-

spanning frequency comb centered on 780 nm, each pulse might be approximately 3

femtoseconds in duration. In this instance, an interaction length of 1 micron would

be sufficient for any possible βat.

Sensitivity to κ̃tr for this system is likely to be limited by achievable signal to

noise ratios, as well as the width of the atoms’ velocity distribution about the selected
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velocity ~βat. Departures from ideal monochromaticity of the atomic beam will lead to

inhomogeneous Doppler broadening of the generated comb. As an example, we may

consider two-photon scattering from the metastable 6p2 (3P2) state to the 6p2 (3P0)

ground states of lead atoms, the two-photon detuning ∆ is 319 THz. The width

of the thermal velocity distribution for such atoms in a supersonic beam is roughly

200 m/s, leading to an inhomogeneous broadening of approximately 200 MHz. In

order to pick out a single generated line, the pulse repetition rate must be larger

than this inhomogeneous linewidth. As frequency combs with repetition rates of

1 GHz are available, this experiment may in fact be realizable with commercially

available systems. Inhomogeneous broadening can also be significantly reduced by

replacing the thermal beam with atoms allowed to fall under gravity after being cooled

in a magneto-optical trap. Using the 10 m atom interferometer drop tower being

constructed at Stanford, such atoms could reach velocities of up to 14 m/s [103,104].

Provided that the inhomogeneous linewidth of the atomic sample can be reduced by

more than the ratio of 14 m/s to the speeds available in thermal beams, such cold

atom experiments could prove to be a useful way forward.

Our generated fields’ bandwidth is set by the two-photon Doppler width, which is

roughly 200 MHz in a thermal beam. By careful velocity class selection (at the ppm

level) in a supersonic beam, a substantial linewidth reduction may be achieved, so

that with an SNR of 1,000, a low β experiment could improve upon the relativistic

ion bound [34] by a factor of 10.

Thus our scheme can place a competitive bound on κ̃tr on high β atoms in a rela-

tively small space, granted a relatively mild signal to noise advantage. The linewidth

of the generated comb resonances may be further reduced by cooling the atoms prior

to their being loaded into the beam.

3.1.6 High Harmonic Generation

Another means to probe anomalous Doppler shifts uses the phenomenon of High

Harmonic Generation (HHG), depicted in Figure 3.5. In the presence of extremely

intense pulses of light, the binding energy of an atomic ground state electron can be



44 Chapter 3: New Constraints on Isotropic Violations of Lorentz Symmetry
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Figure 3.5: The process of High Harmonic Generation (HHG). When exposed
to a very intense electromagnetic field, bound electrons (green dot at left) can
tunnel into unbound states (red dot) and be accelerated directly by the oscil-
lating field. After the first half optical cycle which the newly freed electron
is accelerated, it passes over the source atom and can with high probability
return to its original state, emitting the accumulated kinetic energy U as a
photon at an odd harmonic of the driving field frequency.

small compared to its interaction with the applied field. Bound electrons can then

tunnel into the ionization band, accumulate energy directly from the fields, and may

then return to the ground state, giving up their energy in the form of light at higher

harmonics of the applied field. Phase matching and diffusive constraints limit the

energy accumulated by such returning electrons to no more than I + 3.17U , where

I is the atomic ionization energy, and U = E2/(4ν2) is the ponderomotive energy

supplied to free electrons by the field of frequency ν and amplitude E [105]. HHG

schemes are quite compatible with frequency comb techniques. As demonstrated

in [106], HHG driven by a frequency comb results in the production of correspondent

frequency combs at harmonics of the driving comb.

Because the generated light appears only at odd harmonics of the applied field,

and only up to a cutoff energy, the amplitudes of the generated harmonics can be

used to measure the energy available per photon in the frame of moving atoms, and

thus can be used to detect anomalous Doppler shifts. Any variation of the energy per

photon in the atoms’ rest frame will lead to amplitude modulation of the HHG fields,

particularly near the the HHG cutoff energy (or indeed, near to any large variation of
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the HHG fields tied to the satisfaction of a phase-matching condition). Such a HHG

test could be implemented using the light generated by a chain of frequency comb

pulses propagating parallel to a beam of atoms moving with velocity βat, mounted

upon a rotating table. κ̃tr gives rise to amplitude modulation of the HHG fields near

the cutoff energy, according to the variation of the energy per Nth harmonic photon

in the atoms’ rest frame relative to the HHG cutoff energy. The former is given, to

first order in κ̃tr by

ENth harmonic = N~ω

(
1− βat√
1− β2

at

+
βat√

1− β2
at

ρp

)
, (3.18)

while the latter is
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Figure 3.6: Ives-Stilwell using pulsed High Harmonic Generation (HHG).
For nonzero κ̃tr, frequency combs generated by HHG in moving atoms will be
shifted according to the orientation of the atoms’ motion relative to the boost
from the SCCEF. The schematic in (a) depicts an experiment where two HHG
combs are generated from the same source comb using atoms moving parallel
and perpendicularly to the applied fields. Since the overall comb spacing
is sensitive to anomalous Doppler shifts as indicated in (b), rotating the
experiment in the laboratory frame should generate amplitude modulation
sidebands at ωR, detectable by interfering the two generated combs on a
photodetector.
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EHHG cutoff = I + 3.17U

(
1− 2βatρp

1− βat

)
, (3.19)

and so the frame-dependent variation of the Nth harmonic energy relative to the

cutoff energy is (
N~ω√
1− β2

at

+
6.34U

1− βat

)
βatρp. (3.20)

When I � U , then for harmonics near the cutoff N~ω ∼ 3.17U , so that the above

reduces to N~ωβatρp
(

1√
1−β2

at

+ 2
1−βat

)
. If the amplitude A of the generated fields

drop off as ∂A
∂E

near the cutoff, we find that κ̃tr will generate amplitude modulation

sidebands about each frequency component of the generated comb with amplitude

N~ω
∂A

∂E

(
1√

1− β2
at

+
2

1− βat

)
βat

(
2~βat · ~β⊕ − 1

)
κ̃tr. (3.21)

These sidebands can be detected by beating the generated fields against a reference

comb, possibly also from HHG from stationary atoms. Systematics introduced by

rotating the table can be suppressed by requiring sidereal variations of the phase of

any measured beat-note, or by repeating the experiment with different βat.

Ives-Stilwell tests using HHG are difficult to model in detail, as the magnitude of

the generated signals is strongly dependent upon how sharp we can make the high-

harmonic cutoff. Such experiments may offer relatively clean tests of local Lorentz

violation for different particle species. Until now, all direct probes of anomalous

Doppler shifts have been sensitive to differences in the degree of Lorentz-violation

between the photon or electron sectors of the SME. Because HHG in the high energy

limit is dominated by the free evolution of the charged electron in an applied field near

a binding site, it provides a very clean photon-electron sector test. One could imagine

using HHG with muonic hydrogen to constrain muon-specific SME parameters. The

short lifetime of such exotic species might be compensated by the short interaction-

time requirements of such experiments.

3.1.7 Summary

Modern Ives-Stilwell experiments are now closely approaching the fundamental

limits of their sensitivity to anomalous Doppler shifts caused by anisotropies in the
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vacuum phase velocity of light. This is a direct consequence of the manner in which

the CW spectroscopy experiments’ sensitivities scale with the size of and speeds

achieved in the interaction volume. We have theoretically demonstrated that for

experiments involving atoms moving more slowly than the Earth’s orbital speed, the

limiting sensitivity to anisotropies in the speed of light is determined by the linear

dimension of the experiment alone, and proposed several “tabletop” experiments which

take advantage of this fact. We have also outlined completely new forms of Ives-

Stilwell test that beat the Fourier-transform limit of CW spectroscopy using optical

frequency combs. In particular, searches for sidereal variations in the amplitude of

optical combs produced via high harmonic generation may prove to be useful ways

to constrain parameters in more exotic sectors of the SME.

3.2 Michelson-Morley and Optical Resonator Tests

Although Ives-Stilwell tests are in principle most sensitive to the parity-odd κ̃o+
parameters, their precision as compared to that demonstrated by modern Michelson-

Morley tests is not presently sufficient to place competitive limits on any SME pa-

rameter other than the isotropic κ̃tr coefficient. By way of comparison, the best

sensitivity to κ̃ of any Ives-Stilwell experiment is that demonstrated by [34] at the

level of 2×10−10 for the κ̃o+ terms, whereas the leading Michelson-Morley experiments

are sensitive to κ̃e− at the level of 10−16 or better [6,7,31,85]. As outlined in part 2.3,

both experiments are sensitive to a term proportional to κ̃tr suppressed by two orders

of β. For the relativistic ion Ives-Stilwell test, the suppression is β2
at ' 4 × 10−3,

while for Michelson-Morley tests, κ̃tr appears proportional to β2
⊕ ' 10−8. Despite

the favorable boost of the ion in the storage ring [34], Michelson-Morley experiments

which probe elements of κ̃e− at the level of 10−16 have the potential to set competitive

limits on κ̃tr. In this section, we describe a reanalysis of [6] which ultimately sets a

new limit on isotropic violations of Lorentz symmetries for light: |κ̃tr| ≤ 1.8× 10−8.

Modern Michelson-Morley experiments forgo the use of a Michelson interferometer

in favor of a pair of optical or microwave resonators mounted perpendicularly to one

another. Direction-dependent anisotropies in the speed of light cause correspondent
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anisotropies in the wavelength of light at a given frequency, leading in turn to relative

variations in the cavities’ resonance frequencies. Because the resonance condition

within a cavity depends upon the total phase accumulated during a round trip within

it, the contribution of parity-odd anisotropies are canceled. Thus Michelson-Morley

experiments are sensitive only to the value of the parity-even κ̃e− and κ̃tr parameters

in their rest frame.

3.2.1 Characteristics and Observables of Michelson-Morley Ex-

periments

Our bound comes from a reanalysis of data from an experiment performed at the

University of Western Australia [6], which searched for variations in the resonance

frequencies of two microwave frequency cryogenic sapphire oscillators (CSO) as a

function of orientation and time. Previous analyses of this experiment focused on

constraining the amplitude of sidereal variations generated by κ̃e− and by κ̃o+ at

leading order in the laboratory boost velocity ~β⊕ due to the Earth’s orbit about the

Sun. In this reanalysis, we derive the form of the signals generated at second order

in β⊕ by the isotropic κ̃tr. As we will show, κ̃tr gives rise to signals which oscillate

at the fundamental and first harmonic of the inverse sidereal day (ω⊕ and 2ω⊕), and

at harmonics of the inverse sidereal year Ω⊕. Several of these signals are completely

dominated by κ̃tr, and can thus be used to set useful bounds on isotropic violations

of Lorentz invariance.

Each CSO relied upon a high Q-factor (∼ 2 × 108) sapphire loaded cylindrical

resonant cavity, excited in theWGH8,0,0 whispering gallery mode at approximately 10

GHz by a Pound stabilized loop oscillator circuit. The two resonators were mounted

one above the other with their cylindrical axes perpendicular in the horizontal plane

and orthogonal to one another. They were cooled in a cryogenic dewar using liquid

helium, and their temperature controlled near to 6 Kelvin. The experiment was

continuously rotated in the laboratory with a period of 18 seconds using a ring bearing

rotation system. A more detailed description of this experiment and of CSOs in

general has been reported elsewhere [6, 82,85,107].
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When resonantly excited, the sapphire crystals support standing waves with the

dominant electric and magnetic fields pointed in the axial and radial directions. For

such whispering gallery modes, the Poynting vector is directed around the crystal

circumference. The resonant frequency of each crystal is directly proportional to

the integrated phase velocity of light, and is thus sensitive to Lorentz violation in the

photon sector of the SME. The crystal resonance can also be modulated by Lorentz vi-

olation in the electron sector, but the contributing SME parameters for electrons have

been constrained to the degree that they would not make significant contributions to

our results [11,33,55]2, and so we assume that electrons are fully Lorentz-symmetric.

If any of the κ̃ parameters are nonzero, the difference in the resonance frequencies

of the sapphire crystals will vary as the orientation of the laboratory reference frame

is modulated with respect to the SCCEF (defined in part 2.1). In terms of the

laboratory frame κ̃’s, the fractional difference between the resonance frequencies of

two resonators oriented in the xy-plane at right angles to one another as they are

rotated about the z-axis is given by [28,85]

δν

ν
= Se {[(κ̃e−)xxlab − (κ̃e−)yylab] cos 2θ − 2(κ̃e−)xylab sin 2θ} , (3.22)

where Se is a sensitivity factor specific to the resonator materials and modes, and θ is

the angle of the cavity axes relative to the x and y coordinate axes. This expression is

valid for any pair of identical resonators, no matter what their geometry may be. To

see this, consider the general form of the an expression yielding the resonant frequency

of a vacuum-filled cavity in the presence of κ̃e− and κ̃tr. To leading order, we must

have

ν = ν0 + fisoκ̃tr + fxκ̃
xx
e− + fyκ̃

yy
e− + fzκ̃

zz
e− + fxyκ̃

xy
e− + fxzκ̃

xz
e− + fyzκ̃

yz
e−, (3.23)

where the f ’s are terms describing the cavities’ orientation and geometry, and their

resultant sensitivity to variations in the speed of light. Since κ̃e− is a real, symmetric

matrix, then there exists a proper rotation which diagonalizes it. Thus we are free to

either choose our axes such that κ̃xye− = κ̃yze− = κ̃xze− = 0, or to orient the resonator such

that fxy, fyz, and fxz are zero. We are also free to make a rotation such that κ̃xye− is
2cµν coefficients that may be removed by a coordinate transformation are suppressed for clarity.



50 Chapter 3: New Constraints on Isotropic Violations of Lorentz Symmetry

nonzero while holding κ̃yze− and κ̃xze− at zero. We may then declare that the resonator

is aligned along the x-axis with

ν0◦ = ν0 + fisoκ̃tr + fxκ̃
xx
e− + fyκ̃

yy
e− + fzκ̃

zz
e− + fxyκ̃

xy
e−. (3.24)

Upon rotating the resonator about the z-axis by 90◦, this becomes

ν90◦ = ν0 + fisoκ̃tr + fxκ̃
yy
e− + fyκ̃

xx
e− + fzκ̃

zz
e− − fxyκ̃xye−. (3.25)

and so the difference must be

ν0◦ − ν90◦ = (fx − fy)κ̃xxe− − (fx − fy)κ̃yye− + 2fxyκ̃
xy
e−. (3.26)

Recall that fxy is generated from fx and fy by a rotation about the z-axis. We

can therefore redefine the 0◦ orientation so as re-write this expression in terms of a

rotation θ from that orientation about the z-axis:

ν0◦ − ν90◦ = (fx − fy)
[
(κ̃xxe− − κ̃yye−) cos 2θ − 2κ̃xye− sin 2θ

]
, (3.27)

where we further infer the 2θ dependence from the fact that κ̃e− gives rise to parity-

even effects. The form of (3.27) thus leads directly to (3.22).

Continuous measurements of δν/ν over extended periods can be used to extract

limits on the values of (κ̃e−)JK , (κ̃o+)JK or κ̃tr in the SCCEF. The orientation and

boost of the lab relative to the SCCEF respectively vary periodically at the sidereal-

day frequency ω⊕ and the annual frequency Ω⊕. The overall signal from the SCCEF-

frame κ̃’s generates variations of δν/ν at the sum and difference frequencies of the

fundamental and higher harmonics of ωR, ω⊕ and Ω⊕, as previously derived to first or-

der in β⊕ by [28]. Experimental limits on the amplitudes of several of these harmonics

have been translated to limits on (κ̃e−)JK and (κ̃o+)JK [6, 31].

3.2.2 Sensitivity to κ̃tr

Although we may use the second order analysis of part 2.3 to obtain the complete

form of (3.22), its component proportional to the value of κ̃tr in the SCCEF can

be obtained using simpler arguments based on observer Lorentz covariance. Since
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(3.22) is the same up to the value of Se for all Michelson-Morley experiments, we

may simplify the problem by considering a pair of one-dimensional optical cavities

aligned along the x- and y-axes in the laboratory frame, and rotated by an angle θ.

The resonance frequencies of the resonators are then ν =
mcph

2L
, where L is the length

of the cavity, m = 1, 2, 3, . . . , and cph = (c+
ph + c−ph)/2 is the average phase velocity

of light moving back and forth along the cavity axis. Using (2.10) and (2.15), we

can then write the frequency difference between the cavities due to Lorentz-violating

variations in the speed of light as

δνx
νx
− δνy

νy
=

1

2
(ρx+ + ρx− − ρy+ − ρy−) , (3.28)

where ρj+ (ρj−) is the fractional κ̃ induced shift in the speed of light parallel (anti-

parallel) to the j-axis in the laboratory frame. The problem can now be reduced to

finding the mean speed of light along the laboratory x- and y-axes. Thus if we define

~v = c~β ~u = ±c(1 + ρx±)x̂ (3.29)

and

~u|| =
~v · ~u
|v|2 ~v ~u⊥ = ~u− ~u||, (3.30)

then the velocity addition formula, which retains its standard form owing to observer

Lorentz covariance, implies that if ~u is the speed of a beam of light moving along the

x-axis in the laboratory, then the velocity ~s of that beam as measured in the SCCEF

is

~s/c =
~v/c+ ~u||/c+ ~u⊥/(cγ)

1 + ~v · ~u/c2
. (3.31)

Since we are interested solely in the contribution of the SCCEF κ̃tr to our experiment,

we may assume ρx± and ρy± are such that the speed of light in the SCCEF is isotropic

and equal to c(1− κ̃tr). Thus the above formula yields

(1− κ̃tr)2 =
β2 − (1 + ρx±) ((1 + ρx±)(β2 − β2

x − 1)∓ 2βx)

(1± βx(1 + ρx±))2 , (3.32)

which to second order in β and first order in κ̃tr, yields

1

2
(ρx+ + ρx−) = −κ̃tr − (β2 + β2

x)κ̃tr. (3.33)
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Similarly, we find that

1

2
(ρy+ + ρy−) = −κ̃tr − (β2 + β2

y)κ̃tr, (3.34)

so that the dependence of δν/ν on κ̃tr is given by

δνx
νx
− δνy

νy
=
(
β2
y − β2

x

)
κ̃tr. (3.35)

The detailed form of the boost ~β from the SCCEF as defined in the laboratory frame

is

~β = R


β⊕ sin Ω⊕T

−β⊕ cos η cos Ω⊕T

−β⊕ sin η cos Ω⊕T

 , (3.36)

where we have neglected the contribution of the earth’s rotation βL ' 10−6 to the

boost vector, T is the time since the last vernal equinox, and the rotation R which

reorients the SCCEF to align with the laboratory frame, with ẑ pointing upwards

and x̂ pointing south, is given by

R =


cosχ cosω⊕T⊕ cosχ sinω⊕T⊕ − sinχ

− sinω⊕T⊕ cosω⊕T⊕ 0

sinχ cosω⊕T⊕ sinχ sinω⊕T⊕ cosχ

 . (3.37)

Here χ is the colatitude of the laboratory, η is the declination of the Earth’s orbit

relative to its spin, ω⊕ and Ω⊕ are the Earth’s annual and sidereal frequencies, and

β⊕ ' 10−4 is the Earth’s orbital speed. The time T⊕ is not the same as T , and repre-

sents the time as measured in the SCCEF since the laboratory y-axis and the SCCEF

Y -axis coincided [28]. We can account for the active rotation of the experiment [6]

by redefining R so as to be aligned with the resonator axes:

R =


cosωRT − sinωRT 0

sinωRT cosωRT 0

0 0 1

 ·


cosχ cosω⊕T⊕ cosχ sinω⊕T⊕ − sinχ

− sinω⊕T⊕ cosω⊕T⊕ 0

sinχ cosω⊕T⊕ sinχ sinω⊕T⊕ cosχ

 .

(3.38)

Insertion of ~β into (3.35) yields modulations of the form

δνx′

νx′
− δνy′

νy′
= S(T ) sin 2ωRT + C(T ) cos 2ωRT , (3.39)
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where

S(T ) = (κ̃tr)×
∑
i

[
SS,i sin(ωiT ) + SC,i cos(ωiT )

]
, (3.40)

C(T ) = (κ̃tr)×
∑
i

[
CS,i sin(ωiT ) + CC,i cos(ωiT )

]
, (3.41)

and ωi ∈ {ω⊕T⊕, 2ω⊕T⊕, ω⊕T⊕±2Ω⊕T⊕, 2ω⊕T⊕±2Ω⊕T⊕}. The complete form of the

angular weights CS,i CC,i, SS,i and SC,i, proportional to each of these demodulated

signals, along with the resulting numerical weights, are given in Table 3.1.
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Figure 3.7: The variation of the maximal projection of a vector horizontal
in the laboratory relative to the Earth’s velocity in the SCCEF has a strong
component at twice the annual frequency, since the period with which a
fixed vector in the laboratory frame may coincide with ~β⊕ is half a year.
In contrast, the (κ̃e−)JK and (κ̃o+)JK terms do define preferred axes in the
SCCEF, and so make contributions which depend upon the orientation and
motion of the lab relative to these axes. The Earth’s spin axis is denoted by
a dashed line, while bold arrows indicate the Earth’s orbital velocity. Arrows
outside the orbit indicate the position at which a vector horizontal in the lab
is most closely aligned with the orbital velocity.

A more detailed calculation of the total second order signal due to contributions

from all the non-birefringent κ̃’s, presented in Appendix A, is readily shown to be

consistent with this result. Note that this calculation predicts a comparatively strong

signal from κ̃tr at the beat of first harmonic of the annual frequency Ω⊕ with the

fundamental and first harmonics of the sidereal frequency. This too can be intuited

from the principle of observer Lorentz covariance, since the anisotropies that an SC-

CEF κ̃tr generates in the laboratory frame depend solely upon the alignment of the

lab with respect to the lab’s boost. Using our standard laboratory frame, we find

(see Figure 3.7 that the daily maximum of the projection of the y-axis (which points

east) onto the Earth’s orbital velocity peaks at the summer and winter solstices, and

is minimized during the equinoxes.

3.2.3 Summary and Conclusion

After removing the fixed offset and eliminating any linear drifts, the experimental

data is demodulated with respect to 2ωR into two quadratures in blocks of 10 periods.

The number of periods in each block was chosen to minimize the net effect of narrow



56 Chapter 3: New Constraints on Isotropic Violations of Lorentz Symmetry

band noise (due to instabilities in systematics at 2ωR) and broad band noise (due

to oscillator frequency noise), approximating an optimal filter approach. This yields

approximations to (3.40) and (3.41). Because (κ̃e−)JK and (κ̃o+)JK have been con-

strained by other experiments [6,31] to be far smaller than the limit we expect to set

upon κ̃tr, our experimental analysis attributes any signals at ωi = ω⊕±2Ω⊕, 2ω⊕±2Ω⊕

to κ̃tr alone. By fitting the measured quadratures to (3.40) and (3.41), we can ob-

tain the value of κ̃tr. From the sine term, we obtain κ̃tr = 3.5(3.0) × 10−8 and from

the cosine term, κ̃tr = 0.4(2.3) × 10−8. The weighted average of the two results is

1.5(1.8)× 10−8, yielding the new limit

|κ̃tr| ≤ 1.8× 10−8. (3.42)

This is an improvement of more than a factor of four over the existing limit, and marks

the first time that a low energy experiment has been able to surpass the sensitivity

of high energy ion spectroscopy tests [34]. In combination with previously reported

limits [6], it also constitutes the first time that all nine non-birefringent photon sector

coefficients in the SME have been competitively bounded by the same experiment.

3.3 Direct Constraints on κ̃tr From Collider Physics

Direct measurements of deviations of the speed of light from c are difficult due

to a scarcity of independent references. Previous experimental limits on κ̃tr have

been derived indirectly from tests for anisotropies of the speed of light. This is

possible because κ̃jke−, κ̃
jk
o+ and κ̃tr mix under boosts from one frame to another so as

to preserve observer Lorentz covariance [28]. Thus optical resonator experiments [7]

that set limits on the elements of κ̃jke− to be at the level of 10−17 can also constrain the

magnitude of βκ̃jko+, and indeed β2κ̃tr to the same level, where β is the boost of the

lab frame from the standard reference frame. Aside from the result derived below,

the best experimental bound on κ̃tr, with |κ̃tr| < 1.8 × 10−8 is obtained indirectly

from limits on κ̃jke− [6, 86], as described in the previous section.

Here, we will consider direct measurements of κ̃tr [10, 92]. In particular, we take

advantage of the way non-zero κ̃tr modifies the kinematics of the electromagnetic
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vertex. In contrast to the conventional situation, Lorentz-violating modifications

to the fermion and photon dispersion relations can cause all three of the external

legs of the vertex to go on shell together, permitting otherwise suppressed tree-level

processes to go forth for particles above a certain energy threshold. As has been noted

elsewhere [8,28], if the isotropic κ̃tr > 0 then the phase velocity of light in the vacuum

is reduced. Under such conditions, charged particles of sufficiently high-energy may

actually exceed the speed of light in the vacuum, at which point the spontaneous

emission of vacuum Cherenkov radiation

f → f + γ for κ̃tr > 0, (3.43)

where γ denotes a photon and f a charged fermion, is kinematically allowed [54,

108]. By noting the absence of such Cherenkov emission from rapidly moving charged
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Figure 3.8: Dispersion Diagrams for Vacuum Cherenkov Radiation. For
a fully Lorentz covariant theory, depicted by (a), the energy vs. momen-
tum curve for a charged particle with unit mass (blue/lower curve in both
plots) asymptotically approaches but can never intersect the energy curve of
a charge+photon system with the same total momentum (red/upper curve).
Conservation of energy and momentum thus suppresses moving charges from
spontaneously emitting photons. If κ̃tr > 0, however, the energy vs. mo-
mentum curve for the photon becomes shallower, so that now the disper-
sion curves for the two systems can intersect as shown in (b), and vacuum
Cherenkov radiation becomes possible for sufficiently fast-moving charges.

particles, we can infer that they must not be traveling in excess of the speed of light.
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This realization can be used to set a lower limit on the speed of light in the vacuum,

and hence an upper bound on κ̃tr. Similarly, if the fermion and photon dispersion

relations are such that the limiting velocity for fermions is less than the speed of light,

tree-level decays of sufficiently high energy photons into fermion–antifermion pairs,

i.e.

γ → f +f for κ̃tr < 0, (3.44)

where f represents the antiparticle for f , are kinematically possible [54, 56]. We

demonstrate that this decay is efficient, and use it to set a complementary bound on

the magnitude of κ̃tr < 0.

Note that the Lorentz-violating theory also allows vacuum Cherenkov radiation to

occur for antifermions, and that even more unconventional processes, such as fermion–

antifermion annihilation into a single photon, are possible. In addition, more con-

ventional two-photon emission and absorption processes, synchrotron radiation, and

inverse Compton processes can also be modified. Some of these effects have been em-

ployed in astrophysical contexts to extract general bounds on ∆c
c

down to the 10−16

level [54–56].

In what follows, we will exploit the fact that Nature does not seem to support

the reactions (3.43) and (3.44) to infer bounds on κ̃tr. This approach has been

used in earlier estimates of the degree to which the speed of light may deviate from

c [44,109,110], primarily in the context of kinematic tests of dispersion relations [111,

112]. Here, we use the underlying SME Lagrangian to consider the overall rate at

which the otherwise forbidden reactions (3.43) and (3.44) proceed. Such dynamical

considerations are often necessary to obtain convincing and conservative results [113–

116].

The dispersion relations governing the conditions under which the transitions (3.43)

or (3.44) go on shell are also affected by SME coefficients other than κ̃tr. The effects

of such coefficients can be safely ignored so long as the scale of their contribution

to the physics is small compared to the ultimate bound obtained on κ̃tr. The other

relevant coefficients are those impacting the fermion f , the other κ̃ matrices, and the

(kAF ) coefficient in the photon-sector Lagrangian (2.3). Since we will focus on cases
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where f is an electron, the relevant fermion coefficients are the bµe , cµνe , dµνe , and Hµν

terms. This means that the relevant scale S is given by

S ≡ max
(
κ̃e−, κ̃e+, κ̃o+, κ̃o−,

(kAF )

me

,
be
me

, ce, de,
He

me

)
, (3.45)

where the absolute values of the individual components of the SME coefficients are

implied, and me denotes the electron mass.

To properly evaluate the scale S, certain subtleties must be taken into account.

One such is that elements of the electron’s cµν coefficient can be expressed in terms

of the non-birefringent κ̃ parameters by a coordinate redefinition (given in general

form in part 2.5). This means that only the anisotropic piece of cµν should enter the

determination of S, and that our ultimate constraint upon κ̃tr is, strictly speaking,

a constraint upon the linear combination κ̃tr − 4
3
c00
e . These issues are discussed in

Appendix A.4. For electrons, we find that the scale S is presently about 10−13,

dominated by the κ̃o+ matrix coefficient. Since we will ultimately derive limits on

κ̃tr at the level of 10−12, we may safely ignore other types of Lorentz violation in the

present context.

3.3.1 Vacuum Cherenkov Radiation

In the absence of other contributing Lorentz-violating effects, vacuum Cherenkov

emission can only occur for positive κ̃tr. To leading order, the modified dispersion

relation for a photon with wave vector pµ ≡ (Eγ, ~p) is [27, 28]

E2
γ − (1− κ̃tr)~p 2 = 0 . (3.46)

In our chosen set of coordinates, the fermion dispersion relation is conventional, so

that cµνe = 0. Energy–momentum conservation for the process (3.43) then yields a

threshold energy EVCR,

EVCR =
1− κ̃tr√

(2− κ̃tr)κ̃tr
m =

1√
2κ̃tr

m+O
(√

κ̃tr

)
, (3.47)

corresponding to the kinetic energy of a fermion with mass m moving as fast as

photons obeying (3.46) in the vacuum [108]. For charges with energies above EVCR,

vacuum Cherenkov radiation is kinematically allowed.
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We would now like to infer an upper bound on κ̃tr from the absence of vacuum

Cherenkov radiation from highly relativistic electrons. To do this, however, we must

show that in addition to being kinematically allowed, the Cherenkov radiation process

is efficient enough to be observable. Close to the threshold energy EVCR, the dominant

process is single-photon emission such that the charge falls below threshold. The

estimated rate for this process is [108]:

ΓVCR = αZ2m2 (Ef − EVCR)2

2E3
f

, (3.48)

where α is the fine-structure constant, Z the charge measured in multiples of the

elementary charge, and Ef the fermion energy. This shows the effect is undoubt-

edly efficient: for example, a 104.5 GeV electron with an energy of 1% above the

threshold (3.47) would reach sub-luminal speeds after traveling an average distance

of 23 cm. We therefore conclude that limits on κ̃tr can indeed be established from the

absence of the vacuum Cherenkov effect for low-mass charges at the highest possible

energies.

Cosmic Ray Constraints

Ultrahigh-energy cosmic rays (UHECRs) have the potential to yield the tightest

limits on positive values of κ̃tr, as they have energies orders of magnitude above those

available in any laboratory. Unfortunately, efforts to use observations of UHECRs to

constrain Lorentz violation in the photon sector [44,110] are beleaguered by a number

of interpretational difficulties. Chief among them is a lack of certainty as to the

composition of UHECR primaries, due to the relatively small number of reconstructed

events at the highest energy scales. Although the observed UHECR primaries are

believed to be single protons [44, 110], the possibility that the observations could

be due to the scattering of more massive nuclei, high energy photons, or Lorentz-

violating particles exhibiting no or a qualitatively different Cherenkov effect, such as

stable neutral pions or neutrons, cannot yet be excluded [109]. This uncertainty will

likely be ameliorated in coming years with continued observations.

As discussed in Appendix A.4, experimental limits on κ̃tr based on the vacuum

Cherenkov effect actually measure the speed of light relative to that of the radiating
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particle, or k̃µν−2cµνx , where cµνx are SME coefficients modifying the dispersion relation

for particles of species x. If the observed UHECRs are single protons, then the analysis

of [44, 110], which uses coordinates in which the proton cµνp coefficients are zero,

would provide a one-sided bound on positive κ̃tr at the level of 10−22, and two-sided

constraints on the magnitude of the other non-birefringent κ̃’s at the level of 10−21.

These bounds would be consistent with the results of Cs-fountain clock experiments,

which as noted in Appendix A.4, limit the parity-even κ̃e− to the level of 10−25, and

the parity-odd κ̃o+ to 10−21. In such a scenario, the UHECR studies would provide a

new constraint upon κ̃tr − 4
3
c00
p .

If the UHECR primaries are atomic nuclei such as He, 12C, or even 56Fe nuclei, as

assumed in [44, 110], we note that actual observation of vacuum Cherenkov emission

could be used to set joint constraints upon κ̃ and the neutron c-coefficients. The

absence of vacuum Cherenkov radiation from nuclei at a given energy, however, can

only be used to constrain κ̃ if the neutron cµνn coefficients are already known to

be zero, or at least such that the limiting velocity of neutrons is larger than any

resulting constraint on the speed of light. If this condition is not satisfied, then EVCR

for any composite particle containing neutrons is effectively infinite. To date, many

components of cµνn are unconstrained, so it is impossible to draw conclusions about

Lorentz violation in the photon sector from composite UHECRs. We note, however,

that previous experiments [117–119] constraining the magnitude of parity-even cJKn

coefficients at the level of 10−27 may be sensitive enough to limit all cµνn coefficients

to the level of 10−19. If further observations confirm that 56Fe nuclei with EeV scale

energies are striking the Earth’s atmosphere, such cµνn constraints may be sufficient

to constrain κ̃ at the levels reported in [44, 110]. More stringent limits on cµνn would

be required if the UHECR primaries prove to be lighter neutron-containing nuclei.

Bounds from Collider Experiments

Although the energy scales attainable in terrestrial collider experiments are sev-

eral orders of magnitude below those of cosmic rays, studies of vacuum Cherenkov

induced braking in the LEP collider are attractive for a number of reasons. Common



62 Chapter 3: New Constraints on Isotropic Violations of Lorentz Symmetry

to all analyses of collider experiments is a precise knowledge of the species and energy

of the potential vacuum Cherenkov emitter. As a result, we can immediately deter-

mine that measurements of EVCR derived from the LEP e+e− beams will constrain

k̃µν − 2cµνe , independent of Lorentz violating effects for other particles. At present,

the LEP experiment provides the best compromise between a charge’s mass vs. its

energy for terrestrial Cherenkov constraints. Finally, as shown in Appendix A.4, for

the energies attained at LEP (∼ 100 GeV), κ̃tr − 4
3
c00
e is the only SME coefficient

combination that can contribute to vacuum Cherenkov radiation, permitting a signifi-

cantly simplified analysis. An analysis of LEP data has the potential to yield rigorous

one-sided improvements upon previous laboratory constraints on κ̃tr.

The LEP collider was a circular particle accelerator approximately 27 km in cir-

cumference. This accelerator was an exquisitely precise and carefully controlled de-

vice with a relative uncertainty in the center-of-mass energy ∆ECM/ECM less than

2.0 × 10−4 [80]. To keep the uncertainty at this level, minute effects such as Earth

tides, variations in the pressure of the local water table, and even seasonal variations

in the volume of the nearby lake needed to be taken into account [80]. The highest

laboratory-frame energy attained at LEP was ELEP = 104.5GeV. We can obtain a

first estimate for a limit on κ̃tr by arbitrarily setting EVCR = 100GeV. Under such

conditions, 104.5GeV electrons or positrons would fall below threshold after traveling

approximately 1.2 cm. This length is far shorter than the distance between RF cavi-

ties at LEP or even the dimensions (5.8m) of each of the dipole bending magnets [80],

so that such an effect should have been observable. However, this was not the case,

implying EVCR > 100GeV. Together with equation (3.47) one would then obtain the

bound 0 ≤ κ̃tr ≤ 1.3× 10−11.

We can do slightly better by considering the total energy budget at LEP. At

ELEP = 104.5GeV, energy losses due to conventional synchrotron radiation were

U0 = 3.486GeV per electron or positron per turn [80]. Since LEP had a circumference

of 26 659m we find that the mean energy loss per distance traveled around the ring

must be
dEsyn

dL
= 2.580× 10−20 GeV2 . (3.49)
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One of the three energy-calibration methods at LEP relied upon the dependence

of the synchrotron tune on the energy loss. Thus it was extremely important that

these losses be precisely determined. Deviations from (3.49) arise through parasitic-

mode losses, finite beam size and other quadrupole effects, and losses in the corrector

dipoles. The sum of these contributions was conservatively estimated to be 0.5MeV

per turn per particle with at most a 20% uncertainty [80]. This implies that

dECher

dL
≤ 10−4 dEsyn

dL
, (3.50)

where dECher/dL denotes the energy loss per distance traveled due to vacuum Cherenkov

radiation.

We may now determine a lower bound forEVCR such that both (3.50) and value (3.49)

are satisfied. To this end, recall that for charges near EVCR the dominant Cherenkov

process for reaching sub-threshold energies proceeds via single-photon emission (3.48).

The energy loss per Cherenkov event must therefore be greater than E − EVCR.

The average distance L traversed by an electron before Cherenkov emission occurs is

1/ΓVCR. With equation (3.48), this yields

dECher

dL
≥ αm2

e

(ELEP − EVCR)3

2E3
LEP

, (3.51)

where me = 5.11 × 10−4 GeV denotes the electron mass, as before. It follows that

EVCR must be no more than 1.5MeV below ELEP = 104.5GeV. With equation (3.47),

we then obtain

0 ≤ κ̃tr ≤ 1.2× 10−11 . (3.52)

The above reasoning also shows that the uncertainty in the bound (3.52) is primarily

determined by the accuracy of the electron-energy measurement. As this limit is still

much larger than the scale S defined in equation (3.45), other photon- or electron-

sector coefficients are not further constrained by this reasoning. At the same time, this

provides the justification for dropping these additional coefficients from our analysis.
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3.3.2 Photon Decay

This section considers the case of a negative κ̃tr, which means that the phase

speed of light is now greater than unity 3. Vacuum Cherenkov radiation is then

forbidden and cannot be used to set experimental limits. However, the kinematics

of the electromagnetic vertex now allows photon decay into a fermion–antifermion

pair (3.44). The dispersion relation (3.46) remains valid and establishes that photons

with energies

Epair =
2m√

κ̃tr(κ̃tr − 2)
=

√
2

−κ̃tr m+O
(√

κ̃tr

)
(3.53)

or above are unstable. As before, m is the fermion mass. The derivation of the

corresponding tree-level decay rate (A.106) is presented in Appendix A.5. At leading

order in κ̃tr, this result gives

Γpair =
2

3
αEγ

m2

E2
pair

√
1− E2

pair

E2
γ

(
2 +

E2
pair

E2
γ

)
. (3.54)

Here, Eγ denotes the photon energy and α is again the fine-structure constant4. The

efficiency of this photon decay can be established by example: a 40GeV photon with

energy 1% above threshold would decay after traveling an average distance of about

15µm.

The above results show that we may obtain limits on negative values of κ̃tr from

the existence of long-lived photons with high energies. As for the Cherenkov analysis,

cosmic-ray observations provide the potential for the best reach in sensitivity. For

example, primary photons from the Crab nebula with energies up to 80TeV have

been reported by HEGRA [121]. Equation (3.53) then implies that one-sided limits

on κ̃ coefficients at the 10−16 level would be possible. In addition to some of the non-

birefringent κ̃ matrices, certain SME coefficients in the electron sector can no longer

be neglected at these scales. In view of the small event sample for TeV gamma rays,

the extraction of comprehensive and clean bounds on this potentially large number
3This does not necessarily constitute a means to violate causality [87, 120]. For example, we

remain free to redefine the coordinate system such that photons move at or below the speed of light
c and the maximum attainable speed of massive fermions is distinctly lower than c. In the new
coordinate system, both fields obey causality.

4Note that a similar investigation of photon decay for negative κ̃tr may be found in [45]
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of SME coefficients appears unlikely at the present time. Estimates for limits from

astrophysical TeV gamma rays would certainly be useful, but such an analysis lies

outside the scope of the present study.

We focus instead on high-energy photons generated in Earth-based laboratories.

As for vacuum Cherenkov radiation, the superior experimental control allows cleaner,

more conservative limits at the cost of a somewhat diminished sensitivity. In this

context, LEP becomes again one possible experiment to consider: studies of quark-

to-photon fragmentation involved a careful analysis of final-state photons in LEP scat-

tering events. In such analyses, photons with energies up to 42GeV have been studied

at OPAL [122]. Equation (3.53) then allows limits at the level −3× 10−10 ∼< κ̃tr ≤ 0.

Other LEP studies at the L3 [123] and OPAL [124] detectors, which were optimized for

QED precision tests, have measured pair annihilation e+e− → γγ at center-of-mass

energies up to 209GeV. This would yield an even better bound of−5×10−11 ∼< κ̃tr ≤ 0.

Nevertheless, the highest energies at terrestrial accelerators are not reached with

electrons but with hadrons. For example, Fermilab’s Tevatron pp collider reached

center-of-mass energies up to 1.96TeV and offers therefore an excellent potential for

producing high-energy photons. One particular process, namely isolated-photon pro-

duction with an associated jet, is of importance for QCD studies and has therefore

been investigated with the D0 detector. In this context, photons of energies up to

442 GeV have been observed [125]. This value implies an estimate of −3 × 10−12 ∼<
κ̃tr ≤ 0. However, the small number of events observed at this energy did not warrant

inclusion into these QCD investigations.

Our analysis uses only D0 photon data at lower energies, where comparisons to

QCD predictions were made. With this conservative restriction, photon-energy bins

up to 340.5GeV are at our disposal [126]. For these measurements, the aforemen-

tioned jet-plus-photon production was measured as a function of Eγ in four angular

regions. These four directional configurations were characterized by the photon and

jet pseudorapidities yγ and yjet. The largest deviations between experiment and QCD

theory in the 340.5GeV energy bin occurred in the {|yjet| < 0.8, yγyjet < 0} angular
region [126]. The measured cross section was about 52% of the QCD prediction. The

relative uncertainties in the experimental value were 46.1% statistical, 12.9% sys-
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tematic, and a 7.8% normalization error [126]. To account for theory uncertainties,

the employed theoretical scales were varied by a factor of two, which led to a rela-

tive spread of about 11% for theoretical predictions [126]. Combining these errors in

quadrature yields an overall relative uncertainty of about 50%. The experiment-to-

theory ratio in the 340.5GeV energy bin is therefore 0.52±0.26 for the selected angular

configuration. We can thus estimate that at least 26% of the produced photons have

reached the detector.

The layout of the D0 detector implies that measured photons traverse a minimum

distance of lmin ' 78 cm: they have to travel through various drift chambers and

the transition-radiation detector before they interact and are detected in the central

calorimeter [127]. With the above photon-flux estimate, we then obtain

exp (−Γpair lmin) ≥ 0.26 . (3.55)

The 340.5GeV energy bin extended from 300GeV to 400GeV. We will therefore con-

servatively take Eγ = 300 GeV in the final part of our analysis. With equation (3.54),

we then find that Epair cannot be more than about 0.1 keV below Eγ. We therefore

conclude

− 5.8× 10−12 ≤ κ̃tr ≤ 0 . (3.56)

This argument also establishes that the uncertainty in the constraint (3.56) is es-

sentially determined by the accuracy of the photon-energy measurement. As for the

Cherenkov bound, the limit (3.56) is larger than the scale S, so other photon- or

electron-sector coefficients are not further constrained by this argument. At the same

time, this justifies the exclusion of these additional coefficients from our study.

3.3.3 Summary and Outlook

In this chapter, we have considered new physical effects arising from a Lorentz-

violating CPT-even deviation of the phase speed of light cph from its conventional

value c. At the theoretical level, such a deviation is controlled by the κ̃tr coefficient

of the SME. This coefficient is defined with respect to the Sun-centered celestial

equatorial coordinate system, in which the phase-speed deviation is isotropic. At
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the phenomenological level, a positive value for κ̃tr would lead to vacuum Cherenkov

radiation (3.43) at the rate (3.48) for charges with energies above the threshold (3.47);

whereas a negative value would cause photon decay (3.44) at the rate (3.54) for

photons with energies above the threshold (3.53).

We have exploited the fact that both phenomena are efficient threshold effects

to extract constraints on κ̃tr from the non-observation of vacuum Cherenkov ra-

diation and photon decay. In particular, the absence of the Cherenkov effect at

LEP leads to the bound (3.52), and from the stability of photons at the Tevatron

the constraint (3.56) can be inferred. These results give the combined conservative

limit [10, 92]

− 5.8× 10−12 ≤ κ̃tr ≤ 1.2× 10−11 . (3.57)

This limit represents an improvement of previous laboratory bounds by 3–4 order of

magnitude.

There are various ways to obtain complementary or improved bounds on κ̃tr. For

instance, future low-energy laboratory tests with present-day technology could reach

a level of 10−11 or better [8,9]. Another idea is to exploit photon triple splitting, as it

is known that the amplitude for this effect is nonzero in the presence of cµν Lorentz

violation [128]. This effect does not involve a threshold, and so high energies are not

necessarily required.

Other future terrestrial bounds could proceed along the line of reasoning of this

work employing the absence of vacuum Cherenkov radiation and photon decay at even

higher energies than the ones considered here. One example would be the prospective

International Linear Collider (ILC). If we take the laboratory-frame energy to be

500GeV, the ILC gives a projected one-sided Cherenkov limit of 0 ≤ κ̃tr ≤ 5.2 ×
10−13. Similarly, the Large Hadron Collider (LHC) will reach about seven times the

energy of the Tevatron. Under the assumption that the energy of produced photons

scales by the same factor, the limit (3.56) can be tightened by a factor of 50. Other

improvements of the photon-decay bound would be possible with a dedicated D0 (or

possibly LHC) analysis: Ultrahigh-energy events not considered for QCD tests could

be used because the statistics of such events is not of primary importance for photon-
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decay studies. Moreover, the end of the photon-energy spectrum could be exploited

more efficiently by avoiding large energy bins.

Ultimately, the best limits on the κ̃ coefficients are likely to be derived from

improved UHECR studies [44, 45, 110]. Given a more reliable identification of the

UHECR primary particle, the prospect of observing still higher-energy events, a more

complete coverage of the sky with more events, and a full analysis allowing for the

possibility of Lorentz violation in both the primary scatterer as well as its decay

products, cosmic ray studies may yet produce an impressive array of limits on Lorentz

symmetry violation. The chief limit on the experimental reach of such surveys arises

only because the universe becomes opaque to cosmic rays above certain threshold

energies, due to processes like GZK suppression or pair creation with IR photons.

Until then, however, high-precision experiments carried out in terrestrial laboratories

will continue to provide competitive tests of Lorentz symmetry in Nature.



Chapter 4

Quantization of Light in the SME

Most experimental and theoretical investigations of (kF ) to date have treated the

electromagnetic fields classically, as happens in analyses of Michelson-Morley tests, or

semiclassically with the assumption that the excitations of the quantized fields satisfy

the classical dispersion relation, as in Ives-Stilwell experiments. Generally speaking,

whenever a fully quantum treatment of both non-birefringent electromagnetism and

the coupled charges is necessary, quantization is preceded by a coordinate redefinition

which maps (kF )αµαν → 0, and the matter-sector cµν coefficients to cXµν → cXµν −
1
2
(kF )αµαν . The added complication these steps introduce to the analysis of a physical

system is warranted by concerns regarding the stability and causality of the Lorentz-

violating quantized theory. For cases involving spontaneous Lorentz violation, the

stability and causality of a massive fermion with Lorentz-violating interactions has

been explicitly demonstrated [87]. Thus transforming the coordinates such that the

non-birefringent components of (kF ) appear in the matter-sector cµν coefficients maps

the question of stability and causality for the electromagnetic theory into the form

of a solved problem in the matter sector. To date, there exists no similar explicit

demonstration of causality and stability for the photon-sector of the SME.

The downside to this state of affairs is that tractability concerns regarding a

given analysis of observational or experimental tests of Lorentz invariance often leads

researchers to begin with the arbitrary assumption that the SME coefficients vanish

in one or more sectors of the theory [44]. This practice can greatly complicate efforts

69
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to make rigorous comparisons of the results from different experiments. For any given

analysis, the equivalence of the theory under coordinate redefinitions permits us to

arbitrarily choose to set either the cXµν for a single species X or the non-birefringent

(kF ) parameters to zero. That is, we are free to use any given particle species, or light,

as our reference against which any Lorentz-violating effects will be measured. If the

analysis rests on the quantized description of light, this choice is made for us. Thus

any analysis of the Ives-Stilwell experiments described in Chapter 3 in terms of κ̃tr
is formally incorrect, despite being entirely consistent with the results of a derivation

in coordinates such that κ̃tr is mapped onto the cµν coefficients.

Our goal in this chapter is to make the first steps towards deriving a fully quantized

Hamiltonian representation of electrodynamics in the photon sector of the SME. Since

the Earth is evidently in a concordant1 frame [87] with respect to any of the (kF )

coefficients, we focus on proving that the free field theory can be stably quantized in

an arbitrary concordant inertial frame. We demonstrate that the Hamiltonian that

results from the photon-sector Lagrangian is Hermitian; and further that it leaves

the subspace of states that correspond to solutions of the Lorentz-violating Maxwell

equations invariant. Thus we demonstrate that the free field Hamiltonian is at least

physically consistent within a given inertial frame.

Although we do not explicitly consider questions of stability and causality in arbi-

trary frames, we do find that the quantized modes reproduce the dispersion relation

obtained from the classical Lorentz-violating theory [5]. At the end of 4.2, we find

the explicit form of the unitary transformation that diagonalizes the Lorentz-violating

Hamiltonian operator in terms of the normal modes of the fully covariant theory. As

this transformation is frame-dependent, this is consistent with the observation made

in [78] that the vacuum in one inertial frame may not be equivalent to that in another

inertial frames, much as happens in when comparing the vacua of the covariant theory

in an inertial frame with one in an accelerated frame [129,130].

In the process of our derivation, we also discover that the subsidiary gauge con-
1Where by “concordant”, we mean a frame in which the parameters describing Lorentz-violation

are sufficiently small as to avoid issues of stability and causality in the effective theory, without the
need to refer to the details of an underlying high-energy theory. Current experience suggests that
any frame moving slowly relative to the Earth-Sun system must be concordant [87].
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dition used by Gupta and Bleuler [89] in quantizing the electromagnetic potential of

the fully covariant theory is incorrect when applied to the entirety of the quantized

Hilbert space. Although the consequences of imposing an overly broad subsidiary

condition are negligible to the fully covariant theory, they are severe for the Lorentz-

violating model. We therefore replace the subsidiary condition with a weaker Lorenz

gauge condition in part 4.3.4.

Finally, in part 4.4, we consider the form of the transverse potentials in terms of

the free-field eigenmode operators. The unitary transformation derived at the end of

4.2 is shown to lead to anisotropic scaling as well as mixing between the transverse

potentials. This suggests that the “non-birefringent” components of (kF ) could lead

to a birefringent coupling between light and an isotropic medium it passes through.

Although the present result is not conclusive, the existence of a similar effect arising

from the electron cµν coefficients in a dielectric medium has been postulated [61].

4.1 The Lagrangian

We begin with the photon-sector free-field Lagrangian density

L = −1

4
FµνF

µν − 1

4
(kF )κλµνF

κλF µν , (4.1)

where Fµν = ∂νAµ − ∂µAν , and we have assumed (kAF ) = 0 (see part 2.2). Direct

canonical quantization of the potential Aµ using (4.1) is impossible since observer

Lorentz invariance requires the commutator between the quantized fields to be a

Lorentz scalar, and the momentum π0 conjugate to the scalar potential A0 is given

by

π0 =
∂L
∂Ȧ0

= 0. (4.2)

This is a reflection of the fact that the scalar potential is not a physical observable.

This problem can be addressed by quantizing an observable like ~E, in place of the

physically unobservable vector potential Aµ, but taking such a step at this stage

would complicate the form of the interaction with charges, and obscure the Lorentz

covariance of the F 2 component of the Lagrangian. Our first step is therefore to find
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an alternative Lagrangian which produces the same physics. The equations of motion

which result from (4.1) are

∂α
∂L

∂(∂αAγ)
= ∂αFαγ + ∂α(kF )αγF

µν = 0. (4.3)

In terms of the potentials, taking into account that (kF ) has the symmetries of the

Riemann tensor (see B.1), we obtain the modified Maxwell equations

�Aγ − ∂γ(∂αAα)− 2(kF )αγµν∂
α∂νAµ = 0. (4.4)

Proceeding in a fashion similar to those employed in quantizing the field potentials

in the covariant theory [131], we introduce the SME Fermi Lagrangian

L = − 1

2
(∂νAµ)(∂νAµ)− 1

4
(kF )κλµνF

κλF µν

= − 1

2
(∂νAµ)(∂νAµ)− (kF )κλµν(∂

λAκ)(∂νAµ),
(4.5)

which, like the fully Lorentz covariant Fermi Lagrangian used to quantize the covariant

theory, has a nonzero momentum π0 conjugate to A0. The equations of motion

resulting from (4.5) are then

�Aγ − 2(kF )αγµν(∂
α∂νAµ) = 0, (4.6)

which are equivalent to (4.4), provided that we enforce the Lorenz gauge condition

∂αAα = 0. (4.7)

Separating the spatial and time-derivatives in the Lagrangian, we obtain

L = − 1

2

[
(∂0Aµ)(∂0Aµ) + (∂pAµ)(∂pAµ)

]− (kF )κ0µ0(∂0Aκ)(∂0Aµ)

− (kF )κpµ0(∂pAκ)(∂0Aµ)− (kF )κ0µq(∂
0Aκ)(∂qAµ)− (kF )κpµq(∂

pAκ)(∂qAµ)

(4.8)

The full Lagrangian is obtained by integrating L over all space, so we may use the

Parseval-Plancherel identity to obtain the reciprocal-space Lagrangian density

L̃ =− 1

2

[
(∂0Aµ(~k))(∂0Aµ(~k))∗ + kpk

pAµ(~k)Aµ(~k)∗
]

− (kF )κ0µ0(∂0Aκ(~k))(∂0Aµ(~k))∗ + ikp(kF )κpµ0(Aκ(~k))(∂0Aµ(~k))∗

− ikq(kF )κ0µq(∂
0Aκ(~k))(Aµ(~k))∗ − kpkq(kF )κpµq(Aκ(~k))(Aµ(~k))∗,

(4.9)
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from which the full Lagrangian may be recovered by integrating over all ~k. Because

the potentials are real, we have

Aµ(~k) = Aµ(−~k)∗, (4.10)

which permits us to write the full Lagrangian as an integral over only half of reciprocal

space of the Lagrangian density L̃R,

L̃R =−
[
(∂0Aµ(~k))(∂0Aµ(~k))∗ + kpk

pAµ(~k)Aµ(~k)∗
]

− (kF )κ0µ0(∂0Aκ(~k))(∂0Aµ(~k))∗ − (kF )κ0µ0(∂0Aκ(~k))∗(∂0Aµ(~k))

+ ikp(kF )κpµ0(Aκ(~k))(∂0Aµ(~k))∗ − ikp(kF )κpµ0(Aκ(~k))∗(∂0Aµ(~k))

− ikq(kF )κ0µq(∂
0Aκ(~k))(Aµ(~k))∗ + ikq(kF )κ0µq(∂

0Aκ(~k))∗(Aµ(~k))

− kpkq(kF )κpµq(Aκ(~k))(Aµ(~k))∗ − kpkq(kF )κpµq(Aκ(~k))∗(Aµ(~k)).

(4.11)

Taking Aγ(~k) as our coordinates, we find that the conjugate momenta are given by

(using πγ(~k) = (1/c)∂L̃R/∂(∂0Aγ(~k)∗)):

cπγ(~k) = −(∂0Aγ(~k))− 2(kF )γ0κ0(∂0Aκ(~k)) + 2ikp(kF )γ0κpAκ(~k). (4.12)

This can be solved to leading order in (kF ) for (∂0Aγ(~k)) as

∂0Aγ(~k) = −cπγ(~k) + 2c(kF )γ0κ0π
κ(~k) + 2ikp(kF )γ0κpAκ(~k) +O ((kF )2) . (4.13)

By substituting the leading order expansion (4.13) for (∂0Aγ(~k)) in (4.11), we ex-

change the exact Lagrangian for one which is equivalent to first order in (kF ) at the

cost of adding additional unphysical terms at second order. We seek a leading order

expansion, and so shall ignore all second order and higher couplings. This leads to

the approximate Lagrangian density

L̃R =−
(
c2(gκµ − 2(kF )κ0µ0)πκ(~k)πµ(~k)∗

+(gκµgpq + 2(kF )κpµq)k
pkq(Aκ(~k))(Aµ(~k))∗

)
,
(4.14)

where gµν is the Minkowski metric: gµν = diag (1,−1,−1,−1).
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4.2 The Hamiltonian

The Hamiltonian density is given by

H̃R = c(πγ(~k))(∂0Aγ(~k))∗ + c(∂0Aγ(~k))(πγ(~k))∗ − L̃R, (4.15)

and so using (4.13) and (4.14), H̃R becomes

H̃R =
(

(gκµgpq + 2(kF )κpµq)k
pkq(Aκ(~k))(Aµ(~k))∗ − c2(gκµ − 2(kF )κ0µ0)πκ(~k)πµ(~k)∗

)
− 2ickp(kF )γ0κp

[
(πγ(~k))(Aκ(~k))∗ − (Aκ(~k))(πγ(~k))∗

]
.

(4.16)

Since this theory is a perturbation of the fully Lorentz covariant theory, we expect the

normal modes that result to be perturbations of the fully covariant normal modes.

These standard normal modes can be written in terms of Aµ(~k) and πµ(~k), so that

αµ(~k) =

√
c2

2~ωk

[ωk
c2
Aµ(~k) + iπµ(~k)

]
(4.17)

αµ(~k)∗ =

√
c2

2~ωk

[ωk
c2
Aµ(−~k)− iπµ(−~k)

]
(4.18)

αµ(−~k) =

√
c2

2~ωk

[ωk
c2
Aµ(−~k) + iπµ(−~k)

]
(4.19)

αµ(−~k)∗ =

√
c2

2~ωk

[ωk
c2
Aµ(~k)− iπµ(~k)

]
, (4.20)

where we have made use of the reality of the potentials and their conjugate momenta

(4.10). Note that insofar as choosing a set of variables to write the Hamiltonian in

terms of, we are free to make use of any linear combination of Aµ(~k) and πµ(~k) that

yield an acceptable commutator. We have chosen ωk = |~k|c, as is usual for the fully

covariant theory. As a consequence of our choosing an ωk that does not necessarily

satisfy the Lorentz-violating dispersion relation, there will be terms coupling the

forward propagating modes to those propagating backwards in the Hamiltonian. At

the end of our derivation, these and other similar terms will be eliminated by a

transformation of the mode operators, diagonalizing H̃R, and which can be interpreted
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in part as changing ωk to satisfy the appropriate dispersion relation. Proceeding using

this set of (approximately) normal modes, we then find that

Aµ(~k) =

√
~c2

2ωk

(
αµ(~k) + αµ(−~k)∗

)
(4.21)

πµ(~k) = −i
√

~ωk
2c2

(
αµ(~k)− αµ(−~k)∗

)
. (4.22)

We can quantize this theory by identifying Aµ(~k) and πν(~k) as operators with the

canonical commutation relation[
Aµ(~k), πν(~k′)

]
= i~gµνδ(~k − ~k′), (4.23)

where A represents the adjoint of an operator A. We use this peculiar form so as

to be consistent with the notation of [90], and to distinguish the properties of the

adjoint in the canonically quantized metric from those of the adjoint in the “physical”

metric used to define a basis in Hilbert space, as discussed in more detail in section

4.3. The (approximately) normal modes α(~k) now become operators a(~k), whose

non-vanishing commutators are, from (4.23)[
ar(~k), as(~k′)

]
= ζrδrsδ(~k − ~k′), (4.24)

where ζr = {−1, 1, 1, 1} for r = {0, 1, 2, 3}2. In what follows, it will be useful to

distinguish between the scalar, transverse, and longitudinal modes associated with a

given ~k. Thus we take the {a0(~k), a0(~k)} to act on the scalar modes, {a3(~k), a3(~k)}
to act on longitudinal modes, and the {a1(~k), a1(~k)} and {a2(~k), a2(~k)} operators to
act on the transverse modes for fields propagating parallel to ~k. We can then write

A and π as

Aµ(~k) =

√
~c2

2ωk

∑
r

εµr (~k)
(
ar(~k) + ar(−~k)

)
(4.25)

πν(~k) = −i
√

~ωk
2c2

∑
s

ενs(
~k)
(
as(~k)− as(−~k)

)
. (4.26)

2To be consistent with the notation of [131], we have departed from our usual convention that
reserves roman indices for 3-vectors, as r now denotes the scalar (r = 0), transverse (r = 1, 2) and
longitudinal (r = 3) modes for a given wavevector ~k, rather than the components of a 3 or 4-vector.
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The newly introduced ενs(
~k) tensor is responsible for keeping track of which time-

spatial components of Aµ are excited by the mode operators. Following [131], and

as defined in part 2.2 εν0(~k) = (−1, 0, 0, 0), while the spatial components ~εj(~k) form

a set of mutually orthogonal polarization vectors for each ~k. Specifically, we choose

~εp(~k) × ~εq(~k) = εpqr~εr(~k), with ~ε1(~k) = ~ε1(−~k), ~ε2(~k) = −~ε2(−~k), and ~ε3(~k) = k̂ =

−~ε3(−~k). With these definitions, (4.24) is easily shown to be consistent with (4.23).

Note that at this point, we can immediately infer that the form of the fields’ conserved

momentum operator is unchanged from its form in the fully covariant theory, since

the conserved momentum density is given by

Pj(~k) = πγ(~k)
(
−i~kjAγ(~k)

)∗
+ πγ(~k)∗

(
i~kjAγ(~k)

)
, (4.27)

which does not depend upon (kF ). Substituting (4.25) and (4.26) into (4.16), we find

H̃R = ~ωk
(
−εr,µ(~k)εµs (~k)

)(
ar(~k)as(~k) + ar(−~k)as(−~k)

)
+ ~ωk

(
εκr (
~k)εµs (~k)

)(
(kF )κpµqk̂

pk̂q + (kF )κ0µ0 − (kF )µ0κpk̂
p
) [
ar(~k)as(~k)

]
+ ~ωk

(
εκr (
~k)εµs (~k)

)(
(kF )κpµqk̂

pk̂q + (kF )κ0µ0 + (kF )µ0κpk̂
p
) [
ar(−~k)as(−~k)

]
+ ~ωk

(
εκr (
~k)εµs (~k)

)(
(kF )κpµqk̂

pk̂q − (kF )κ0µ0 + (kF )µ0κpk̂
p
) [
ar(~k)as(−~k)

]
+ ~ωk

(
εκr (
~k)εµs (~k)

)(
(kF )κpµqk̂

pk̂q − (kF )κ0µ0 − (kF )µ0κpk̂
p
) [
ar(−~k)as(~k)

]
− ~ωkk̂p(kF )µ0κp

(
εκr (
~k)εµs (~k)

) [
as(~k)ar(~k)− as(−~k)ar(−~k)

]
− ~ωkk̂p(kF )µ0κp

(
εκr (
~k)εµs (~k)

) [
as(~k)ar(−~k)− as(−~k)ar(~k)

]
.

(4.28)

Note that the first line of the above expression for H̃R is that of the covariant free-

field, and the terms that follow represent the Lorentz-violating perturbation. Making

use of the identity (B.7) in Appendix B.1, we note that

(kF )κ0µ0ε
κ
r (
~k)εµs (~k) = (kF )κλµνε

κ
r (
~k)δλ0ε

µ
s (~k)δν0

= −1

2

[
~εr(~k) · (κ̃e− + Iκ̃tr) · ~εs(~k)

]
,

(4.29)
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εκr (
~k)εµs (~k)(kF )κpµqk̂

pk̂q = (kF )κpµqε
κ
r (
~k)k̂pεµs (~k)k̂q

=− 1

2
ε0r(
~k)ε0s(

~k)
([
k̂
]
· (κ̃e− + Iκ̃tr) ·

[
k̂
])

− 1

2

([
ε0rk̂
]
· κ̃o+ ·

[
~εs(~k)× k̂

]
+
[
ε0sk̂
]
· κ̃o+ ·

[
~εr(~k)× k̂

])
− 1

2

([
~εr(~k)× k̂

]
· (κ̃e− + Iκ̃tr) ·

[
~εs(~k)× k̂

])
=− 1

2

{
ε0r(
~k)ε0s(

~k)
[
~ε3(~k) · (κ̃e− + Iκ̃tr) · ~ε3(~k)

]
+ εs3mε

0
r(
~k)
[
~ε3(~k) · κ̃o+ · ~εm(~k)

]
+ εr3mε

0
s(
~k)
[
~ε3(~k) · κ̃o+ · ~εm(~k)

]
+ εr3nεs3m

[
~εn(~k) · (κ̃e− + Iκ̃tr) · ~εm(~k)

]}
,

(4.30)

and

εκr (
~k)εµs (~k)(kF )µ0κpk̂

p = (kF )κpµ0ε
κ
r (
~k)k̂pεµs (~k)

=
1

2

([
ε0r(
~k)k̂
]
· (κ̃e− + Iκ̃tr) ·

[
~εs(~k)

])
+

1

2

([
~εs(~k)

]
· κ̃o+ ·

[
~εr(~k)× k̂

])
=

1

2

(
ε0r(
~k)
[
~εs(~k) · (κ̃e− + Iκ̃tr) · ~ε3(~k)

]
+ εr3m

[
~εs(~k) · κ̃o+ · ~εm(~k)

])
.

(4.31)

By substituting the above three expressions into the Hamiltonian (4.28), and taking

full advantage of the symmetry of the κ̃e− matrix and the antisymmetry of κ̃o+; for

which the scalar product with two vectors ~v1 and ~v2 obey

~v1 · κ̃e− · ~v2 = ~v2 · κ̃e− · ~v1 (4.32)

~v1 · κ̃o+ · ~v2 = −~v2 · κ̃o+ · ~v1, (4.33)

we can write the Hamiltonian density in five parts.

H̃R = H̃T + H̃±,T + H̃LS + H̃+,T,LS + H̃−,T,LS, (4.34)



78 Chapter 4: Quantization of Light in the SME

where H̃T includes products of transverse mode operators with the same wavevector
~k, H̃±,T contains products of the transverse mode operators with opposing wavevec-

tors −~k, H̃LS includes terms involving only the longitudinal and scalar modes, and

the couplings between the “positive” and “negative” transverse modes with the lon-

gitudinal and scalar degrees of freedom are expressed in H̃+,T,LS and H̃−,T,LS. To

simplify the expression for H̃T , we write the fractional shift in the speed of light

moving parallel to ~k due to the Lorentz-violating terms as

δ(~k) =
[
~ε1(~k) · κ̃o+ · ~ε2(~k)

]
− 1

2

2∑
r=1

[
~εr(~k) · (κ̃e− + Iκ̃tr) · ~εr(~k)

]
. (4.35)

Recalling that the Hamiltonian density H̃R is only summed over half of reciprocal

space, we obtain

H̃T = ~ωk
[
1 + δ(~k)

] (
a1(~k)a1(~k) + a2(~k)a2(~k)

)
+ ~ωk

[
1 + δ(−~k)

] (
a1(−~k)a1(−~k) + a2(−~k)a2(−~k)

)
.

(4.36)

This shows that the leading order shift to the energy of photons with wavevector ~k

is consistent with the dispersion relation derived from the Lagrangian [5, 28]. The

remaining H̃±,T , H̃+,T,LS, and H̃−,T,LS terms, as well as the cross couplings between

scalar and longitudinal modes in H̃LS, can be attributed to the differences between

the normal modes of the covariant theory and those of the Lorentz-violating model.

H̃±,T =
~ωk

2

{([
~ε1(~k) · (κ̃e− + Iκ̃tr) · ~ε1(~k)

]
−
[
~ε2(~k) · (κ̃e− + Iκ̃tr) · ~ε2(~k)

])
×(

a1(~k)a1(−~k) + a1(−~k)a1(~k)− a2(~k)a2(−~k)− a2(−~k)a2(~k)
)

+
(

2
[
~ε1(~k) · (κ̃e− + Iκ̃tr) · ~ε2(~k)

])(
a1(~k)a2(−~k) + a2(−~k)a1(~k)

)
+
(

2
[
~ε1(~k) · (κ̃e− + Iκ̃tr) · ~ε2(~k)

])(
a2(~k)a1(−~k) + a1(−~k)a2(~k)

)}
.

(4.37)
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H̃LS = ~ωk
(
a3(~k)a3(~k) + a3(−~k)a3(−~k)

)
−
(
a0(~k)a0(~k) + a0(−~k)a0(−~k)

)
− ~ωk

2

[
~ε3(~k) · (κ̃e− + Iκ̃tr) · ~ε3(~k)

]{
a3(~k)a3(~k) + a3(−~k)a3(−~k)

+ a0(~k)a0(~k) + a0(−~k)a0(−~k) + a0(~k)a0(−~k) + a0(−~k)a0(~k)

+ a3(~k)a0(−~k) + a0(−~k)a3(~k)− a0(~k)a3(−~k)− a3(−~k)a0(~k)

− a3(~k)a3(−~k)− a3(−~k)a3(~k) + a0(~k)a3(~k) + a3(~k)a0(~k)

− a0(−~k)a3(−~k)− a3(−~k)a0(−~k)

}
(4.38)

H̃+,T,LS =
−~ωk

2

{([
~ε1(~k) · (κ̃e− + Iκ̃tr) · ~ε3(~k)

]
−
[
~ε3(~k) · κ̃o+ · ~ε2(~k)

])
×(

a0(~k)a1(~k) + a1(~k)a0(~k) + a3(~k)a1(~k) + a1(~k)a3(~k)

+a1(~k)a0(−~k) + a0(−~k)a1(~k)− a1(~k)a3(−~k)− a3(−~k)a1(~k)
)

+
([
~ε2(~k) · (κ̃e− + Iκ̃tr) · ~ε3(~k)

]
+
[
~ε3(~k) · κ̃o+ · ~ε1(~k)

])
×(

a0(~k)a2(~k) + a2(~k)a0(~k) + a3(~k)a2(~k) + a2(~k)a3(~k)

+a2(~k)a0(−~k) + a0(−~k)a2(~k)− a2(~k)a3(−~k)− a3(−~k)a2(~k)
)}
(4.39)

H̃−,T,LS =
~ωk

2

{([
~ε1(~k) · (κ̃e− + Iκ̃tr) · ~ε3(~k)

]
+
[
~ε3(~k) · κ̃o+ · ~ε2(~k)

])
×(

a0(−~k)a1(−~k) + a1(−~k)a0(−~k)− a3(−~k)a1(−~k)− a1(−~k)a3(−~k)

+a0(~k)a1(−~k) + a1(−~k)a0(~k) + a3(~k)a1(−~k) + a1(−~k)a3(~k)
)

+
([
~ε2(~k) · (κ̃e− + Iκ̃tr) · ~ε3(~k)

]
−
[
~ε3(~k) · κ̃o+ · ~ε1(~k)

])
×(

a0(−~k)a2(−~k) + a2(−~k)a0(−~k)− a3(−~k)a2(−~k)− a2(−~k)a3(−~k)

+a0(~k)a2(−~k) + a2(−~k)a0(~k) + a3(~k)a2(−~k) + a2(−~k)a3(~k)
)}

.

(4.40)
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The Hamiltonian can be further simplified by expressing the scalar and longitudinal

operators in terms of

ad(~k) =
i√
2

(
a3(~k)− a0(~k)

)
(4.41)

ag(~k) =
1√
2

(
a3(~k) + a0(~k)

)
, (4.42)

so that

H̃LS = i~ωk
(
ad(~k)ag(~k)− ag(~k)ad(~k) + ag(−~k)ad(−~k)− ad(−~k)ag(−~k)

)
− ~ωk

[
~ε3(~k) · (κ̃e− + Iκ̃tr) · ~ε3(~k)

] (
ag(~k)ag(~k) + ad(−~k)ad(−~k)

)
− i~ωk

[
~ε3(~k) · (κ̃e− + Iκ̃tr) · ~ε3(~k)

] (
ag(~k)ad(−~k)− ad(−~k)ag(~k)

) (4.43)

H̃+,T,LS =
−~ωk√

2

{([
~ε1(~k) · (κ̃e− + Iκ̃tr) · ~ε3(~k)

]
−
[
~ε3(~k) · κ̃o+ · ~ε2(~k)

])
×(

a1(~k)
[
ag(~k) + iad(−~k)

]
+
[
ag(~k)− iad(−~k)

]
a1(~k)

)
+
([
~ε2(~k) · (κ̃e− + Iκ̃tr) · ~ε3(~k)

]
+
[
~ε3(~k) · κ̃o+ · ~ε1(~k)

])
×(

a2(~k)
[
ag(~k) + iad(−~k)

]
+
[
ag(~k)− iad(−~k)

]
a2(~k)

)}
,

(4.44)

H̃−,T,LS =
~ωk√

2

{([
~ε1(~k) · (κ̃e− + Iκ̃tr) · ~ε3(~k)

]
+
[
~ε3(~k) · κ̃o+ · ~ε2(~k)

])
×([

ag(~k)− iad(−~k)
]
a1(−~k) + a1(−~k)

[
ag(~k) + iad(−~k)

])
+
([
~ε2(~k) · (κ̃e− + Iκ̃tr) · ~ε3(~k)

]
−
[
~ε3(~k) · κ̃o+ · ~ε1(~k)

])
×([

ag(~k)− iad(−~k)
]
a2(−~k) + a2(−~k)

[
ag(~k) + iad(−~k)

])}
.

(4.45)

To leading order in κ̃, the interactions between the transverse modes contained in

H̃±,T can be eliminated by performing the unitary transformation

eΞ1+Ξ2 H̃R e
−Ξ1−Ξ2 , (4.46)
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where

Ξ1 =
∑
~k

1

4

([
~ε1(~k) · (κ̃e− + Iκ̃tr) · ~ε1(~k)

]
−
[
~ε2(~k) · (κ̃e− + Iκ̃tr) · ~ε2(~k)

])
×(

a1(~k)a1(−~k)− a1(−~k)a1(~k)− a2(~k)a2(−~k) + a2(−~k)a2(~k)
)

Ξ2 =
∑
~k

1

2

[
~ε1(~k) · (κ̃e− + Iκ̃tr) · ~ε2(~k)

]
×(

a1(~k)a2(−~k)− a1(~k)a2(−~k) + a2(~k)a1(−~k)− a2(~k)a1(−~k)
)
.

(4.47)

Thus we may write the free field Hamiltonian in terms of (4.36), (4.43), (4.44), and

(4.45) as

eΞ1+Ξ2 H̃R e
−Ξ1−Ξ2 = H̃T + H̃LS + H̃+,T,LS + H̃−,T,LS. (4.48)

As will be demonstrated in part 4.3.5, the remaining H̃LS and H̃±,T,LS terms do not

contribute to physical observables, and do not affect the evolution of the free fields

at leading order. Thus the similarity transform (4.46) has effectively diagonalized

the free-field Hamiltonian. We note that at second order in κ̃, the H̃±,T,LS terms

can generate vacuum birefringence via an intermediate coupling to the scalar and

longitudinal modes (i.e. d- and g-modes). This is qualitatively consistent with the

solution to the Lagrangian equations of motion (4.6) taken to second order in κ̃e−,

κ̃o+, and κ̃tr, although a rigorous treatment would require the inclusion of numerous

second order terms (all of which are suppressed by at least a factor of 1012 relative to

the leading order effects) which were discarded in the course of this derivation. The

H̃LS and H̃±,T,LS components of the Hamiltonian are also critically important in any

fully quantum treatment of electro- and magneto-statics in the photon sector of the

SME.

4.3 The Indefinite Metric

While the Hamiltonian (4.48) is self-adjoint in the sense that H̃R = H̃R, this

fact alone does not establish that eigenstates of H̃R will satisfy the Lorenz condition,

and thus represent solutions to the modified Maxwell equations. In contrast to the
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fully covariant theory, (4.48) includes a variety of terms coupling the physically per-

mitted transverse modes to the unphysical scalar and longitudinal modes. Here, we

demonstrate that these terms do not couple states that are consistent with Maxwells

equations to states that are not; and that (4.48) is the operator of a well defined ob-

servable which can act as the generator of translations in time. To do this, we follow

the usual process by which the potentials of the fully covariant theory are quantized,

and choose to define a basis for the quantized fields’ Hilbert space in a metric other

than the one induced by (4.23).

We first review the properties of the inner product, or metric, that covariant

quantization imposes on the Hilbert space, and recapitulate the procedure by which

the metric is redefined to permit the construction of a basis for the Hilbert space

comprised of states with non-negative (if not strictly positive definite) norm. For the

fully covariant theory, this process is sufficient to completely isolate a subspace S of

states satisfying the Lorenz condition and that have positive norm from those that

do not. In the Lorentz-violating theory, however, the H̃±,T,LS terms do not leave the

subspace S invariant. Fortunately, as we will show in part 4.3.5, the Lorentz-violating

theory leaves the larger subspace SLV ⊃ S invariant. Although the metric on states in

SLV is not strictly positive, we demonstrate that every |ψ〉 ∈ SLV is a solution of the

modified Maxwell equations (4.4). In so doing, we demonstrate that the form of the

Lorenz condition used in the course of covariant quantization of the fully covariant

theory is stronger than is strictly required, and develop a minimal “weak” Lorenz

condition to define SLV . Finally, we show that to leading order in κ̃, states in SLV

outside of S can be ignored, and the metric can again be treated as if it were strictly

positive.

4.3.1 Origins of the Indefinite Metric

In the process of covariant quantization, we made two fateful decisions. First, we

chose to quantize the potentials Aµ and their conjugate momenta, rather than use the

physically observable electric and magnetic fields. This choice makes the interaction

of the quantized field with Dirac fermions particularly straightforward, but inserts
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an additional unphysical degree of freedom into our system, associated with gauge

invariance. Next, in order to obtain a fully covariant commutation relation between

the coordinate potentials and their conjugate momenta, we had to use a variant of the

Fermi Lagrangian to induce a nonvanishing momentum for the time-component of the

potential, inserting another degree of freedom. This means that where we once had

a system that admitted only transverse solutions of the free-field wave equation, we

now have a representation of that system for which, in the absence of the appropriate

constraints, scalar and longitudinal modes are permitted3. These unphysical degrees

of freedom cause the Hilbert space of the quantized fields to include wavefunctions

that are not solutions of (4.4). This problem can be addressed in more detail once we

have constructed a suitable basis in part 4.3.3. Specifying that basis in terms of the

normal mode operators defined in (4.25) and (4.26) is complicated by the covariant

commutation relation between the potentials and their conjugate momenta:

[Aµ(~r, t), πν(~r ′, t′)] = i~gµνδ(t− t′)δ(~r − ~r ′). (4.49)

As stated in (4.24), this gives rise to the equal time commutation relation between

the normal modes in reciprocal space[
ar(~k), as(~k

′)
]

= ζrδrsδ(~k − ~k′), (4.50)

with ζr = {−1, 1, 1, 1} for r = {0, 1, 2, 3}. Because [a0(~k), a†0(~k)] = −1, respectively

identifying a†0 and a0 as creation and annihilation operators leads to states with

negative norm. If the vacuum is normalized such that 〈0|0〉 = 1, then one such

negative norm state is that with a single scalar-mode photon

〈10|10〉 = 〈0|a0a
†
0|0〉 = −〈0|0〉+ 〈0|a†0a0|0〉 = −1. (4.51)

This is a direct consequence of quantizing the potentials of the Fermi Lagrangian,

which has led to a Hilbert space with an indefinite (rather than strictly positive)

inner product, or metric.
3Note that this statement applies to the classical as well as the quantum theory. Differences in the

derivation of the classical covariant field representation as compared to their quantum representation
arise in how the Lorenz gauge condition is applied.
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4.3.2 Properties of the Indefinite Metric

Paralleling the discussion in [90], we can define a new metric with respect to an

existing Hilbert space (whose elements are denoted as |ψ〉) in terms of an operator

M , hermitian on all |ψ〉, such that M = M † = M−1. Using this metric operator M ,

we can then define a new metric on the Hilbert space in terms of |ψ〉 and the original

metric by

⊂ ψ|φ ⊃= 〈ψ|M |φ〉, (4.52)

where | ⊃ and ⊂ | are isomorphic to the physical states according to

|ψ ⊃= |ψ〉, and ⊂ ψ| = 〈ψ|M. (4.53)

This implies that

⊂ ψ|φ ⊃= 〈ψ|M |φ〉 =
(〈φ|M †|ψ〉)∗ = (⊂ φ|ψ ⊃)∗ . (4.54)

As was the case in the original metric, the product ⊂ ψ|φ ⊃ is linear in |φ ⊃ and

antilinear in ⊂ ψ|. Even though we may initially choose 〈ψ|ψ〉 to be positive definite,

⊂ ψ|ψ ⊃ need not be, since

⊂ ψ|ψ ⊃= 〈ψ|M |ψ〉 = 〈ψ|
(∑

j

mj|mj〉〈mj|
)
|φ〉 =

∑
j

mj|〈ψ|mj〉|2, (4.55)

and the eigenvalues mj of M can be ±1, leading to the possibility of states with

vanishing or negative norm. If the original metric is positive definite, then metrics

derived from that metric by a metric operator M with one or more negative eigen-

values are termed indefinite. The freedom to choose M permits us to define a new

adjoint Ā such that

⊂ ψ|A|φ ⊃ =
(⊂ φ|Ā|ψ ⊃)∗ (4.56)

is satisfied. The new adjoint can be related to the old adjoint via

⊂ ψ|A|φ ⊃= 〈ψ|MA|φ〉 = 〈ψ|Ā†M †|φ〉 =
(〈φ|MĀ|ψ〉)∗ =

(⊂ φ|Ā|ψ ⊃)∗ , (4.57)

which implies A†M † = MĀ. Since M = M † and M2 = I, we have that the new

adjoint is given by

Ā = MA†M. (4.58)
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The mean value of an operator A in the new metric is given by

⊂ A ⊃ψ=
⊂ ψ|A|ψ ⊃
⊂ ψ|ψ ⊃ . (4.59)

If the operator is hermitian in the new metric (A = Ā), the mean value ⊂ A ⊃ψ can

easily be shown to coincide with the mean 〈A〉ψ in the original metric, provided that

A = A†. Finally, for an orthonormal basis |ϕj〉, the closure relation becomes

1 =
∑
j

|ϕj〉〈ϕj| =
∑
j

|ϕj ⊃⊂ ϕj|M. (4.60)

4.3.3 Construction of Hilbert Space and the Metric Operator

As noted above in 4.3, quantizing the potentials of the Fermi Lagrangian yields a

Hilbert space of states with an indefinite metric. Following [90], we will denote the

adjoint of an operator A as Ā in this metric, reserving the A† adjoint for the trans-

formed “physical metric” used in the fully covariant theory to isolate the unphysical

modes. Since we would like to perform calculations in a Hilbert space of coupled har-

monic oscillators with positive-definite metric, we need to change the sign of (4.50)

for r = 0. Assuming that such a metric exists, it must be related to the original

indefinite metric operators by a metric operator M such that

Ma0,1,2,3(~k)M = a0,1,2,3(~k) Mā1,2,3(~k)M = a†1,2,3(~k), (4.61)

and

Mā0(~k)M = −a†0(~k). (4.62)

With this transformation of the field operators, the covariant commutation relations

(4.50) become

[ar(~k), a†s(
~k)] = δrsδ(~k − ~k′). (4.63)

It is then straightforward to use these operators to define a well-behaved basis for the

scalar polarization modes for each ~k in terms of the transformed operators as

|n0〉 =
(a†0)n0

√
n0!
|0〉, (4.64)
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where the dependence on ~k is suppressed. Because the scalar mode commutator

(4.63) matches that of the conventional harmonic oscillator, the usual ladder operator

relations apply in this basis, and all states have positive norm (〈n0|n0〉 = 1). On this

basis, we can now explicitly write M as [90]

M |n0〉 = (−1)n0|n0〉. (4.65)

This form of M can easily be shown to satisfy (4.62) on the chosen basis, and is self-

evidently hermitian in the new or “physical” metric. In particular, since |ψ ⊃ = |ψ〉
and ⊂ ψ| = 〈ψ|M , we have

⊂ n0|n′0 ⊃ = 〈n0|M |n′0〉 = (−1)n
′
0δn0,n′0

, (4.66)

demonstrating that the combination of the chosen basis (4.64) with M is consistent

with the properties of the norm in (4.51), derived by canonical quantization of the

potentials.

A basis for the Hilbert space can be defined in the new metric as

|n1, n2, n3, n0〉 =
(a†1)n1(a†2)n2(a†3)n3(a†0)n0

√
n1!n2!n3!n0!

|0〉, (4.67)

although the subspace of states satisfying the modified Maxwell equations given in

(4.4) is necessarily smaller. To apply the Lorenz gauge condition (4.7) to isolate the

physical subspace, we must keep in mind that it is defined in the indefinite metric

⊂ ψ|∂αAα|ψ ⊃ = 0. (4.68)

Because it is not possible to form a basis in which ∂αAα|ψ ⊃ = 0, the Lorenz condition

is typically expressed in terms of the weaker condition due to Gupta and Bleuler [89](
a3(~k)− a0(~k)

)
|ψ ⊃ = 0 and 0 = ⊂ ψ|

(
ā3(~k)− ā0(~k)

)
. (4.69)

Note that in general, expressions given in terms of operators acting on states |ψ ⊃
in one metric do not necessarily have the same form when expressed in terms of

operators acting on the corresponding states |ψ〉 in another metric. In the present
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case, however, |ψ〉 = |ψ ⊃, and M does not alter the annihilation operators, so

(a3− a0)|ψ ⊃ = (a3− a0)|ψ〉. It is therefore convenient to work in the modified basis

|n1, n2, nd, ng〉 =
(a†1)n1(a†2)n2(a†d)

nd(a†g)
ng√

n1!n2!nd!ng!
|0〉, (4.70)

where the d-photon and g-photon operators are given by

ad =
i√
2

(a3 − a0), and ag =
1√
2

(a3 + a0), (4.71)

which obey the usual bosonic commutation relations with respect to the physical

(where the adjoint of A is A†) metric. This permits us to express the Lorenz condition

(4.69) in the compact form ad|ψ〉 = 0.

Note that although the Maxwell equations are satisfied by |ψ〉 for which ad|ψ〉 =

ad|ψ ⊃ = 0, the 〈ψ| which satisfy the Maxwell equations are not necessarily those for

which 〈ψ|a†d = 0. The Lorenz condition of Gupta and Bleuler, properly expressed in

terms of the indefinite metric, is

ad|ψ ⊃ = 0, and ⊂ ψ|ād = 0, (4.72)

where

ād =− i√
2

(ā3 − ā0) = −ia†g, and āg =
1√
2

(ā3 + ā0) = ia†d. (4.73)

Thus we see that the Lorenz condition on 〈ψ| is ⊂ ψ|ād = 〈ψ|M(−ia†g) = 0. In what

follows, we will find it more convenient to use the indefinite metric to pick out the

physical 〈ψ|. The physical subspace that satisfies (4.69) is now completely defined

by [90]

|n1, n2, 0d, ng〉 =
(a†1)n1(a†2)n2(a†g)

ng√
n1!n2!ng!

|0〉. (4.74)

Application of the Lorenz condition in both the indefinite metric on |ψ ⊃ as well

the physical metric on |ψ〉 explicitly restricts one of the unphysical degrees of freedom.

At this point, we may be tempted to treat the so-called physical metric as if it were

the “real” metric, and that expectation values calculated in the underlying indefinite

metric should be judged according to whether they are sensible in the metric on |ψ〉.
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Such an approach would be misguided. If we consider only the |ψ〉 Hilbert space,

then since the norm

〈n1, n2, 0d, ng|n′1, n′2, 0d, n′g〉 = δn1,n′1
δn2,n′2

δng ,n′g (4.75)

is positive for any ng, it might then appear that the unphysical g-photon mode could

yield quantum-mechanically valid observables that are nevertheless entirely decoupled

from the transverse modes, and indeed decoupled from the state of any other field.

This interpretation would make it a practical necessity to trace over the g-modes

when calculating expectation values. This is no problem for the covariant theory, as

the energy associated with each g-photon is zero, and there is no way for g-photons

to couple to the transverse modes. A trace over the unphysical modes would leave

a pure state of the physically observed fields unchanged. For the Lorentz-violating

theory, the effects of a trace over such modes is potentially much more troubling, due

to the existence of terms proportional to (a†g)
2 in the Hamiltonian. This question of

interpretation is immediately resolved if the observables are defined strictly according

to their hermiticity in the underlying indefinite metric. There, we find

⊂ n1, n2, 0d, ng|n′1, n′2, 0d, n′g ⊃ = 〈n1, n2, 0d, ng|M |n′1, n′2, 0d, n′g〉
= δn1,n′1

δn2,n′2
δng ,0δn′g ,0,

(4.76)

since the action of M on a state with n d-photons and m g-photons is, using the

definitions (4.71) and (4.62),

M |nd,mg〉 = im−n|md, ng〉. (4.77)

From (4.76), we see that the norm of any state satisfying (4.72) with ng > 0 must

vanish, implying that such states cannot contribute to the eigenvalue of any observable

operator. This also implies that if a state |ψ〉 satisfying the Lorenz condition of Gupta

and Bleuler can be written |ψ〉 = |ψ〉T ⊗ |φ〉g; where |ψ〉T represents the state of the

transverse modes, and |φ〉g is the state of the g-photon mode; then the mean value of

any physical observable A must be

⊂ ψ|A|ψ ⊃
⊂ ψ|ψ ⊃ =

T 〈ψ|A|ψ〉T
T 〈ψ|ψ〉T , (4.78)
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since A can only act on the transverse degrees of freedom. The underlying indefinite

metric formally eliminates the need to trace over g-modes, simplifying the interpre-

tation of both the covariant theory as well as the Lorentz-violating theory 4.

4.3.4 The Weak Lorenz Condition

The preceding discussion suggests that the Lorenz condition (4.69) of Gupta and

Bleuler may itself be stronger than is strictly necessary to satisfy (4.68). We are

motivated by the general form of (4.76), which is

⊂ n1, n2, nd, ng|n′1, n′2, n′d, n′g ⊃ = in
′
g−n′dδn1,n′1

δn2,n′2
δng ,n′dδn′g ,nd . (4.79)

This means that we can write down states (e.g. , |n1, n2, 4d, 0g ⊃) that do not sat-

isfy (4.69), but which simultaneously have zero norm. If ⊂ ϕ|ϕ ⊃ = 0, then the

contribution of |ϕ ⊃ to the expectation of any physical observable must also vanish,

since an operator corresponding to a physical observable cannot depend or act upon

the unphysical d or g modes. That is, given a state |ψ ⊃ which is orthogonal to

|ϕ ⊃, has nonzero norm, and which satisfies (4.69), then the states |φ1 ⊃ = |ψ ⊃ and

|φ2 ⊃ = c1|ψ ⊃ +c2|ϕ ⊃ are experimentally indistinguishable from one another, since

for any operator A corresponding to a physical observable,

〈A〉 =
⊂ φ1|A|φ1 ⊃
⊂ φ1|φ1 ⊃ =

⊂ ψ|A|ψ ⊃
⊂ ψ|ψ ⊃

=
⊂ ψ|A|ψ ⊃
⊂ ψ|ψ ⊃ +

⊂ ϕ|A|ϕ ⊃
⊂ ψ|ψ ⊃ =

⊂ φ2|A|φ2 ⊃
⊂ φ2|φ2 ⊃ .

(4.80)

Note that the validity of this expression is dependent upon the orthogonality of |ψ ⊃
with |ϕ ⊃ with respect to the indefinite metric, and not the metric suggested by

(4.75). In particular, if we take |ϕ ⊃ = |01, 02, nd, 0g ⊃, then |ψ ⊃ must not have a

|01, 02, 0d, ng ⊃ component, since this would lead to a nonvanishing cross term pro-

portional to the real part of c1c
∗
2(i)n in (4.80). A diagram of the relative orthogonality

and norm of the d- and g-mode subspace for fixed ~k is given in Figure 4.1.
4We could have arrived at an expression similar to (4.76), and thus derived (4.78) purely in terms

of the |ψ〉 metric, using the properly transformed adjoint of the Lorenz condition 〈ψ|M(−ia†g) = 0.
This would show that 〈ng 6= 0| does not belong to the subspace satisfying (4.69) on the larger
Hilbert space. The problem is somewhat easier to address both mathematically and conceptually in
the indefinite metric.
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If the observed field configuration in state |φ1 ⊃ is indistinguishable from that in

state |φ2 ⊃, then since the configuration due to |φ1 ⊃ is consistent with the (modified)

Maxwell equations (4.4), the field configuration represented by |φ2 ⊃ must also be a

solution to (4.4). Thus the conventional formulation of the Lorenz gauge condition

of Gupta and Bleuler is overly restrictive; it excludes states that are consistent with

the Maxwell equations. We are therefore led to restate the Lorenz condition in the

less restrictive form:

For all |ψ ⊃ such that ⊂ ψ|ψ ⊃ 6= 0 :

(
ad|ψ ⊃ = 0 and ⊂ ψ|ād = 0

)
. (4.81)

Just as happened with respect to the g-photon modes in part 4.3.3, the difference

between the weak Lorenz condition (4.81) and the stronger condition of Gupta and

Bleuler is relatively unimportant to the development of the fully covariant theory.

States |ϕ ⊃ with one or more d-photons such that ⊂ ϕ|ϕ ⊃ = 0 are, like the

states with one or more g-photons, entirely decoupled from the transverse modes

as (kF ) → 0. The distinction is however critically important to the development

of the Lorentz-violating theory, as the Hamiltonian (4.48), in the H̃LS and H̃±,T,LS
terms, includes couplings between states that satisfy (4.69) and states that do not.

In what follows, we demonstrate that the Lorentz-violating Hamiltonian H̃Rdoes in

fact leave the space of states that satisfy the weak Lorenz condition invariant, and

therefore represents a generator of unitary time translations that is fully consistent

with the modified Maxwell equations.

4.3.5 Lorentz-Violating Hamiltonian in the Indefinite Metric

At the conclusion of part 4.2, we stated that the effects of H̃LS, H̃+,T,LS, and

H̃−,T,LS could be ignored at leading order in κ̃. In the limit that (kF ) → 0, these

terms pose no special problem: the H̃±,T,LS terms vanish, and H̃LS reduces to H̃0
LS,

where we have explicitly made the division

H̃LS = H̃0
LS + H̃LV

LS , (4.82)

with

H̃0
LS = i~ωk

(
ad(~k)ag(~k)− ag(~k)ad(~k) + ag(−~k)ad(−~k)− ad(−~k)ag(−~k)

)
(4.83)
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B-

B+

Figure 4.1: A partition of Hilbert space into four sets according to their in-
definite metric inner product. All states within each set have a vanishing
inner product with any other state in the same set. Set A contains only the
nd = ng = 0 state with nonzero norm permitted by the Maxwell equations.
Set C contains all states that are not consistent with the Maxwell equations
and have nonzero norm, while states in sets B+ and B- have varying numbers
of d and g-photons but have vanishing norm. Each state in set B+ has a
corresponding state in set B- with which it has a finite inner product. Three
such pairings are indicated by arcs. States in sets A and C are orthogo-
nal to states in all other sets. A wavefunction |ψ ⊃ is consistent with the
weak Lorenz condition (4.81) if it is made up of a superposition of mutually
orthogonal states drawn from sets A, B+, and B-.
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which becomes ~ωk
(
ad(~k)a†d(

~k) + ag(~k)a†g(
~k) + a†d(−~k)ad(−~k) + a†g(−~k)ag(−~k)

)
when

expressed in the physical metric, and

H̃LV
LS = − ~ωk

[
~ε3(~k) · (κ̃e− + Iκ̃tr) · ~ε3(~k)

] (
ag(~k)ag(~k) + ad(−~k)ad(−~k)

)
− i~ωk

[
~ε3(~k) · (κ̃e− + Iκ̃tr) · ~ε3(~k)

] (
ag(~k)ad(−~k)− ad(−~k)ag(~k)

)
.

(4.84)

Using the commutation relation for [ar(~k), as(~k′)] and the definition of ad(~k) and

ag(~k), we may derive the commutators for ag(~k), ad(~k) and their adjoints:

[ag(~k), ag(~k′)] = 0 (4.85a)

[ad(~k), ad(~k′)] = 0 (4.85b)

[ad(~k), ag(~k′)] = iδ(~k − ~k′) (4.85c)

[ag(~k), ad(~k′)] = iδ(~k − ~k′). (4.85d)

Using these commutation relations, it is straightforward to demonstrate that H̃LV
LS ,

H̃+,T,LS, and H̃−,T,LS all commute with one another, as do the individual operators

in H̃LV
LS . To get a sense for the action of H̃LV

LS on an arbitrary wavefunction, we must

write it in terms of the “physical” metric, where we have defined our basis. Using

(4.73), we obtain

H̃LV
LS = − i~ωk

[
~ε3(~k) · (κ̃e− + Iκ̃tr) · ~ε3(~k)

] (
ag(~k)a†d(

~k)− a†g(−~k)ad(−~k)
)

− i~ωk
[
~ε3(~k) · (κ̃e− + Iκ̃tr) · ~ε3(~k)

] (
ag(~k)ad(−~k)− a†g(−~k)a†d(

~k)
)
.

(4.86)

Note that while H̃LV
LS is manifestly self-adjoint with respect to the indefinite metric,

it is not with respect to the physical metric. Fortunately, the properties of the inner

product are such that although H̃LV
LS does represent a non-hermitian Hamiltonian cou-

pling to states with different numbers of unphysical d- and g-photons, the evolution

of the wavefunction with respect to physical observables (including H̃) remains uni-

tary. As we now demonstrate, if a state |ϕ ⊃ is coupled by H̃LV
LS to a state |ψ ⊃ with

nonzero norm that also satisfies the weak Lorenz condition (4.81), then |ϕ ⊃must also

satisfy (4.81), and thus ⊂ ϕ|ϕ ⊃ = 0. For fixed ~k, H̃LV
LS can either create a d-photon

in mode ~k while removing a g-photon from that mode, create a g-photon in mode −~k
while removing a d-photon from that mode, annihilate a g-photon from mode ~k along
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with a d-photon in mode −~k, or create a g-photon in mode −~k along with a d-photon

in mode ~k. The action of
(
H̃LV
LS

)N
on an arbitrary state |ψ〉 = |nd, ng〉~k|n′d, n′g〉−~k can

yield superpositions of the states |ϕ〉 = |md,mg〉~k|m′d,m′g〉−~k, where

md = nd + w + z

mg = ng − w − y
m′d = n′d − x− y
m′g = n′g + x+ z

N = w + x+ y + z.

(4.87)

For ⊂ ϕ|ϕ ⊃ 6= 0, we must have md = mg and m′d = m′g, or

md −mg = nd − ng + w − x+N = 0

m′d −m′g = n′d − n′g + w − x−N = 0.
(4.88)

If ⊂ ψ|ψ ⊃ 6= 0, then nd = ng and n′d = n′g. We then see that (4.88) can only be

satisfied for the trivial case N = 0, and thus no power of H̃LV
LS can couple a state |ψ ⊃

that satisfies the weak Lorenz condition (4.81) to one that does not. Furthermore,

it cannot couple two different states with nonzero norm to one another. This means

that the presence of H̃LV
LS does not contribute to the expectation value of H̃, and

indeed cannot affect the expectation value of the operator for any physical observable

constructed from the transverse mode operators.

We now apply a similar analysis to the H̃±,T,LS = H̃+,T,LS + H̃−,T,LS terms. In

the physical metric, these terms take the form

H̃±,T,LS =
(
δ1a1(~k) + δ2a2(~k) + δ3a

†
1(−~k) + δ4a

†
2(−~k)

) [
ia†d(

~k) + iad(−~k)
]

+
[
ag(~k)− a†g(−~k)

] (
δ1a
†
1(~k) + δ2a

†
2(~k) + δ3a1(−~k) + δ4a2(−~k)

)
,

(4.89)

where δ1, δ2, δ3 and δ4 are terms of order κ̃. The action of
(
H̃±,T,LS

)N
on an

arbitrary state |ψ〉 = |nd, ng〉~k|n′d, n′g〉−~k can yield superpositions of states |ϕ〉 =
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|md,mg〉~k|m′d,m′g〉−~k, where

md = nd + w

mg = ng − y
m′d = n′d − x
m′g = n′g + z

N = w + x+ y + z.

(4.90)

Thus if ⊂ ψ|ψ ⊃ 6= 0, then if ⊂ ϕ|ϕ ⊃ 6= 0, then both

md −mg = nd − ng + w − y = 0

m′d −m′g = n′d − n′g +N − 2x− w − y = 0.
(4.91)

If w = y, then this is satisfied for N = 2x, provided that n′d ≥ x and ng ≥ y. If |ψ ⊃
has nonzero norm and satisfies the weak Lorenz condition (4.81), then ng = n′d = 0,

which in turn requires the w = x = y = 0, and that N = 0 if we are to have

⊂ ϕ|ϕ ⊃ 6= 0.

Finally, it is interesting to consider the effect of taking the actions of both H̃LV
LS

and H̃±,T,LS together. We then find that the state |ψ〉 = |nd, ng〉~k|n′d, n′g〉−~k may be

coupled to |ϕ〉 = |md,mg〉~k|m′d,m′g〉−~k provided that

md = nd + w1 + z1 + w2

mg = ng − w1 − y1 − y2

m′d = n′d − x1 − y1 − x2

m′g = n′g + x1 + z1 + z2

N1 = w1 + x1 + y1 + z1

N2 = w2 + x2 + y2 + z2.

(4.92)

If |ϕ〉 has a nonzero norm, then we must have

md −mg = nd − ng + w1 − x1 +N1 + w2 − y2 = 0

m′d −m′g = n′d − n′g + w1 − x1 −N1 +N2 − 2x2 − w2 − y2 = 0.
(4.93)
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If |ψ ⊃ satisfies (4.81), then w1 = y1 = y2 = y1 = x1 = x2 = 0, and the above reduces

to

md −mg = nd − ng +N1 + w2 = 0

m′d −m′g = n′d − n′g −N1 +N2 − w2 = 0,
(4.94)

which cannot be satisfied for any N1 > 0 or N2 > 0. Taking the subspace SLV as

that generated by H̃R on the subspace S of states with no d- or g-mode excitations,

we may now say that every |ψ ⊃ ∈ SLV satisfies the weak Lorenz condition (4.81).

This means that H̃R leaves the space of solutions of the modified Maxwell equations

(4.4) invariant. Furthermore, we have shown that the apparently non-hermitian form

of H̃LV
LS and H̃±,T,LS in terms of the physical metric operators does not lead to non-

unitary evolution in time, since all states coupled by such terms have vanishing norm.

4.4 Effects on Transverse Mode Couplings

Although this work focuses on the free-field evolution, it is worthwhile to con-

sider the form of the transverse potentials when expressed in terms of the free-field

eigenmodes. From (4.25), we find that the transverse components of the potential

A⊥,1(~k) =

√
~c2

2ωk

(
a1(~k) + a1(−~k)

)
(4.95)

A⊥,2(~k) =

√
~c2

2ωk

(
a2(~k) + a2(−~k)

)
(4.96)

become

eΞ1+Ξ2 A⊥,1(~k) e−Ξ1−Ξ2 = (1− δ1)A⊥,1(~k)− δ2A⊥,2(~k) (4.97)

eΞ1+Ξ2 A⊥,2(~k) e−Ξ1−Ξ2 = (1 + δ1)A⊥,2(~k)− δ2A⊥,1(~k) (4.98)

where

δ1 =
1

4

([
~ε1(~k) · (κ̃e− + Iκ̃tr) · ~ε1(~k)

]
−
[
~ε2(~k) · (κ̃e− + Iκ̃tr) · ~ε2(~k)

])
(4.99)

δ2 =
1

2

[
~ε1(~k) · (κ̃e− + Iκ̃tr) · ~ε2(~k)

]
. (4.100)



96 Chapter 4: Quantization of Light in the SME

In particular, for a wave propagating in the +ẑ direction, with the two orthogonal

polarizations respectively lying along the x̂ and ŷ directions, its transverse potentials

are

eΞ1+Ξ2 A⊥,1(~k) e−Ξ1−Ξ2 =

(
1− κ̃xxe− − κ̃yye−

4

)
A⊥,1(~k)− κ̃12

e−

2
A⊥,2(~k) (4.101)

eΞ1+Ξ2 A⊥,2(~k) e−Ξ1−Ξ2 =

(
1 +

κ̃xxe− − κ̃yye−
4

)
A⊥,2(~k)− κ̃12

e−

2
A⊥,1(~k). (4.102)

A more complete treatment of Lorentz-violating QED would yield additional mixing

between the transverse modes and the scalar and longitudinal components from the

H̃±,T,LS and H̃LS terms. Nevertheless, equations (4.101) and (4.102) have important

consequences for the interaction ~p · ~A. In particular, to leading order in κ̃, they

imply that the interaction of an electromagnetic wave with charges depends upon

the orientation of the transverse polarization. Thus although the SME parameters

under consideration do not cause the vacuum to become birefringent, they can in

general cause otherwise isotropic media to be become birefringent. This suggests

that a Michelson-Morley test could be performed with two different polarizations of

light propagating within a single dielectric cavity, rather than two separate cavities.

Indeed, an experimental search for similar effects resulting from the electron cµν

coefficients has been proposed [61], although a full analysis of the magnitude of such

birefringence has not yet been completed. An extension of the derivation presented

here incorporating the interaction of the potentials with charged particles would likely

aid in such analyses, and will be the subject of future work.
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Chapter 5

Classical Transport of Coherence in

Anti-Relaxation Coated Cells

Electromagnetically induced transparency (EIT) is a key component of a wide

range of technologies. In the realm of atomic frequency standards, where it is known

as coherent population trapping (CPT), EIT is used to generate the highly stable

resonance required of an atomic frequency standard [132–136]. When established

between a set of states that are sensitive to the local magnetic field, the EIT resonance

forms the basis of a high-precision magnetometer [137–140]. In recent years, EIT has

even formed the basis for proposed experimental tests of Lorentz invariance [141].

EIT can also be used to manipulate the coherent propagation of light [142–144]. By

dynamically varying the width of the resonance, EIT can be used to coherently control

the group velocity and even stop the propagation of light within its bandwidth [144,

145]. The slow and stored light phenomena thus demonstrated has a number of

promising applications to both classical and quantum information processing [146–

152].

Although optimizing a particular EIT medium for slow and stored light applica-

tions is generally a complex task [153], the lifetime of the EIT medium’s metastable

coherence is known to be a significant limiting factor. Following the deleterious ef-

fects of local magnetic field gradients, which can typically be suppressed by the use of

straightforward magnetic shielding techniques, the largest single source of loss in EIT

99
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media based on the metastable states of warm atomic vapors is due to atoms leaving

the field interaction volume. To some extent, this loss can be mitigated by the intro-

duction of an auxiliary inert buffer gas of atoms which do not interact with the fields

or the internal states of the EIT medium, but such techniques have thus far yielded

1/e storage lifetimes of no more than a several hundreds of microseconds [153, 154].

This has prompted many researchers to focus their attention on EIT in systems of cold

and even bose-condensed atoms [155–161], or on the use of ensembles of rare-earth

ions trapped within yttrium orthosilicate crystals [162–168].

Another approach which has been explored forgoes the use of an inert buffer gas

in favor of a thin paraffin coating on the inside of the pyrex vapor cell enclosing a

warm (40 to 70 ◦C) gas of Rb atoms [169, 170]. Although the surface physics of the

Rb-paraffin interaction has chiefly been studied empirically, these coatings effectively

reduce the surface binding potential to the extent that Rb atoms may collide with the

paraffin many times before their internal states depolarize due to interactions with

the surface [171–176]. Paraffin coatings have been used to good effect in conjunction

with EIT for precision magnetometry [137, 176–180], and to demonstrate slow light

with group velocities as low as 8 m/s [181].

A striking consequence of the extended lifetime of atoms’ metastable coherence in

paraffin coated cells is the dual structure of the EIT resonance, illustrated in Figure

5.1. Such cells have demonstrated 1/e stored light lifetimes of up to 4 ms [153]. In this

chapter, we present a model of electromagnetically induced transparency in cells with

anti-relaxation coatings. This model can be viewed as the infinite pulse limit of the

Ramsey pulse sequence model developed for EIT in buffer gas cells by [182,183], and

describes the effects of random classical transport of the atomic ensemble throughout

the cell. Note that the related problem of describing magneto-optical rotation in

paraffin coated cells treated in [184–186] shares some features in common with the

model developed here. Then, in section 5.3, we explore basic theoretical issues related

to coherently coupling two distinct transverse modes to one another using EIT in anti-

relaxation coated cells.
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Figure 5.1: Measured EIT transmission spectrum in an anti-relaxation coated
cell with control field intensity 3.5 mW/cm2, or Ωc ' 3.8 MHz, at tempera-
ture T = 48 ◦C. Note that the vertical axis has been scaled so that the full
spectrum has unit amplitude. The full width of the broad structure (at left)
is approximately 13 kHz, while that of the narrow structure (inset at right)
is power-broadened to 350 Hz.

5.1 Electromagnetically Induced Transparency

The potential to exhibit electromagnetically induced transparency (EIT) exists

within many physical systems, ranging from the metastable states of atoms in warm1

atomic vapors [143,145,187–190], to ultra-cold [155,156] and bose-condensed gases [157–

161], and rare-earth ion impurities in Yttrium orthosilicate crystals [162–168]. Al-

though the complexity of these systems varies widely, the basic physics of EIT is

comparatively simple. Generally speaking, EIT can be established for any quantum

system with a set of two or more metastable states2 that can be coherently coupled to

a single common state, often an unstable electronically excited state. If this condition

is satisfied, then EIT can be established by driving the system into a superposition

of the metastable states which does not couple to the common excited state. The

simplest system which can exhibit EIT is the three level Λ-system atom depicted

in Figure 5.2(a), with both of the applied fields Ωc and Ωp tuned to simultaneous
1where by “warm”, we mean temperatures which vary from room temperature to 100 ◦C for

Rubidium vapors, on up to more than 600 ◦C for vapors composed of Lead atoms...
2These states typically belong to different Zeeman or Hyperfine sublevels of a single electronic

ground state manifold.



102 Chapter 5: Classical Transport of Coherence in Anti-Relaxation Coated Cells

resonance with their respective transitions. Under these circumstances, we can easily

determine that the ground state superposition |−〉, where

|−〉 =
Ωp|a〉 − Ωc|b〉√

Ω2
c + Ω2

p

, |+〉 =
Ωc|a〉+ Ωp|b〉√

Ω2
c + Ω2

p

, (5.1)

is not coupled by the combination of Ωc and Ωp to the excited state |e〉, due to

destructive interference. In this case, spontaneous emission and the fields themselves

tend to drive atoms into the so-called “dark state”. Thus an otherwise opaque medium

made up of a large number of Λ-systems can be rendered transparent by applying

a suitable combination of electromagnetic fields. Although the basic properties of

EIT physics have been derived elsewhere [191–194], we reprise the derivation of the

essential details of EIT phenomena below for the sake of clarity and consistency of

notation.

Ωc

Ωp

|a〉

|b〉

|e〉

(a)

|a〉

|b〉

|e〉

∆c
∆p

γea

γeb

γ0

Ωp, ap

Ωc, ac

(b)

Figure 5.2: Electromagnetically induced transparency in three-level atom.
(a) Resonant EIT. (b) General schematic of EIT in a three-level Λ-system.

The interaction of a pair of mutually phase coherent single mode laser fields with

the three-level Λ-system indicated in Figure 5.2(b) can be described, in the electric

dipole representation [90], by the equations generated by the Hamiltonian

H = H0 +HI , (5.2)
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with

H0 = ~ωca†cac + ~ωpa†pap + Ea|a〉〈a|+ Eb|b〉〈b|+ Ee|e〉〈e|, (5.3)

HI = −gcac|e〉〈a| − g∗ca†c|a〉〈e| − gpap|e〉〈b| − g∗pa†p|b〉〈e|, (5.4)

where gc and gp are respectively the electric dipole matrix elements for the a ↔ e

and b ↔ e transitions, and a† and a represent creation and annihilation operators

for the normal modes of the electric field operator. Note that we have already taken

the rotating-wave approximation. Thus we ignore the contribution of terms such as

gca
†
c|e〉〈a| which appear in the exact Hamiltonian in the electric dipole representation.

This approximation is justified by the observation that the optical frequencies ωc and

ωp are far larger than any other frequencies that shall arise in our subsequent analyses.

These terms primarily generate small shifts in the effective energies of the atomic

states, which for our purposes we will assume to be accounted for in the definitions

of Ea, Eb, and Ee. They will have no significant effect on the more slowly evolving

steady-state solutions which we study. The above Hamiltonian may be simplified via

the unitary transformation into the interaction picture,

Hint = e−iH0tHIe
iH0t = −gcac|e〉〈a|eiωct−i(Ee−Ea)t − g∗ca†c|a〉〈e|e−iωct+i(Ee−Ea)t

− gpap|e〉〈b|eiωpt−i(Ee−Eb)t − g∗pa†p|p〉〈e|e−iωpt+i(Ee−Eb)t,
(5.5)

or

Hint = −gcacei∆ct|e〉〈a| − g∗ca†ce−i∆ct|a〉〈e| − gpapei∆pt|e〉〈b| − g∗pa†pe−i∆pt|b〉〈e|. (5.6)

The explicit time-dependence of this operator can be suppressed by redefining the

ground states |a〉 and |b〉 as

|ã〉 = ei∆ct|a〉 |b̃〉 = ei∆pt|b〉, (5.7)

In terms of these states, the interaction Hamiltonian can be written as

Hint = −~∆c|ã〉〈ã| − ~∆p|b̃〉〈b̃| −
(
gcac|e〉〈ã|+ gpap|e〉〈b̃|+ h.c.

)
, (5.8)

or, by choosing the zero of energy appropriately,

Hint = −~δ|b̃〉〈b̃| −
(
gcac|e〉〈ã|+ gpap|e〉〈b̃|+ h.c.

)
, (5.9)
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where δ ≡ ∆p −∆c. We may then write the equations of motion

ρ̇ = ∂tρ = −(i/~)[H, ρ] (5.10)

for the Heisenberg density-matrix operator ρj,k ≡ |j〉〈k| in time-independent form as

ρ̇ã,ã = −γ0(ρã,ã − ρb̃,b̃) + γeaρee −
(
i
gcac
~
ρe,ã + h.c.

)
(5.11a)

ρ̇b̃,b̃ = −γ0(ρb̃,b̃ − ρã,ã) + γebρee +

(
i
g∗pa
†
p

~
ρb̃,e + h.c.

)
(5.11b)

ρ̇e,e = −(γea + γeb)ρee +

(
i
gcac
~
ρ̃e,ã − i

g∗pa
†
p

~
ρb̃,e + h.c.

)
(5.11c)

ρ̇e,ã = −1
2
(γ0 + γea + γeb + i2∆c)ρe,ã + i

g∗ca
†
c

~
(ρã,ã − ρe,e) + i

g∗pa
†
p

~
ρb̃,ã (5.11d)

ρ̇b̃,e = −1
2
(γ0 + γea + γeb − i2∆p)ρb̃,e − i

gpap
~
(
ρb̃,b̃ − ρe,e

)− igcac
~
ρb̃,ã (5.11e)

ρ̇b̃,ã = − (γ0 − iδ) ρb̃,ã + i
gpap

~
ρe,ã − ig

∗
ca
†
c

~
ρb̃,e, (5.11f)

where γ0, γea, and γeb describe the system’s coupling to an external reservoir whose

maximally mixed quantum state is not measured before, during, or after our experi-

ments. Similarly, the evolution of the field operators a†c and ap is given by

(∂t − c∂z) a†c = i(gc/~)ρe,ã (5.12)

(∂t − c∂z) ap = −i(g∗p/~)ρb̃,e, (5.13)

where the above advection equations are obtained from the full wave equation by

taking the slowly varying envelope approximation, i.e. , by assuming that the overall

field amplitudes do not change appreciably on the scale of the optical wavelength. In

the semiclassical limit, where one or both of these fields may be treated classically,

but where we wish to retain the quantum properties of the Λ-system, we may replace

the field couplings in (5.11) with the generalized complex Rabi frequencies

Ωc ≡ gc〈ac〉
~

=
gcE

+
c

~
, and Ωp ≡ gp〈ap〉

~
=
gpE

+
p

~
, (5.14)

where E+
c and E+

p formally represent the expectation values of the positive frequency

components of the electric fields. If the applied fields are not sufficient to saturate



Chapter 5: Classical Transport of Coherence in Anti-Relaxation Coated Cells 105

either of the Λ-system’s optical transitions, we may take the approximation ρe,e ' 0,

and allow the optical coherence ρe,ã to adiabatically follow the ground state popula-

tions ρã,ã, ρb̃,b̃ and the ground state coherence ρb̃,ã, reducing (5.11) to

ρ̇ã,ã = −γ0(ρã,ã − ρb̃,b̃)−
(
i
gcac
~
ρe,ã + h.c.

)
(5.15a)

ρ̇b̃,b̃ = −γ0(ρb̃,b̃ − ρã,ã) +

(
i
g∗pa
†
p

~
ρb̃,e + h.c.

)
(5.15b)

ρ̇b̃,e = −1
2
(γ0 + γea + γeb − i2∆p)ρb̃,e − i

gpap
~
ρb̃,b̃ − i

gcac
~
ρb̃,ã (5.15c)

ρ̇b̃,ã = − (γ0 − iδ) ρb̃,ã + i
gpap

~
ρe,ã − ig

∗
ca
†
c

~
ρb̃,e, (5.15d)

with

ρe,ã =
i

~
g∗ca
†
cρã,ã + g∗pa

†
pρb̃,ã

(γ0 + γea + γeb)/2 + i∆c

. (5.16)

Taking the semiclassical limit for Ωc, with |Ωc|2 � |gp|2〈a†pap〉
~2 , and ∆c and γ0 small

enough that ρã,ã ' 0 and ρb̃,b̃ ' 1, this further reduces to

ρ̇b̃,e = −(Γ− i∆p)ρb̃,e − i
gpap

~
− iΩcρb̃,ã (5.17a)

ρ̇b̃,ã = −
(
γ̃0 − iδ̃

)
ρb̃,ã − iΩ∗cρb̃,e, (5.17b)

where

Γ = γ0 + γea + γeb, γ̃0 = γ0 +
|Ωc|2Γ/2

Γ2/4 + ∆2
p

, δ̃ = δ − |Ωc|2∆p

Γ2/4 + ∆2
p

, (5.18)

Generally speaking, the fields Ωc and ap are not coupled to a single three level

atom, but rather to an large ensemble of such atoms with density N . Taking this

into account, we extend the single system results above to the ensemble coupling by

defining the collective operators

S(~r, t) ≡ 1√
ZS

N∑
n=1

αnρ
n
b̃,ã

Pb̃,e(~r, t) ≡
1√
ZP,b̃

N∑
n=1

βn,pρ
n
b̃,e

Pe,ã(~r, t) ≡ 1√
ZP,ã

N∑
n=1

βn,cρ
n
e,ã,

(5.19)
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where ρnj,k = |j〉n〈k|n for the nth atom in a small unit volume centered on ~r; αn, βn,p,

βn,c are coupling constants of order unity which account for variations in the phase

and magnitude of the field-atom coupling over the full ensemble; and where

ZS =
∑
n

αn ZP,b̃ =
∑
n

βn,p ZP,ã =
∑
n

βn,c. (5.20)

As shown by [150,194], for αn = βn,p = βn,c = 1 and N � 〈a†pap〉, we may substitute

{S(~r, t), Pb̃,e(~r, t), Pe,ã(~r, t)} for {ρb̃,ã, ρb̃,e, ρe,ã} in the above equations to describe the

fields’ interaction with the entire ensemble.

5.1.1 Dispersive Properties of EIT

Substituting ∆c = 0, and taking the limit that ρb̃,b̃ ' 1 and δ̃ ' δ, the steady-state

solution of the semiclassical equations (5.17) is

ρb̃,ã =
−iΩ∗c
γ̃0 − iδ ρb̃,e, so that ρb̃,e =

−iΩp(γ0 + iδ)

(Γ− iδ)(γ0 − iδ) + |Ωc|2 . (5.21)

As shown in Figure 5.3, for δ � |Ωc|2/Γ, the semiclassical susceptibility χ of the
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Figure 5.3: Characteristic absorption (a) and dispersion (b) spectrum of an
EIT resonance. The absorption is proportional to Im(χ), and the dispersion
to Re(χ) in (5.22). Here Ωc = 0.3γ, γ0 = 10−6γ, and |gp|2N = 1.

medium as felt by the Ωp field is

χ = −|gp|2N −i(γ0 + iδ)

(Γ− iδ)(γ0 − iδ) + |Ωc|2 (5.22)
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such that the medium becomes transparent in a narrow bandwidth centered about

δ = 0. This narrow transmission resonance comes with a steep dispersion, responsible

for the dramatic reduction in the group velocity of a narrow-bandwidth pulse of the ap
field. Semiclassically, the group velocity of a narrow-bandwidth pulse propagating in

a dispersive medium with Re(χ) ∝ |gp|2N/|Ωc|2, as happens in a narrow bandwidth

about δ = 0, is given by

vg =
c|Ωc|2

|Ωc|2 + |g2
p|N

. (5.23)

This result may also be obtained for the propagation of single photons using the dark

state polariton representation [194].

5.2 Modeling EIT in Anti-Relaxation Coated Cells

In this section, we introduce a formal method of calculating the steady-state EIT

spectra in coated cells. As has been noted in [178, 182], whenever atoms can make

several separate passages through the laser fields before they decohere, the evolution of

their internal degrees of freedom may be calculated by solving the equivalent problem

of the atomic state after an arbitrary sequence of Ramsey pulses. In the steady-

state, the EIT spectrum is determined by the average atomic state after a sequence

of Ramsey pulses of varying duration, delays between pulses, and effective frequency

due to factors such as the distribution of atomic velocities and the geometry of the

system. An illustration of the problem is shown in Figure 5.4. To determine the

steady-state density matrix for the atomic ensemble in the beam, we trace the atoms’

trajectories backwards in time and take an appropriate average over all possible paths.

We begin by adopting the Bloch vector representation for the state of a Λ system

developed by [195], which has also been used in [182]. Here, we begin with a three

level Λ-system, depicted in Figure 5.5(a). The two ground states |a〉 and |b〉 are
semi-classically coupled to the excited state |e〉 respectively by the “control” Ωc and

“probe” Ωp fields. The behavior of this system can be more clearly understood by
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Figure 5.4: (a) Illustration of an atomic trajectory relevant in determining
the state of the atomic ensemble in anti-relaxation coated cells. (b) Repre-
sentation of three different interaction histories from the full set which must
be summed over to obtain the density matrix. Time spent inside the beam
is represented as a shaded box, with darker boxes representing interactions
with reduced axial Doppler shifts, and hence stronger couplings than those
indicated by lighter boxes, (see part 5.2.2).

redefining the ground state basis so that

|−〉 = cos θ|ã〉 − sin θ|b̃〉, |+〉 = sin θ|ã〉+ cos θ|b̃〉, (5.24)

and hence

|ã〉 = sin θ|+〉+ cos θ|−〉, |b̃〉 = cos θ|+〉 − sin θ|−〉, (5.25)

where

sin θ ≡ Ωp

ΩEIT

, cos θ ≡ Ωc

ΩEIT

, and ΩEIT ≡
√
|Ωp|2 + |Ωc|2 (5.26)

This transforms the semiclassical version of the bare-state basis Hamiltonian (5.8)

into

Hint = −~
(
δ1 +

δ

2

)
(|+〉〈+|+ |−〉〈−|)− ~

Cδ

2
(|+〉〈+| − |−〉〈−|) (5.27)

− ~
Sδ

2
(|−〉〈+|+ |+〉〈−|)− ~S (ΩEIT|e〉〈+|+ Ω∗EIT|+〉〈e|) (5.28)

with

S = sin(2θ), C = cos(2θ), δ = δ1 − δ2. (5.29)
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Figure 5.5: Atomic energy level diagram exhibiting electromagnetically in-
duced transparency (EIT) in a three level atom. (a) depicts the “bare state”
representation, where two fields Ωc and Ωp coherently couple the states |a〉
and |b〉 to the same excited state |e〉. As noted in the text, some superpo-
sition states of |a〉 and |b〉 are not coupled to |e〉 by the fields. In (b), the
same system is shown in the “dark state” basis, where the fields couple solely
to the bright state |+〉 which can mix with the dark state |−〉 for nonzero
two-photon detuning δ = δ1 − δ2.

In this representation, we clearly see that the dark state |−〉 is not directly coupled

to |e〉 by the applied fields. For nonzero two-photon detuning δ, however, the dark

state finds itself effectively coupled to the bright state. This occurs because for δ 6= 0,

the relative phase accumulation rate between the fields Ωc and Ωp will be different

than the rate of relative phase accumulation between the |a〉 and |b〉 ground states.

Thus dark states may become bright states and vice versa simply by the passage of

a sufficient amount of time.

To further simplify this model, we can reduce it to an effective two-level system

by adiabatically eliminating the excited state as in [195]. This two level system is

composed of the dark state |−〉 and a radiatively damped bright state |+〉. We then

construct the Bloch vector representation R of the atomic density matrix ρ in this

basis state basis with

1

2
(R1 + iR2) = ρ−+, and R3 = ρ−− − ρ++, (5.30)
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whose evolution is given by

dR

dt
= Q×R− (α + γ0)R + αê3, (5.31)

where the precession vector Q is given by

Q = −Sδê1 + (β − Cδ)ê3, (5.32)

where γ0 is the “intrinsic” relaxation rate of the atomic ground state coherence, in-

cluding the effects of stray magnetic field gradients and any dephasing due to many

collisions with the wall, and

α =
|ΩEIT|2Γ/2

Γ2 + 4∆2
β =

|ΩEIT|2∆

Γ2 + 4∆2
, (5.33)

where Γ is the radiative relaxation rate of the excited state. Taking β′ = β−Cδ, this
can be written in matrix form as

˙
R1

R2

R3

 =


−(α + γ0) −β′ 0

β′ −(α + γ0) Sδ

0 −Sδ −(α + γ0)



R1

R2

R3

+


0

0

α

 . (5.34)

For constant fields, (5.34) can be integrated to yield

R(t) = A(t)R0 + (I − A(t))Rs (5.35)

where R0 is the Bloch vector at t = 0, and Rs is the steady-state solution of (5.34).

Rs =
α

(α + γ0)((α + γ0)2 + Ω2)


−Sδβ′

Sδ(α + γ0)

(α + γ0)2 + β′2

 , (5.36)

where Ω =
√
S2δ2 + β′2. Note that the above is the general form of the solution to the

equations of motion both inside and outside the beam. Inside the beam, A(t) = Ab(t):

Ab(t) = e−(α+γ0)t ×


S2δ2+β′2 cos(tΩ)

Ω2 −β′ sin(tΩ)
Ω

−Sδβ′(1−cos(tΩ))
Ω2

β′ sin(tΩ)
Ω

cos(tΩ) Sδ sin(tΩ)
Ω

−Sδβ′(1−cos(tΩ))
Ω2 −Sδ sin(tΩ)

Ω
β′2+S2δ2 cos(tΩ)

Ω2

 . (5.37)
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Outside the beam, the steady state solution is Rs = 0, and A(t) = Ad(t):

Ad(t) = e−γ0t ×


S2 + C2 cos(tδ) C sin(tδ) SC(1− cos(tδ))

−C sin(tδ) cos(tδ) S sin(tδ)

SC(1− cos(tδ)) −S sin(tδ) C2 + S2 cos(tδ)

 . (5.38)

We determine the steady-state of the ensemble by averaging over all possible

Ramsey pulse sequences the atoms may experience. We assume that atoms’ external

degrees of freedom completely thermalize upon contact with the wall, and that we

may treat the selection of atoms’ speeds and trajectories after each wall-collision as

the result of a Markovian process. The average state of an initially unpolarized atom

that has completed one passage across the beam and is about to re-enter the beam

(after any number of cell crossings that missed the beam) is given by two iterations

of (5.35):

〈R1〉 = (〈Ad〉 − 〈AdAb〉) Rs, (5.39)

where Rs is the steady-state Bloch vector in the beam. Formally, the average 〈AdAb〉
is taken over the distribution of time spent in the beam and in the dark before re-

entering the beam, and thus depends upon the detailed trajectory the atom follows

as it travels from the wall to the beam.

To simplify our analysis, we will take the approximation 〈AdAb〉 ' 〈Ad〉〈Ab〉. This
approximation works best when atoms cross the cell several times between beam

interactions. Treating the vacuum cell as an infinite cylinder, the mean number of

times an atom must cross a cell of diameter D before encountering a beam of diameter

d is D/d (see part C.1.1). Choosing D/d � 1, we may treat τd (the time spent in

the dark) as if it were independent of τb (the time spent crossing the beam). After N

passages,

〈RN〉 = 〈Ad〉
N∑
k=1

(−〈Ab〉〈Ad〉)k Rs. (5.40)

Taking N → ∞, we obtain the steady-state distribution of the atomic ensemble.

Equation (5.40) has the form of a power series, and is readily solvable once we know

〈Ad〉〈Ab〉.
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Because the time-dependent terms in Ab(t) and Ad(t) are of the form e−γt sin(ηt)

and e−γt cos(ηt), we need only find the form of 〈e−(γ−iη)t〉 to determine the matrix

averages. The exact probability density function (p.d.f.) governing the distribution

of times spent in the beam and in the dark yields an expression which is difficult

to evaluate (see Appendix C.1). For small d/D, we approximate the beam (dark)

interaction time p.d.f. for an atom with mean beam interaction (dark time) τ = τb

(τ = τd) as an exponential:

gb,d(t) =

√
π

τb,d
√

2
e
−
√

π
2

t
τb,d . (5.41)

As shown in Appendix C.1, these exponential approximations of gb(t) and gd(t) pro-

duce better results when d/D � 1, in the small beam limit.

5.2.1 Weak Field Limit, no Doppler Averaging

In the weak field limit Ωp � Ωc, and when the average one-photon detuning

∆ = 0, Ab(t) and Ad(t) differ only by a factor of e−αt. Taking the average over the

exponential time distributions gb(t) and gd(t), we define

X(δ) = 〈e−(α+γ0−iδ)t〉gb =
1/τb

(1/τb + α + γ0)− iδ (5.42)

Y (δ) = 〈e−(γ0−iδ)t〉gd =
1/τd

(1/τd + γ0)− iδ . (5.43)

Setting

Z(δ) =
∞∑
n=0

(X(δ)Y (δ))n(1−X(δ)) =
1−X(δ)

1−X(δ)Y (δ)
, (5.44)

the steady-state Bloch vector is

〈R〉 =


C2Re(Z(δ)) CIm(Z(δ)) −Re(Z(δ))

−CIm(Z(δ)) Re(Z(δ)) SIm(Z(δ))

−Re(Z(δ)) −SIm(Z(δ)) +S2Re(Z(δ))

Rs

+


S2Z(0) 0 SCZ(0)

0 0 0

SCZ(0) C2Z(0)

Rs.

(5.45)
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Using (5.24), (5.30), and (5.33), we then find that the optical coherence ρe,b, probed

by Ωp, is given by

ρe,b =

(
iα− β
Ω2

EIT

)
[Ωp(1−R3)− Ωc(R1 − iR2)] . (5.46)

Figure 5.6 shows a typical probe absorption spectrum derived from (5.45) and (5.46).

When the applied fields have a nonzero two-photon detuning, the bare ground states

have different effective energies (in the rotating frame), and so the atomic states

nutate (from the perspective of the fields) between the bright and dark states at a

rate Sδ/2. This nutation causes the absorption spectrum to develop Ramsey fringes,

as the probe absorption increases when tδ is such that atoms tend to return in the

bright state, and decreases when they tend to return in the dark state.

Because the distribution of time spent in the dark before returning to the beam

has a nonzero variance, the spectra from different atoms interfere with each other and

wipe out the fringe pattern everywhere except in the vicinity of δ = 0. A similar effect

has been observed by [182] for EIT in buffer gas cells. Near two-photon resonance, all

fringes have an absorption minimum (since atoms prepared in the dark state cannot

nutate into the bright state if δ = 0), and constructively interfere.

Calculations plotted in Figure 5.7 demonstrate that the ultra-narrow transmission

feature of the EIT spectrum is due to atomic coherence accumulating a relative phase

in the dark. Increasing the diameter of the beam relative to the cell reduces the

amount of time atoms can spend in the dark. This in turn reduces the fraction of

atoms present in the beam which have just returned from evolution in the dark, and

reduces the contrast of the Ramsey-narrowed transmission peak. Because the fraction

of atoms in the beam being actively pumped into the dark state increases, so too does

the overall transparency.

As happens with EIT systems involving stationary atoms, we expect the width

of the Ramsey-narrowed EIT transmission peak to increase with increasing field in-

tensity. The stronger the applied fields, the faster atoms are optically pumped into

the dark state, and the fewer passes through the beam are necessary to cause atoms

to “forget” their accumulated phase and be reset into the dark state. In contrast

to the stationary EIT result, however, this increase in the Ramsey-narrowed EIT
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Figure 5.6: Left: Typical calculated probe absorption as a function of probe
detuning from resonance. Right: Blow-up of left absorption spectrum show-
ing the neighborhood of two-photon resonance more clearly.
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Figure 5.7: Calculated probe absorption as a function of probe detuning, for
beams with equal intensity, but varying diameters ( r

R
= .01, . . . , 1). For small

beam diameters, the EIT spectrum is well described by a model with ground
state decoherence determined by the finite atomic transit time, except in the
neighborhood of two-photon resonance, where the Ramsey-narrowed absorp-
tion minima resides. As the beam diameter increases, more and more atoms
in the beam at any given time are pumped into the dark state, decreasing
the contrast of the narrowed feature, until all atoms spend all their time in
the beam, and the ground state lifetime is limited by the coating. These
calculations were performed with Ωp = Ωc = 1 MHz, cell diameter R = 2.54
cm, and T = 43 ◦C with negligible intrinsic ground state decoherence γ0.
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Figure 5.8: Lorentzian fits to calculated Ramsey-Narrowed EIT transmission
bandwidth as a function of applied field intensities for various beam radii. As
illustrated in the figure above, the bandwidth increases until it approaches a
“saturated” value determined by the rate at which atoms re-enter the beam.
∗’s represent fits to calculations, while like-colored dashed lines illustrate the
asymptotic bandwidth of 2/τd. Cell diameter is 2.54 cm, and T = 43 ◦C.
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bandwidth should reach a maximum when the intensity is such that most atoms are

pumped into the dark state in a single pass through the beam. Beyond this point,

increasing the field intensity does nothing to the Ramsey-narrowed EIT bandwidth,

but simply reduces the contrast of the transmission peak, as shown in Figure 5.8. This

EIT bandwidth “saturation” takes place because atoms are guaranteed a minimum

coherence lifetime equal to the time atoms spend in the dark. Note that Figure 5.8

demonstrates another unique feature of the ultra-narrow resonance, in that increasing

the beam diameter serves to increase the ultra-narrow EIT linewidth. This happens

because the increased beam diameters increases the probability that atoms interact

with the beam, and thus reduces the mean time atoms spend in the dark.

5.2.2 Doppler Broadening

Experimental measurements of the Ramsey-narrowed EIT transmission peaks are

narrower than the theoretical predictions of section 5.2.1. This discrepancy can be

attributed to Doppler effects. Atoms with large one-photon detunings do not couple to

the fields as strongly as those near one-photon resonance, and so Doppler broadening

increases the lifetime of the atomic coherence, when that lifetime is limited by the

optical pumping rate (i.e. , in the power broadened limit).

For EIT between pair of energy-degenerate ground states, such as when EIT is

established between two degenerate Zeeman sublevels, Doppler broadening simply

narrows the Ramsey-narrowed transmission bandwidth, as we will show below. For

EIT established across two non-degenerate states, however, Doppler broadening de-

creases the Ramsey-narrowed transmission peak contrast. Because the dark state is

sensitive to the relative phase of the applied fields, rethermalization on the cell wall

can effectively rotate the Bloch vector (relative to the fields) by virtue of the ∆kv

two-photon Doppler shift on δ. This random rotation of the Bloch vector between

each passage through the beam washes out the contrast of the Ramsey fringes. As the

lifetime of an individual atom’s coherence increases, the stronger this inhomogeneous

dephasing becomes, and so we find that the contrast of the Ramsey-narrowed peak

actually increases with increasing field intensity.
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Zeeman EIT

To incorporate the effects of Doppler broadening, note that the Bloch vector R

is actually made up of many sub-ensembles of atoms with different axial velocities.

Atoms in different velocity classes couple differently to the applied fields, and so we

must consider the formation of Bennett structures [196] in the atomic vapor. Let

us examine the evolution of the Bloch vector for the sub-ensemble with velocity

v, given by R(v). We note the three different processes that atoms in this sub-

ensemble undergo: interaction with the beam, evolution in the dark, and contact

with subsequent desorption on the wall.

Given an input distribution Rin(v), interaction with the beam for a time t1 results

in an output distribution

Rout(v) = Ab(t1, v)Rin(v) + (I − Ab(t1, v))Rs(v). (5.47)

Given an initial distribution Rin(v), evolution in the dark for a time t2 results in

Rout(v) = Ad(t2)Rin(v), (5.48)

since Rs = 0 in the dark, and Ad is independent of the atomic Doppler shift.

Finally, interaction with the cell coating re-thermalizes the atoms, yielding the

output distribution

Rout(v) =

∫ ∞
−∞

dv′f(v′)Rin(v′), (5.49)

where f(v′) is the axial velocity distribution for the atomic gas.

Linearity implies that the operations of eqs (5.48) and (5.49) commute with one

another. We also note that two applications of (5.49) are equivalent to one application,

and so we may model the sequence of evolution in the dark, followed by collision with

the cell coating, followed by further evolution in the dark by first applying eq (5.49)

and then eq (5.48) for the full period the atoms spend in the dark.

Depolarized atoms are represented by R = 0 regardless of their velocity class,

so we may drop the velocity dependence from Rin in eq (5.47) since atoms never

re-enter the beam without first re-thermalizing on the cell coating. In light of these

considerations, we may take the average over all axial velocities immediately upon
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atoms’ exiting the beam. The expression for the Doppler-averaged Bloch vector after

interaction for a time tb in the beam is given by

R(tb) = B(tb)Rin + C(tb) (5.50)

where

B(tb) =

∫ ∞
−∞

dvf(v)Ab(tb, v)

C(tb) =

∫ ∞
−∞

f(v) [Rs(v)− Ab(tb, v)Rs(v)] .

Evolution in the dark is as simple as it was in section 5.2.1, as R(td) = Ad(td)Rin.

We now take the averages over tb and td to obtain

〈A〉 =

∫ ∞
0

dt

√
πe
−
√

π
2
t
τd√

2τd
Ad(t)

〈B〉 =

∫ ∞
0

dt

√
πe
−
√

π
2
t
τb√

2τb
B(t)

〈C〉 =

∫ ∞
0

dt

√
πe
−
√

π
2
t
τb√

2τb
C(t).

The Doppler-averaged steady state Bloch vector immediately prior to interaction with

the beam is then given by

Rss = 〈A〉
∞∑
n=0

(〈B〉〈A〉)n 〈C〉. (5.51)

This can be written in closed form by finding the eigenvector matrix P and the

eigenvalues λ1,2,3 of 〈B〉〈A〉, and then summing over n to obtain

Rss = 〈A〉P


1

1−λ1
0 0

0 1
1−λ2

0

0 0 1
1−λ3

P−1〈C〉. (5.52)

To finally determine the distribution R in the beam at any given time, we apply

R(v) =

∫ ∞
0

dtbrbe
−rbtAb(tb, v)Rss +

[
I −

∫ ∞
0

dtbrbe
−rbtAb(tb, v)

]
Rs(v) (5.53)
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The measured optical coherence is then obtained by using (5.24), (5.30) and (5.33),

and by averaging over v:

ρe,b =

∫ ∞
−∞

dv
e−

v2

2σv

σv
√

2π

(
iα(v)− β(v)

Ω2
EIT

)
×

[Ωp(1−Rss,3(v))− Ωc(Rss,1(v)− iRss,2(v))] .

(5.54)

Although there is no closed analytic form for (5.52) and (5.54), they can be eval-

uated numerically. For example, using the known experimental parameters as an

input, the results of these calculations are compared with measurements in Figure

5.9.

Figure 5.9: Measured (solid symbols) vs predicted (open symbols) ultra-
narrow EIT linewidths in a cell with 2.54 cm diameter and various beam
diameters with T = 45 ◦C. Note that this result is obtained with no fit
parameters.

Note that although we have good quantitative agreement for the smallest beam di-
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ameters, our calculated Ramsey-narrowed bandwidths deviate from the experimental

results as the beam diameter and the applied field intensities increase. This remain-

ing discrepancy results from our choosing to approximate the beam interaction time

distribution with an exponential. While the exponential distribution has nice alge-

braic properties, it reaches a maximum at t = 0, while the actual time distribution’s

p.d.f. falls to zero at t = 0. This causes our model to underestimate the time atoms

spend interacting with the beam, and thus we overestimate the effective lifetime of the

atomic coherence. Longer estimated coherence times in turn result in narrower EIT

bandwidths. This artifact becomes more pronounced as the beam size is increased and

our model more drastically underestimates the fraction of optically pumped atoms

exiting the beam, although the approximate model’s predictions converge with the

exact solution as the narrow transmission peak approaches saturation. Although our

limited laser power prevented us from fully saturating the Ramsey-narrowed trans-

mission peak for any but the smallest beams, we expect our model to show better

agreement with experiment at higher intensities provided that the beams do not be-

come so large as to produce significant correlations between time spent in the dark

and time spent in the beam. (as occurs when R/r ' 1).

Hyperfine EIT

Doppler effects on Hyperfine EIT can be treated similarly to Zeeman EIT, save

that the two-photon Doppler shift must be accounted for. Again, we divide the

atomic ensemble into a set of sub-ensembles of atoms in different velocity classes.

The internal degrees of freedom evolve as before, but now the basis in which each

sub-ensemble is represented is a function of the atomic velocity. Rethermalization on

the cell wall mixes these velocity classes, and so the technique described above needs

some modification.

To obtain the average Bloch vector after rethermalization on the cell walls, we

must express the state of atoms belonging to different velocity classes in a common

basis. We choose the v = 0 velocity class basis as this common basis. In the spirit

of the above treatment, we transform into the specific velocity class basis just before
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atoms enter the beam, and transform back into the common basis when they exit.

The necessary transformation matrix is given by

Q(t, v) =


S2 + C2 cos(t∆kv) C sin(t∆kv) SC [1− cos(t∆kv)]

−C sin(t∆kv) cos(t∆kv) S sin(t∆kv)

SC [1− cos(t∆kv)] −S sin(t∆kv) C2 + S2 cos(t∆kv)

 , (5.55)

which is simply the evolution matrix Ad(t) with no loss and ∆kv standing in for the

two-photon detuning, where ∆kv is the two-photon Doppler shift. After interacting

with the beam for time t1, the rotation necessary to convert to the v = 0 basis is

supplied by Q(t1,−v). To transform into the appropriate Doppler-shifted basis after

evolution in the dark for time t2, we need only apply Q(t2, v). To calculate the steady

state of the atomic ensemble immediately after exiting the beam, we adapt equation

(5.51):

Rss =
∞∑
n=0

[∫ ∞
−∞

dv〈B(v)〉〈A(v)〉
]n ∫ ∞

−∞
dv′〈C(v′)〉, (5.56)

where

〈A(v)〉 =

∫ ∞
0

dt

√
πe
−
√

π
2
t
τd√

2τd
Q(t, v)Ad(t) (5.57)

〈B(v)〉 =

∫ ∞
0

dt

√
πe
−
√

π
2
t
τb√

2τb
Q(t,−v)Ab(t, v) (5.58)

〈C(v)〉 =

∫ ∞
0

dt

√
πe
−
√

π
2
t
τb√

2τb
Q(t,−v)× [I − Ab(t, v)] Rs(v). (5.59)

Equation (5.56) can be evaluated by finding the eigenvector matrix P and the eigen-

values λ1,2,3 of
∫∞
−∞ dv〈B(v)〉〈A(v)〉, as was done in equation (5.52). We obtain the

distribution of states within the beam from

R(v) = 〈B(v)〉〈A(v)〉Rss + 〈C(v)〉. (5.60)

The optical coherence is obtained from this distribution by application of equation

(5.54). Owing to the drastically reduced contrast of ultra-narrow hyperfine EIT

resonances, due in part to the effective dephasing mechanism described above, relevant

experimental tests of the hyperfine EIT resonance analogous to those presented in

Figure 5.9 have not yet been completed.
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5.3 A Coated Cell Beamsplitter

Inspired by this understanding of the properties of EIT in anti-relaxation coated

cells, a recent experiment [170] demonstrated that coherent slow light excitations can

be controllably transferred between two distinct transverse modes defined by a pair

of control laser fields passing through the same wall-coated Rb vapor cell (see Fig-

ure 5.10). In this section, we address the question as to whether anti-relaxation

coated cells, in the idealized limit, may perform the same function as an ordinary

beamsplitter. That is, whether the quantum state of an arbitrary input field can be

controllably and reversibly mapped into the same superposition state produced by

passing a similar field through a partially-reflecting mirror. If so, then future advances

in anti-relaxation coating technology could lead to the development of all-optically

reconfigurable routers and interferometers for quantum states of light. Such devices

would greatly improve the efficiency with which highly entangled states could be gen-

erated [197,198], and would vastly reduce the number of optical components necessary

to carry out certain probabilistic quantum computation schemes [199–203]. We use

an analytic model in conjunction with Monte-Carlo simulations to demonstrate that

a cell with an idealized anti-relaxation coating can in principle mimic the action of a

conventional beamsplitter, provided that the atoms pass through a region in which

their coherence may rapidly accumulate an extra phase as they travel from one beam

to another. We show that this added phase is necessary if all of the input light is to be

split equally between two output modes while preserving unitarity. In the idealized

limit that photons propagate through the cell more slowly than the atoms can move

from one transverse mode to another, we present one-photon Monte-Carlo simulations

involving up to N = 10, 000 spins demonstrating these effects.

5.3.1 The Beamsplitter Map

Before we turn to the physics of anti-relaxation coated cells, we first briefly sum-

marize the important properties of a conventional beamsplitter. As can be straight-

forwardly demonstrated in the classical limit [204], the phase of an electromagnetic
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(a) Schematic of coated cell slow light beamsplitter

(b) Examples of signal pulse output
in the two channels with Ch. 2 con-
trol beam on and off
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(c) Demonstration of phase coherence be-
tween signal pulse output in the two chan-
nels

Figure 5.10: (a) Representation of an anti-relaxation coated cell beamsplit-
ter. Two input/output modes are established by a pair of mutually phase
coherent “control” fields with identical polarizations. A weak “probe” pulse
with orthogonal polarization is introduced along one of these input modes,
coherently coupled to the atomic ensemble in the coated cell by EIT, and
ultimately split between both outputs by classical transport of the atoms’
coherence throughout the cell. Also shown are measurements demonstrating
transfer (b) of a slow light pulse from one optical channel to another in an
anti-relaxation coated cell, and (c) demonstrating that the relative phase be-
tween the signal field in channel 2 and the channel 2 control field is controlled
by the phase between the signal field in channel 1 relative to the channel 1
control field. [Y. Xiao, M. Klein, M. Hohensee, L. Jiang, D. F. Phillips,
and R. L. Walsworth, Phys. Rev. Lett. 101, 043601 (2008) ©2008 by the
American Physical Society]
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wave reflected from a dielectric surface is in general different than the phase of the

transmitted component. This phase shift extends to the quantum limit, where we

may write the input–output operator relations for an ideal, 50/50 beamsplitter as

a1,out =
1√
2

(a1,in + ia2,in)

a2,out =
1√
2

(a2,in + ia1,in).
(5.61)

These relations give rise to the well known photon-bunching effect. Given an input

superposition state of photons |11,in, 12,in〉 = a†1a
†
2|0〉, we may use (5.61) to find that

the output state becomes

a†1,ina
†
2,in|0〉 →

1

2
(a†1,out + ia†2,out)(a

†
2,out + ia†1,out)

=
i√
2

(|21,out, 02,out〉+ |01,out, 22,out〉) .
(5.62)

Note that this phenomenon is closely related to the relative phase between the trans-

mitted and reflected components of the incident light, as well as the coherent nature

of the interaction. In what follows, we shall see that merely demonstrating coherent

interactions between a pair of optical modes in a coated-cell “beamsplitter” is not

itself sufficient for the system to mimic the action of a true beamsplitter. We will

find that even in the idealized limit, obtaining good balanced transmission efficiency

and the proper output phase relation depends strongly on our ability to control the

phase accumulation rate of the atomic ensemble between interactions with the optical

modes.

5.3.2 Single Photon Model

We begin with an ensemble of N three-level Λ-systems, coupled by two fields Ωc

and E , as shown in Figure 5.11. Assuming that the field Ωc is sufficiently strong to

optically pump all atoms in state |a〉 into |b〉, that E � Ωc, and that the fields evolve

adiabatically, we may treat Ωc semiclassically, while the atoms and the probe field E
retain their characteristics as quantum operators. We begin with an idealized version

of the coupling of the dark state polariton E to the atomic ensemble S =
∑

j σ
j
a,b

H(~α) = −S†(~α)E − E†S(~α), (5.63)
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Ωc

|a〉

|b〉

|e〉
∆

E

Figure 5.11: The three-level system under consideration for realizing an anti-
relaxation coated cell beamsplitter. A strong field Ωc couples the grond state
|a〉 to the excited state |e〉, while a weaker probe field E couples to the
|b〉 ↔ |e〉 transition. The Ωc field is treated semiclassically, while the weaker
E field is treated quantum mechanically in the absence of dissipative losses.
Both fields are assumed to be equally detuned by ∆ from the one-photon
resonance.

where

[E , E†] = 1, S†(~α) =
N∑
j=1

α∗jσ
j
a,b S(~α) =

N∑
j=1

αjσ
j
b,a, (5.64)

with σja,b = |a〉〈b| for the jth atom, and |~α|2 = d0|Ωc|2/∆2, where d0 is the optical

thickness of the atomic ensemble to the E field. This Hamiltonian may be derived

from (5.6) by adiabatic elimination of the optical coherences in the unsaturated limit.

The anti-relaxation coating preserves the coherence of the atomic ground states over

long periods of time and hence across many interactions with the fields. Thus a

faithful representation of the system requires us to take note of the fact that only

a fraction of the total ensemble is coupled to the fields at any given time, and that

the assemblage of atoms making up that fraction changes randomly in time. These

dynamics are captured by the coupling vector ~α, which is nonzero only for those

indices corresponding to atoms inside the field interaction volume. This is in contrast

to the usual situation in which all N atoms in the ensemble are assumed to couple to

the fields at the same time and in the same way for the duration of the experiment.
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5.3.3 Evolution For a Single Optical Mode

To determine the system’s time evolution, we need to evaluate

U †(~α, t)EU(~α, t), and U †(~α, t)S(~β)U(~α, t), (5.65)

where U(~α, t) = e−iH(~α)t. Note that the rapid (compared to the field evolution)

redistribution of the atomic ensemble within the anti-relaxation coated cell makes it

necessary to calculate the effects of (5.63) on arbitrary S(~β). Using the Campbell-

Baker-Hausdorff (CBH) theorem [205],

e−λGAeλG =
∞∑
n=0

λn

n!
Cn, where Cn = [G,Cn−1] , and C0 = A, (5.66)

we can determine the unitary evolution of the Heisenberg operators E and S(~α). The

relevant commutators are given by

[H(~α), E ] = S(~α), and [H(~α), S(~α)] = − [S†(~α), S(~α)
] E = |~α|2E , (5.67)

where we have assumed that the vast majority of the atoms are in state |b〉 and that

N � 〈E†E〉, so that we may ignore finite-size effects [206]. Using the CBH theorem,

we note that if λ = −it, and C0 = E , then

C1 = S(~α) C2 = |~α|2E
C3 = |~α|2S(~α) C4 = |~α|4E

Cn,odd = |~α|n−1S(~α) Cn,even = |~α|nE ,
(5.68)

so that

U †(~α, t)EU(~α, t) =

(∑
n,even

(−it|~α|)n
n!

E
)

+

(
1

|~α|
∑
n,odd

(−it|~α|)n
n!

S(~α)

)
. (5.69)

For the evolution of the atomic ensemble, we take C0 = S(~β), and then evaluate[
H(~α), S(~β)

]
= −E

(∑
j

α∗jσ
j
a,b

∑
k

βkσ
k
b,a

)
, (5.70)

which reduces to

E
∑
j,k

α∗jβk
(
σjb,b − σja,a

)
δj,k = (~α∗ · ~β)E , (5.71)
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where we have again neglected the contributions of state |a〉. Thus for C0 = S(~β),

we find that for n ≥ 1,

Cn,odd = |~α|n−1(~α∗ · ~β)E Cn,even = |~α|n−2(~α∗ · ~β)S(~α). (5.72)

Therefore

U †(~α, t)S(~β)U(~α, t) = S(~β)− α∗ · ~β
|~α|2 S(~α) +

α∗ · ~β
|~α|2

(∑
n,even

(−it|~α|)n
n!

)
S(~α)

+
~α∗ · ~β
|~α|

(∑
n,odd

(−it|~α|)n
n!

)
E .

(5.73)

From the definition of S(~α), we note that

S(~α) + S(~β) = S(~α + ~β), ηS(~α) = S(η~α), and η∗S†(~α) = S†(η~α). (5.74)

Using (5.74), the action of the evolution operator reduces to

U †(~α, t)EU(~α, t) = E cos (|~α|t)− isin (|~α|t)
|~α| S(~α) (5.75)

U †(~α, t)S(~β)U(~α, t) = S

(
~β − ~α~α

∗ · ~β
|~α|2 [1− cos(|~α|t)]

)
− i~α

∗ · ~β sin(|~α|t)
|~α| E . (5.76)

5.3.4 Generalization to Multiple Optical Modes

This result can easily be generalized to an arbitrary number of separated fields

passing through the coated cell, e.g. E1, E2, . . . , En. Since the nonzero components

of the coupling vectors ~α1, ~α2, . . . , ~αn describe disjoint sets provided that the vari-

ous transverse modes are non-overlapping, ~αj · ~αk = |~αj|2δj,k. This means that the

commutators of the multi-mode interaction Hamiltonian given by

H ({~αp}) =
∑
p

H(~αp), (5.77)

are

[H ({~αp}) , S(~αk)] = [H(~αk), S(~αk)] , (5.78)
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so that the unitary evolution of the system operators is given by

U † ({~αp}, t) Ej U ({~αp}, t) = Ej cos(|~αj|t)− isin(|~αj|t)
|~αj| S(~αj) (5.79)

U † ({~αp}, t)S(~β) U ({~αp}, t) = S

(
~β −

∑
p

[
~αp
~α∗p · ~β
|~αp|2 [1− cos(|~αp|t)]

])

− i
∑
p

(
~α∗p · ~β

)
sin(|~αp|t)
|~αp| Ep.

(5.80)

5.3.5 Monte-Carlo Simulations

We are now equipped to investigate whether the input-output relations for the

anti-relaxation coated cell “beamsplitter” can be made to mimic those of a con-

ventional beamsplitter (recall equation (5.61)). In the limit that all atoms have a

chance to interact with the fields many times over the fields’ characteristic evolution

timescale, we expect an input photon to be mapped onto the coherence of the entire

ensemble, which then couples symmetrically to both output modes. Thus we might

naively expect that the anti-relaxation coated cell could simulate a balanced beam-

splitter if the control fields defining the two coupled modes are φ = π/2 out of phase

with one another. This turns out to be false, since such a situation would imply

a†1,in →
1√
2

(
a†1,out + eiφa†2,out

)
a†2,in →

1√
2

(
a†2,out + e−iφa†1,out

)
=→ e−iφ√

2

(
a†1,out + eiφa†2,out

)
,

(5.81)

so that the beamsplitter produces the same output, up to a global phase, for two

different input states. This would violate unitarity, and is thus clearly impossible. In

actuality, as is demonstrated by the simulation depicted in Figure 5.12, we find that

the balanced output condition only occurs if the final state of the fields is not fully

separable from that of the ensemble, so that

a†1,in →
1

2

(
a†1,out + eiφa†2,out

)
+
ieiφ√

2
S†

a†2,in →
1

2

(
a†2,out + e−iφa†1,out

)
− ie−iφ√

2
S†,

(5.82)
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Figure 5.12: Simulation of the photon mode amplitudes w(t) and x(t) in the
evolution of the quantum state |ψ〉 =

(
w(t)a†1 + x(t)a†2 + S†(~η(t))

)
|0〉. Here,

N = 1, 000 atoms couple to two optical modes, each of which couples to an
average of ∼ 22 atoms at a time, with mean coupling strength 〈|~αj=1,2|〉 = 4.6
Hz. Note that the total probability for an input excitation to be in the
optical modes is only 50% when the probability to be in either optical mode
is equalized.

where S† =
∑

j σ
j
a,b represents the collective spin of the entire atomic ensemble.

This problem can be remedied by the introduction of an additional phase shift

applied to atoms while they are between field interactions. Depending upon the

cell geometry, such a shift may be produced by the application of a small localized

magnetic field gradient, or by light-shifts induced by application of a third, far off-

resonant laser to a volume not occupied by the two control fields. The effect of

such phase accumulation “in the dark” can be understood in two ways. First, it

provides a “one-way” phase shift for photons transferred from one mode to another.

As illustrated in Figure 5.13, this more closely mirrors the action of a conventional

beamsplitter, which always imparts the same phase of π/2 to reflected photons. After

a sufficiently large one-way phase θ has been accumulated, the amplitude of the

ensemble spin excitation may vanish for balanced field outputs without violating
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Figure 5.13: Phasor Diagram of Coated Cell Beamsplitter Mode Amplitudes.
Left: In the absence of a one-way phase shift for photons transferred between
modes by the atomic ensemble, the amplitudes of the output fields balance
when the total spin of the atomic ensemble is maximized, as is necessary to
preserve unitarity. Right: By adding a mechanism for the atoms to accu-
mulate a phase θ as they travel between the two optical modes, the growth
of the S† amplitude is suppressed. Furthermore, the field component of the
system’s wavefunction may differ according to which mode was initially ex-
cited, so that unitarity may be satisfied for balanced fields which are fully
decoupled from the atomic ensemble.

unitarity. The action of the dark phase accumulation can also be understood as

a means to suppress spin excitations. As shown in Figure 5.14, the growth of the

collective spin excitation is checked as its phase changes relative to that of the driving

photon amplitudes. Figure 5.14 also shows that as the dark phase accumulation rate

is increased, the phasor plots of the field amplitudes become circularized to the point

that the amplitude of the collective spin excitation nearly vanishes. In this limit, the

two optical modes behave as if they are directly coupled to one another. Note that

these results apply to a very idealized limit. The zero-dimensional simulation shown

in Figure 5.14 presumes coherences will survive > 500, 000 wall-interactions, a figure

far in excess of the best performing wall coatings [176]. Future work which extends

this zero-dimensional model into one or two-dimensions will be required to properly
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Figure 5.14: Time evolution of the field amplitudes z(t) = w(t) (blue/dark
grey on right) and z(t) = x(t) (green/light grey on left) in the complex plane
for varying rates of phase accumulation in the dark. All atoms not interacting
with the fields accumulate an average phase at rate θ. Initially, w(0) = 1
and x(0) = 0 for all simulations. N = 10, 000, with each mode interacting
with ∼ 250 atoms at any given time, so that 〈|~α|〉 ' 125 Hz, with the mean
time atoms spend in the beam equal to 1 ms. Total simulated time: 500 s,
equivalent to approximately 500, 000 “passages” across the confining vapor
cell.

determine the conditions under which a coated-cell beamsplitter may practically be

realized.

This system also displays an intrinsic inhomogeneous dephasing due to variations

in the amount of time that each atom spends interacting with the fields and in the

dark, as indicated in Figure 5.15. Although the Rabi oscillations of the spin excitation

are suppressed by increasing θ, the mean rate of inhomogeneous dephasing is not. The

impact of this particular dephasing mechanism may be worth considering in future

work on optimizing anti-relaxation coated cells for use as quantum memories, optical

routers, or interferometers.
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5.4 Conclusion

We have developed a model of electromagnetically induced transparency in warm

atomic vapors in anti-relaxation coated cells. Our model correctly accounts for the

classical motion of the atoms and the resulting effects on the collective atomic co-

herence established and probed by the applied fields, and shows good quantitative

agreement with experimental observations for EIT laser fields much smaller than the

cell diameter. We have developed a simplified model of how classical motions of an

atomic ensemble could be used to coherently couple two distinct transverse optical

modes in a manner functionally identical to a conventional optical beamsplitter. This

model demonstrates that anti-relaxation coated cells can in principle be used as de-

terministic optical switches or as interferometers. Both the specific set of coupled

modes and the manner in which they are coupled can be controlled all-optically, per-

mitting the path of a coherent state of light through an experimental apparatus to be

reconfigured during a single experiment. Note that all-optically configurable optical

routers based on anti-relaxation coated cells can be controlled by turning arbitrary

sets of control fields on and off, and through control of the rate of the atomic ensem-

ble’s phase accumulation in the dark. Although present-day paraffin coatings have

do not preserve the atomic coherence of a warm atomic vapor long enough to realize

such devices, future improvements in cell coatings may one day change this. If so,

then coated cell beamsplitters may be used to significantly enhance the scaling of

probabilistic quantum information processing schemes based on linear optics.
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Figure 5.15: Total excitation amplitude
√〈S†S〉 of the atomic ensemble as a

function of time under conditions identical to those described in Figure 5.14.
Coherent couplings between the ensemble and the optical fields drive rabi-
oscillations in the total excitation of the ensemble. Although the amplitude of
these oscillations is suppressed by increasing the rate at which the ensemble
accumulates phase in the dark, the mean ensemble excitation monotonically
increases. This residual dephasing is a consequence of the finite variance in
the atoms’ interaction and return times.



Chapter 6

Novel Means of Stabilizing Compact

Atomic Clocks

The widespread adoption of GPS and high-speed wireless communications net-

works has created significant demand for portable, high precision and high stability

clocks. The use of a more precise clock can translate directly into more accurate

position readings in GPS applications, or in the case of wireless networks, improved

synchronization between nodes and thus the potential for higher communications

bandwidth. Improving clock stability would allow precise geolocation in areas in

which acquiring the signals from many GPS satellites is problematic, and would be a

benefit to high speed wireless communications between mobile base stations in such

environments. In either situation, the portability of such systems is of significant im-

portance. These requirements are largely satisfied by modern atomic clocks referenced

to a coherent population trapping (CPT) resonance. Such clocks have demonstrated

stabilities of up to 10−11 at up to 1000 seconds [207], and since they do not require

the use of a resonant cavity, can be as made as small as permitted by their supporting

electronics [208].

The excellent short term stability exhibited by CPT standards is made possible by

the unique symmetries of the CPT resonance. Despite the generally high sensitivity

of the CPT resonance to the properties of the driving laser, there exists a fairly broad

volume of parameter space in which the manifold laser-induced light shifts cancel

135
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with one another [209]. As a result, random fluctuations of the laser about any

given point in the light-shift cancelation regime have minimal impact on the clock

frequency, permitting the short-term clock stability to exceed that of the driving

laser. Nevertheless, the medium- to long-term stability of such clocks is limited by

the degree to which slow drifts in the laser parameters can be constrained. In this

study, we examine a potentially useful way to use the CPT resonance itself to limit

slow laser fluctuations without compromising the short term clock stability.

Although the light-shift cancelation limit derived by Vanier et al. [209] is well

known, it is commonly unappreciated that the wide breath of the parameter space

suitable for CPT clock operation is due to an additional symmetry [133] between

a multitude of individual CPT and asymmetric, 3-photon transitions known as N-

resonances [210] excited by sidebands of the interrogating laser. As we experimentally

demonstrate, these individual resonances are generally quite sensitive to the properties

of the laser, including within the Vanier light shift cancelation regime. In particular,

we find that the individual sideband resonances can in some cases coincide with

the clock resonance. This means that it should be possible to obtain a clock signal

which is insensitive to small laser fluctuations, while simultaneously preventing such

fluctuations from developing into long-term drifts by measuring the comparatively

sensitive sideband resonance. These early results could provide the basis for the

development of CPT clocks with good short- and long-term stabilities.

6.1 Theoretical Background

Coherent population trapping (CPT) is simply another term describing the phe-

nomenon of electromagnetically induced transparency (EIT), as introduced in part

5.1 of this thesis. Although the EIT system is generally isolated from externally vary-

ing magnetic fields by multiple layers of magnetic shielding, most atomic frequency

standards are based upon the CPT resonance involving only the m = 0 ground states

shown in Figure 6.1. This is advantageous because the energy difference between

these states is insensitive, at first order, to the local magnetic field.
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Figure 6.1: Level Diagram of the D1 Line of 87Rb. The full D1 line (a) is
composed of the optical transitions between the eight 52S1/2 ground states of
87Rb and the eight states in the 52P1/2 excited state manifold. Application
of a uniform magnetic field along the quantization axis lifts the three- and
five-fold degeneracy of the ground state, isolating transitions involving the
m = 0 ground states from all others, reducing the system to that depicted in
(b).

6.1.1 Operation of an Optical Atomic Clock

As outlined in Figure 6.2, an atomic clock consists of an electronic oscillator whose

operating frequency is stabilized by comparing it with the frequency of an atomic

transition. The means by which this comparison is made can be simply illustrated by

analogy to a clock referenced to the transition of a two-level atom. In such situations,

the oscillator is stabilized to the atomic transition frequency ω0. The output of the

oscillator is used to set the frequency of a generated laser field, which is then phase

modulated at a much lower frequency ω1. This phase modulation generates a pair of

sidebands with equal amplitude and opposite phase, separated from the carrier by ω1.

This can be understood mathematically by considering the effect of phase modulating

a field with carrier frequency ω0 on the spectrum of the modulated field. Using the

Jacobi-Anger Bessel identity, this is

E(t) = E0e
i(ω0t+m cosω1t) = E0e

iω0t

∞∑
n=−∞

inJn(m)einω1t, (6.1)
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Figure 6.2: Schematic diagram of a passive frequency standard based on a
CPT resonance in 87Rb. The output of a radio-frequency (RF) oscillator
tuned to ground-state hyperfine splitting of 87Rb is used to phase modulate
the output of a Vertical Cavity Surface Emitting Laser (VCSEL). This output
light is then used to interrogate a CPT resonance in a warm 87Rb vapor before
being collected on a photodetector. Slow (ω1 ∼< 1 kHz) modulation of the
signal input to the VCSEL from the RF oscillator is mapped by interaction
with the CPT resonance into a corresponding amplitude modulation of the
observed light, the amplitude and phase of which can be used as an error
signal for short-term stabilization of the RF oscillator. The total intensity of
the light collected on the photodetector can also be used to stabilize other
degrees of freedom for the VCSEL, such as the total power output or one-
photon detuning.

where Jn(m) is the nth Bessel function of the first kind, and m is known as the

modulation index. This situation is graphically illustrated for n = 0,±1 in Figure

6.3(a). The deviation of the oscillator frequency from ω0 can then be determined

by the amplitude and phase of any amplitude modulation which may be detected in

the fields after interaction with the two level resonance. Because the relative phase

of the two sidebands is π, the beat signal generated by interference between the

lower sideband and the carrier is initially canceled by that generated by interference

between the carrier and the upper sideband, as must be the case for a signal with

no amplitude modulation. This can be inferred formally from (6.1), since the beat is
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proportional to the real part of

E(t)E(t)∗

|E0|2 =
∞∑

n1=−∞

∞∑
n2=−∞

in1−n2Jn1(m)Jn2(m)ei(n1−n2)ω1t, (6.2)

which, taking only the contribution of the J1(m) and J0(m) terms to signals at ω1

into account is

E(t)E(t)∗

|E0|2 ' (−iJ−1(m)e−iω1t + J0(m) + iJ1(m)eiω1t
)

× (iJ−1(m)eiω1t + J0(m)− iJ1(m)e−iω1t
)

'
(
J0(m)2

2
+ J1(m)2 − i (J−1(m) + J1(m)) J0(m)e−iω1t

)
+ h.c.

(6.3)

Since the amplitude of the −1 sideband is proportional to J−1(m), and that of the +1

sideband is proportional to J1(m), and J−n(m) = (−1)nJn(m), we see that there is

no net amplitude modulation at ω1 in this signal. When such fields are used to probe

the absorption resonance of a two level atom as in Figure 6.3(b), the transmitted

amplitudes of the two sidebands are reduced. In particular, if the carrier is blue-

detuned from the ω0 resonance, as in Figure 6.3(c), the lower sideband experiences

greater absorption than the upper sideband. The result of this absorption imbalance

is a net amplitude modulation of the output light at ω1, since the beat between the

upper sideband and the carrier can no longer be fully canceled by that between the

carrier and the lower sideband. The same thing happens when the carrier is red-

detuned, although the phase of the amplitude modulation will be shifted by π. If the

carrier is exactly on the ω0 resonance, the amplitudes of both sidebands are reduced

equally, yielding zero net amplitude modulation, as before. Thus an error signal which

can be used to stabilize the frequency of the electronic oscillator to ω0 is obtained by

monitoring the amplitude and phase of any amplitude modulation in the transmitted

fields with frequency ω1.

For clocks referenced to a CPT resonance, the situation is slightly different. In

this case, the oscillator output is used to rapidly phase modulate a laser tuned to the

D1 line of an alkali vapor, in this case 87Rb. The carrier frequency is tuned midway

between the transitions to the 52P1/2, F = 2 excited state from the 52S1/2, F = 1
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Figure 6.3: (a) First order phase modulated spectrum of a field with carrier
frequency ω0 Note that the vertical axis denotes field amplitude, but not
phase, and that the lower (leftmost) sideband is π out of phase with the
carrier and the upper (rightmost) sideband. When such modulated fields are
used to probe the transition of a two-level system (b), differential absorption
of the two sidebands maps the phase modulation into an easily detected
amplitude modulation (c).

and F = 2 ground states, as illustrated in Figure 6.1(b). As before, this phase

modulation generates sidebands around the carrier, shown in Figure 6.4(a) out to

second order, separated from the carrier by ωrf . In particular, this generates a pair

of first order sidebands separated by 2ωrf = 6834.68261 MHz, or roughly the ground

state hyperfine splitting of 87Rb. Together, these fields probe the CPT transmission

resonance indicated in Figure 6.1(b).

As for our two-level example, deviations of 2ωrf from the CPT resonance are

detected by mixing a slower modulation signal at ω1 with the ωrf output of the clock

oscillator, and using the resulting total to phase modulate the laser. Any deviation

of 2ωrf from the hyperfine splitting of 87Rb translates into a nonzero two-photon

detuning for the CPT system, leading to differential absorption of the slow modulation

sidebands, and thus a slow-modulation beatnote whose amplitude and phase may be

used to correct ωrf . The detailed properties of CPT resonance atomic frequency

standards have been the subject of extensive investigations [207,209,211–213].
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6.1.2 Stability of CPT Clocks

As shown in [209], the CPT resonance frequency is subject to a variety of external

influences. In particular, the sidebands generated by phase modulating the laser can

each contribute AC Stark, or light shifts on the CPT resonance. In general, this

makes the resonance condition a sensitive function of both the laser’s power output

and the detuning of the laser’s carrier frequency from the one-photon resonance.

Fortunately, there exists an operating regime in which the light shift is insensitive to

small variations in laser power and detuning. As demonstrated in [207,209,213], this

regime is reached when the modulation index (m in (6.1)) of the ωrf phase modulation

is approximately 1.9. CPT clocks which operate in this regime are thus insensitive to

small fluctuations in the laser’s power and carrier frequency, and consequently have

good stability in the short term. Over longer timescales, however, slow drifts in these

parameters cause the lock frequency ωrf to vary, so that regular comparisons with

high-accuracy atomic references such as Cesium beam tube clocks, become necessary.

Although CPT clocks have enjoyed good short term stability properties by virtue

of operating in the Vanier regime, it is less commonly appreciated that this success

is also due to the unique manner in which the slow modulation signal is generated.

In contrast to the comparatively simple two-level picture, the CPT clock signal is

derived from beats of the slow modulation sidebands arranged about every one of

the fast modulation sidebands shown in Figure 6.4(a). This means that the CPT

clock signal is the coherent sum of the beat signals generated by probing each of

the multi-photon resonances outlined in Figure 6.4(c), which are in general quite

asymmetric. These asymmetries are, however, systematically canceled by the overall

symmetry of the CPT system: The asymmetric, 3-photon transition known as an

N-resonance [210] formed by the carrier, -2 and +1 sidebands is balanced by the

resonance formed by the carrier with the +2 and -1 sidebands, etc. Such resonances

have also been proposed as the basis of compact atomic clocks [214, 215], and their

detailed properties of these resonances can be calculated in a number of ways, two of

which are outlined in [216]. For our purposes, we simply note that these asymmetries

permit us to experimentally find a stable CPT clock operation regime. This comes
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Figure 6.4: Illustration of the field spectrum (a) and simplified atomic level
diagrams relevant to the operation of an atomic frequency standard based
on a CPT resonance.

despite the inevitable admixture of small amounts of amplitude modulation at ωrf
due to imperfections of the VCSEL, which causes the applied amplitudes of the +1

and −1 sidebands to be unequal. An example of a simulated Fabry-Perot scan of the

spectrum of a phase modulated VCSEL with 0.1% of the total output power derived

from amplitude modulation at the same frequency is shown in Figure 6.5.

6.1.3 Isolated Sidebands

Even though we obtain a clock signal by operating in the Vanier stability regime,

the detailed source of that clock signal holds out the possibility that by isolating

the signal generated by an individual fast modulation sideband, we may obtain use-

ful information about the overall drift in the laser’s output power or detuning. An

illustration of what these signals may look like is shown in Figure 6.6. This is eas-

ily accomplished by passing a portion of the light transmitted through the atomic

ensemble through a spectral filter. In particular, we expect that the error signals

contributed by the +1 and −1 sidebands will vary significantly vs laser detuning and

intensity, although their total contribution to the clock signal will be comparatively

insensitive, as indicated in Figure 6.7.
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Figure 6.5: Simulated spectrum of a realistically phase-modulated VCSEL,
neglecting any slow ω1 modulation. A fraction of the RF power used to phase
modulate the central carrier also gives rise to a small amount of amplitude
modulation. In this case, the phase modulation index is 1.8, and the frac-
tional power of the amplitude-modulated component is 0.1%. Superimposed
is the 20 GHz free spectral range (FSR) of the temperature stabilized etalon
used to isolate individual sidebands, as described in the text.

6.2 Description of Apparatus

As shown in Figure 6.8, the apparatus used to measure the properties of the

CPT clock signal is quite similar to what would be required to construct an actual

atomic clock. Our experimental setup mainly lacks the final feedback link between

the generated clock error signal and the RF oscillator. Instead, we calibrate our

oscillators with the external frequency reference provided by a Hydrogen maser. This

greatly simplifies the interpretation of our generated error signals.

6.2.1 Oscillator and Signal Generation

The 3417.34584 MHz RF signal is generated by an HP 83732 frequency synthesizer,

referenced to the 10 MHz output of a Hydrogen maser. This signal is modulated by

the comparatively low-frequency (800 Hz) output of a SR 830 lock-in amplifier, itself

referenced to the 10 MHz maser signal, before being used to modulate the laser. The
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Figure 6.6: Representation of (a) the expected beat-note signals generated
by probes of the two sideband resonances (for sidebands A and B), and the
shape of the resultant “clock” signal formed from their sum. Provided that
the two sidebands are shifted in opposite directions by any given perturbation
of the applied laser’s properties, the center frequency of the clock resonance
can remain unaffected.

laser fields are generated by a vertical-cavity surface-emitting laser (VCSEL) diode

of only slightly questionable provenance which emits a field at 795 nm with 100 MHz

bandwidth, and a peak power output of approximately 0.5 mW. The carrier frequency

emitted by the VCSEL is extremely sensitive to the diode temperature. To maintain

a fixed carrier frequency output, we use a dichroic atomic-vapor laser lock (DAVLL)

loop [217] to control the power delivered to a combination peltier cooler and resistive

heater built into the circuit board housing the VCSEL. The DAVLL is constructed

using a passively heated vacuum cell containing a natural abundance mixture of 87Rb

and 85Rb. The error signal produced by the DAVLL is fed into a Linear Research 130

temperature controller which in turn drives the VCSEL temperature control system.

6.2.2 Magnetic Shields, Bias Solenoid, and Vapor Cell

The atomic reference consists of a pyrex vapor cell containing a small amount of

isotopically pure 87Rb along with 22 Torr of Ne serving as a buffer gas. The cell

is housed within three cylindrical high permeability magnetic shields. These shields
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Figure 6.7: Illustration of the expected variation of the sideband resonances
vs. carrier detuning (a) and overall field intensity (b). In each case, informa-
tion about the detuning or field intensity can be obtained from the behavior
of the sideband resonances in regimes where the clock signal is comparatively
insensitive to such variations.

are made of metal with high magnetic permeability. The magnetic domains of these

shields easily align counter to the local magnetic fields generated by the Earth and

nearby equipment, and effectively cancel the effects of such fields in the volume the

shields enclose. Despite the comparative mobility of these magnetic domains, the

shields must be degaussed after significant changes in the local field environment have

occurred, after experiencing large temperature variations, or otherwise mechanically

disturbed. This is accomplished by sending large amounts of electric current (∼
200 A) through a cable passing through the innermost set of shields, and smoothly

reducing this current to zero.

The cell temperature is regulated by a resistive heater in the form of a counter-

wound solenoid placed about the innermost magnetic shield in conjunction with a

resistance thermometer (RTD) affixed to the side of the vapor cell. Any magnetic

fields generated by the heating solenoid are thus limited by both its counter-wound

geometry and the innermost shield. An approximately uniform magnetic field is

generated by a solenoid located immediately inside the innermost magnetic shield.

The uniformity of the field generated by this solenoid in the vicinity of the vapor
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Figure 6.8: Experimental apparatus for simultaneous measurement of the
properties of arbitrary sideband or full CPT clock resonances.

cell is improved by the field generated by an additional pair of smaller coils located

at either end of the main solenoid. For all measurements reported here, the current

through the solenoids was selected so as to separate the m = 0 resonance from the

m = ±1 resonances by approximately 30 kHz.

6.2.3 Temperature Stabilized Etalon

To isolate the signals generated by individual sidebands, we pass a portion of the

light that has interacted with the atomic ensemble through a temperature stabilized

etalon. This is comprised of a 5 mm disc of glass mounted in the center of a cylindri-

cal aluminum frame, and protected from direct contact with the outside atmosphere

by a pair of anti-reflection coated windows at each end of the cylinder. The cylinder

rests upon a thermo-electric cooler used to control its overall temperature, and is sur-

rounded by felt insulation. The etalon temperature is measured by an RTD mounted
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in a hole drilled in the edge of the cylinder. This yields an etalon with a free spectral

range (FSR) of approximately 20 GHz, with a finesse of about 30. As indicated on

Figure 6.5, the 20 GHz FSR is larger than the modulated spectrum of the VSCEL,

greatly simplifying our experimental analysis. Note that the 670 MHz bandwidth

of the etalon resonance is broad compared with the 100 MHz VCSEL linewidth, re-

ducing the impact of any fluctuations in the etalon resonance due to temperature or

vibrational disturbances.

6.3 Results

For our first measurements, we used a beam with an approximately gaussian profile

which was approximately 2 mm in diameter. This beam size was selected as being

both small enough to allow sufficient intensity for significant power broadening of the

CPT resonance, and large enough to avoid the undesirable effects of steep transverse

intensity gradients [218]. As shown in Figures 6.9(a) and 6.9(b), we find that both

the +1 and −1 sideband resonances (i.e. , the zero crossings) are offset from one

another and from the clock resonance. The variation of the center frequencies of

these resonances with input laser power shown in Figure 6.10 is particularly striking.

In particular, we notice that both of the sideband resonances trend towards the overall

clock resonance with increasing laser power. Figure 6.11 portrays the shifts in the

sideband and clock resonances as the amount of power driving the VCSEL’s phase

modulation is varied.

In an effort to determine how closely these resonances approach the clock res-

onance, or even whether they may overlap at some point, we reduced the beam

diameter to 1 mm so as to explore the resonances at higher intensities. As shown in

Figure 6.12, we observe the same sort of behavior here as in the 2 mm beam, although

the distorted shape of the entire error signal resonance observed here is indicative of

our approach to the “peaky” EIT regime described in [183,218]. As the applied laser

power is increased, we find that there are indeed intensities at which the ±1 sideband

resonances individually coincide with the clock resonance, as shown in FIgure 6.12.

This coincidence is possible because the clock signal is derived from contributions
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Figure 6.9: (a) The error signal derived from the CPT resonance in a regime
typical of where CPT clocks operate i.e. with modulation index ∼ 2 and
with intensity sufficient to moderately power-broaden the resonance. (b)
Measured error signal resonance for the −1 sideband (red/lighter grey) and
the +1 sideband (blue/darker grey) under the same conditions, with the +1
sideband taken simultaneously with the data in (a). RF detuning is measured
relative to 3417.34584 MHz. Total power = 120 µW, in 87Rb vapor cell
with 22 Torr of Ne buffer gas at 51 ◦C, corresponding to a 87Rb density of
approximately 1.1× 1011 cm−3.

from all fast modulation sideband resonances (e.g. , ±2, ±3, . . . ), and not merely the

sum of the ±1 sidebands. We note that the overlaps between the sideband and clock

resonances shown in Figure 6.13 occur at lower overall laser powers as the phase mod-

ulation is increased. This occurs because in our particular operating regime, higher

phase modulation translates to a larger proportion of the incident laser power being

diverted into the higher order sidebands, making the overall clock signal more depen-

dent on their contributions, and proportionately less dependent on the sum of the ±1

sidebands.

6.4 Summary

We have experimentally demonstrated that the isolated sideband resonances which

contribute to the total error signal of a CPT clock are generally quite sensitive to the

properties of the driving laser, despite the fact that the total sum of such signals

can be comparatively insensitive. Although further work will be required to use

these phenomena to stabilize an actual clock, these early results are quite promising.



Chapter 6: Novel Means of Stabilizing Compact Atomic Clocks 149

20

15

10

5

0

-5

H
z

120!W100806040

Laser Power

(a) −1 Sideband Resonance

-115

-110

-105

-100

-95

-90

H
z

120!W100806040

Laser Power

(b) +1 Sideband Resonance

-65

-60

-55

-50

-45

-40

H
z

120!W100806040

Laser Power

(c) Clock Resonance

Figure 6.10: Measured resonance shifts for ±1 sidebands and CPT clock
resonance vs. laser power at modulation index ∼ 2. Data taken with a
2 mm beam, in a 87Rb vapor cell with 22 Torr of Ne buffer gas at 51 ◦C,
corresponding to a 87Rb density of approximately 1.1 × 1011 cm−3. Higher
power RF signals correspond to higher modulation indices.

In particular, the observed crossing of the +1 sideband resonance with the overall

clock resonance suggests a good operating point at which both resonances may be

simultaneously locked.
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tude of the phase modulation signal. All data taken with a 2 mm beam in
a 87Rb vapor cell with 22 Torr of Ne buffer gas at 51 ◦C, corresponding to
a 87Rb density of approximately 1.1 × 1011 cm−3. Higher power RF signals
correspond to higher modulation indices.
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Figure 6.12: (a) Clock signal obtained with 1 mm beam diameter, to obtain
higher intensities. Also shown in (b) is the associated signal from the −1
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37.6 µW, 1 mm beam, in 87Rb vapor cell with 22 Torr of Ne buffer gas at 51
◦C, corresponding to a 87Rb density of approximately 1.1× 1011 cm−3.
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Figure 6.13: Measured resonance shifts for ±1 sidebands and CPT clock
resonance vs. laser power at higher intensities. Data taken with a 1 mm
beam, in 87Rb vapor cell with 22 Torr of Ne buffer gas at 51 ◦C, corresponding
to a 87Rb density of approximately 1.1×1011 cm−3. Higher power RF signals
correspond to higher modulation indices.



Appendix A

Appendices to Chapters 2 and 3

A.1 Second Order κ̃ Transformation

Lorentz violation in the photon sector modifies Maxwell’s equations and can

be seen as giving the vacuum a frame-dependent electric and magnetic polarizabil-

ity. Thus the electromagnetic field may be understood in terms of the solution to

Maxwell’s equations in a medium, where(
~D

~H

)
=

(
(1 + κDE) κDB

κHE (1 + κHB)

)(
~E

~B

)
. (A.1)

The κ matrixes are fully determined by 19 coefficients, to wit, four traceless tensors

and one scalar:

(κ̃e+)jk =
1

2
(κDE + κHB)jk (A.2)

(κ̃e−)jk =
1

2
(κDE − κHB)jk − δjkκ̃tr (A.3)

(κ̃o+)jk =
1

2
(κDB + κHE)jk (A.4)

(κ̃o−)jk =
1

2
(κDB − κHE)jk (A.5)

κ̃tr =
1

3
(κDE)ll . (A.6)
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The SME-modified Lagrangian for the electromagnetic field is, in the standard refer-

ence frame:

L =
1

2

(
~E2 − ~B2

)
+

1

2
~E · (κDE) · ~E − 1

2
~B · (κHB) · ~B + ~E · (κDB) · ~B, (A.7)

or, in terms of the independent parameters:

L =
1

2

(
(1 + κ̃tr)| ~E|2 − (1− κ̃tr)| ~B|2

)
+

1

2
~E · (κ̃e+ + κ̃e−) · ~E − 1

2
~B · (κ̃e+ − κ̃e−) · ~B + ~E · (κ̃o+ + κ̃o−) · ~B.

(A.8)

The action must be invariant, so by replacing the fields with their values in a boosted

frame, we can gather like terms to obtain the properties of the vacuum in those

boosted frames.

L = L′ = 1

2

(
(1 + κ̃′tr)| ~E ′|2 − (1− κ̃′tr)| ~B′|2

)
+

1

2
~E ′ · (κ̃′e+ + κ̃′e−

) · ~E ′
− 1

2
~B′ · (κ̃′e+ − κ̃′e−) · ~B′ + ~E ′ · (κ̃′o+ + κ̃′o−

) · ~B′. (A.9)

To obtain the properties of the vacuum in boosted frames (in our case, along the x-

axis, we transform ~E and ~B as in special relativity to obtain ~E ′ = Exx̂+γ (Ey + βBz) ŷ+

γ (Ez − βBy) ẑ and ~B′ = Bxx̂+ γ (By − βEz) ŷ + γ (Bz + βEy) ẑ. We then insert the

transformed fields into the Lagrangian and collect terms to discover how the κ̃ pa-

rameters transform under a boost. In this analysis, we want to determine how LV in

the photon sector might affect the operation of synchrotrons, and so we are interested

in κDE and κDB under the condition that κ̃tr and possibly κ̃e− and κ̃o+ are the only

nonzero κ̃ parameters. By matching coefficients from the reference-frame Lagrangian



154 Appendix A: Appendices to Chapters 2 and 3

to the boosted Lagrangian, we obtain the following system of equations

E2
1 :

1

2
(1 + κ̃′tr − κ̃′22

e− − κ̃′33
e− − κ̃′22

e+ − κ̃′33
e+) =

1

2
(1 + κ̃tr − κ̃22

e− − κ̃33
e−) (A.10)

E2
2 :

1

2

(
1 + (2γ2 − 1)κ̃′tr + γ2(κ̃′22

e− + κ̃′22
e+) + (γ2 − 1)(κ̃′33

e− − κ̃′33
e+) (A.11)

+2βγ2(κ̃′23
o+ + κ̃′23

o−)
)

=
1

2
(1 + κ̃tr + κ̃22

e−) (A.12)

E2
3 :

1

2

(
1 + (2γ2 − 1)κ̃′tr + γ2(κ̃′33

e− + κ̃′33
e+) + (γ2 − 1)(κ̃′22

e− − κ̃′22
e+) (A.13)

+2βγ2(κ̃′23
o+ − κ̃′23

o−)
)

=
1

2
(1 + κ̃tr + κ̃33

e−) (A.14)

B2
1 :

−1

2

(
1− κ̃′tr + κ̃′22

e− + κ̃′33
e− − κ̃′22

e+ − κ̃′33
e+

)
=
−1

2

(
1− κ̃tr + κ̃22

e− + κ̃33
e−
)

(A.15)

B2
2 :

−1

2

(
1− (2γ2 − 1)κ̃′tr − γ2(κ̃′22

e− − κ̃′22
e+)− (γ2 − 1)(κ̃′33

e− + κ̃′33
e+) (A.16)

−2βγ2(κ̃′23
o+ − κ̃′23

o−)
)

=
1

2
(1− κ̃tr − κ̃22

e−) (A.17)

B2
3 :

−1

2

(
1− (2γ2 − 1)κ̃′tr − γ2(κ̃′33

e− − κ̃′33
e+)− (γ2 − 1)(κ̃′22

e− + κ̃′22
e+) (A.18)

−2βγ2(κ̃′23
o+ + κ̃′23

o−)
)

=
1

2
(1− κ̃tr − κ̃33

e−) (A.19)

E1E2 : γ
(
β(κ̃′13

o+ + κ̃′13
o−) + κ̃′12

e− + κ̃′12
e+

)
= κ̃12

e− (A.20)

E1E3 : γ
(
−β(κ̃′12

o+ + κ̃
′12)
o− + κ̃′13

e− + κ̃′13
e+

)
= κ̃13

e− (A.21)

E2E3 : βγ2(κ̃′33
o− − κ̃′22

o−) + (2γ2 − 1)κ̃23
e+ + κ̃′23

e− = κ̃23
e− (A.22)

B1B2 : γ
(
β(κ̃′13

o+ − κ̃′13
o−) + κ̃′12

e− − κ̃′12
e+

)
= κ̃12

e− (A.23)

B1B3 : γ
(
β(κ̃′12

o− − κ̃′12
o+) + κ̃′13

e− − κ̃′13
e+

)
= κ̃13

e− (A.24)

B2B3 : γ2
(
β(κ̃′22

o− − κ̃′33
o−)− 2κ̃′2,3e+

)
+ κ̃′23

e+ + κ̃′23
e− = κ̃23

e− (A.25)
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and the EB terms are

E1B1 : −(κ̃′22
o− + κ̃′33

o−) = 0 (A.26)

E1B2 : γ
(
κ̃′12
o− + κ̃′12

o+ − β(κ̃′13
e− + κ̃′13

e+)
)

= κ̃12
o+ (A.27)

E1B3 : γ
(
κ̃′13
o− + κ̃′13

o+ + β(κ̃′12
e− + κ̃′12

e+)
)

= κ̃13
o+ (A.28)

E2B1 : γ
(
κ̃′12
o− − κ̃′12

o+ + β(κ̃′13
e− − κ̃′13

e+)
)

= −κ̃12
o+ (A.29)

E2B2 : γ2
(
κ̃′22
o− − β2κ̃′33

o− − 2βκ̃′2,3e+

)
= 0 (A.30)

E2B3 : γ2
(
(1 + β2)(κ̃′23

o− + κ̃′23
o+) + β(2κ̃′tr + κ̃′22

e− + κ̃′33
e− + κ̃′22

e+ − κ̃′33
e+)
)

= κ̃23
o+(A.31)

E3B1 : γ
(
(κ̃′13

o− − κ̃′13
o+) + β(κ̃′12

e+ − κ̃′12
e−)
)

= −κ̃13
o+ (A.32)

E3B2 : (2γ2 − 1)(κ̃′23
o− − κ̃′23

o+)− γ2β(2κ̃′tr + κ̃′22
e− + κ̃′33

e− + κ̃′33
e+ − κ̃′22

e+) = −κ̃23
o+(A.33)

E3B3 : γ2
(
κ̃′33
o− − β2κ̃′22

o− + 2βκ̃′23
e+

)
= 0 (A.34)

Solving these equations yields

κ̃′tr =

(
1 +

β2

3

)
γ2κ̃tr − 2

3
βγ2

(
2κ̃23

o+ − β(κ̃22
e− + κ̃33

e−)
)

(A.35)

κ̃′12
e− = γ

(
κ̃12
e− − βκ̃13

o+

)
(A.36)

κ̃′13
e− = γ

(
κ̃13
e− + βκ̃12

o+

)
(A.37)

κ̃′23
e− = κ̃23

e− (A.38)

κ̃′22
e− =

1

3

(
2 + γ2

)
κ̃22
e− +

1

3
β2γ2κ̃33

e− +
2

3
γ2β2κ̃tr − 2

3
γ2βκ̃23

o+ (A.39)

κ̃′33
e− =

1

3

(
2 + γ2

)
κ̃33
e− +

1

3
β2γ2κ̃22

e− +
2

3
γ2β2κ̃tr − 2

3
γ2βκ̃23

o+ (A.40)

κ̃′jke+ = 0 (A.41)

κ̃′jko− = 0 (A.42)

κ̃′12
o+ = γ

(
κ̃12
o+ + βκ̃13

e−
)

(A.43)

κ̃′13
o+ = γ

(
κ̃13
o+ − βκ̃12

e−
)

(A.44)

κ̃′23
o+ = (2γ2 − 1)κ̃23

o+ − βγ2
(
2κ̃tr + κ̃22

e− + κ̃33
e−
)
. (A.45)
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In the limit that only κ̃tr is significant the only nonzero terms are

κ̃′tr =

(
1 +

β2

3

)
γ2κ̃tr (A.46)

κ̃′23
o+ = −2βγ2κ̃tr (A.47)

κ̃′22
e− =

2

3
γ2β2κ̃tr (A.48)

κ̃′33
e− =

2

3
γ2β2κ̃tr. (A.49)

From the definitions of these four terms, we find that

κ′DE =


κ̃′tr + κ̃′11

e− 0 0

0 κ̃′tr + κ̃′22
e− 0

0 0 κ̃′tr + κ̃′33
e−

 (A.50)

=


κ̃tr 0 0

0 (1 + β2)γ2κ̃tr 0

0 0 (1 + β2)γ2κ̃tr

 (A.51)

κ′DB =


0 0 0

0 0 κ̃′23
o+

0 −κ̃′23
o+ 0

 =


0 0 0

0 0 −2βγ2κ̃tr

0 2βγ2κ̃tr 0

 (A.52)

κ′HB =


−κ̃tr 0 0

0 −(1 + β2)γ2κ̃tr 0

0 0 −(1 + β2)γ2κ̃tr

 . (A.53)
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A.2 General Transformation

L =
1

2

(
(1 + κ̃tr)| ~E|2 − (1− κ̃tr)| ~B|2

)
+

1

2
~E · (κ̃e+ + κ̃e−) · ~E

− 1

2
~B · (κ̃e+ − κ̃e−) · ~B + ~E · (κ̃o+ + κ̃o−) · ~B.

(A.54)

The action must be invariant, so by replacing the fields with their values in a boosted

frame, we can gather like terms to obtain the properties of the vacuum in those

boosted frames.

L = L′ = 1

2

(
(1 + κ̃′tr)| ~E ′|2 − (1− κ̃′tr)| ~B′|2

)
+

1

2
~E ′ · (κ̃′e+ + κ̃′e−

) · ~E ′
− 1

2
~B′ · (κ̃′e+ − κ̃′e−) · ~B′ + ~E ′ · (κ̃′o+ + κ̃′o−

) · ~B′. (A.55)

In what follows, we neglect entirely the contribution of κ̃o− and κ̃e+ to either L or L′.
These terms give rise to birefringence of the vacuum, a phenomena which has been

thoroughly excluded in any frame concordant [87] with the standard Sun-centered

reference frame. Dropping these terms greatly simplifies our task. For an arbitrary

boost ~β, the electric and magnetic fields transform according to

~E ′ = γ( ~E + ~β × ~B)− γ2

γ + 1
~β(~β · ~E)

~B′ = γ( ~B − ~β × ~E)− γ2

γ + 1
~β(~β · ~B)

Examination of L in the unprimed frame reveals that the sum of the coefficients of

E2
1 , E2

2 , and E2
3 is 3/2(1 + κ̃tr). The form of κ̃′tr is easily obtained by the sum of the

coefficients of E2
1 , E2

2 , and E2
3 in the primed frame after substitution of ~E and ~B for

~E ′ and ~B′, and is given by

κ̃′tr =

(
1 +
|β|2
3

)
γ2κ̃tr +

2

3
γ2
[
(β2

1 − β2
2)κ̃22

e− + (β2
1 − β2

3)κ̃33
e−
]

− 4

3
γ2
[
β1β2κ̃

′12
e− + β1β3κ̃

′13
e− + β2β3κ̃

′23
e− − β3κ̃

′12
o+ + β2κ̃

′13
o+ − β1κ̃

′23
o+

]
.

(A.56)

We can find κ̃′22
e− in a similar fashion, noting that if we define a = coef(E2

1), b =

coef(E2
2), and c = coef(E2

3) in the unprimed frame, the weighted sum (4/3)(b− a/2−
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c/2) is equal to κ̃22
e−. Taking the same linear combination of primed-frame coefficients

after substitution, and switching the sign of ~β, we find that

κ̃′22
e− =

2

3

[
(1− 3β2

2)γ2 − 1
]
κ̃tr +

(β2
1 − β2

3)γ2

3(γ + 1)2

[
1 + γ(2− γ(3β2

2 − 1))
]
κ̃33
e−

+

[
1

3
(2 + (1− β2

3)γ2) +
β2

2(β2
2 − β2

1)γ4

(γ + 1)2
− 2β2

2γ
2(γ − 2)

3(γ + 1)

]
κ̃22
e−

+
2γ2(2 + γ + (3β2

2 − 1)γ2)

3(γ + 1)2

[
β1β2κ̃

12
e− + β1β3κ̃

13
e− + β2β3κ̃

23
e−
]

− 2β1β3γ
2

γ + 1
κ̃13
e−

+
2

3
γ2

(
1− 3β2

2γ

γ + 1

)[
β3κ̃

12
o+ − β2κ̃

13
o+ + β1κ̃

23
o+

]
+ 2β2γκ̃

13
o+.

(A.57)

Similarly, we find the expression for κ̃′33
e−:

κ̃′33
e− =

2

3

[
(1− 3β2

3)γ2 − 1
]
κ̃tr +

(β2
1 − β2

2)γ2

3(γ + 1)2

[
1 + γ(2− γ(3β2

3 − 1))
]
κ̃22
e−

+

[
1

3
(2 + (1− β2

2)γ2) +
β2

3(β2
3 − β2

1)γ4

(γ + 1)2
− 2β2

3γ
2(γ − 2)

3(γ + 1)

]
κ̃33
e−

+
2γ2(2 + γ + (3β2

3 − 1)γ2)

3(γ + 1)2

[
β1β2κ̃

12
e− + β1β3κ̃

13
e− + β2β3κ̃

23
e−
]

− 2β1β2γ
2

γ + 1
κ̃12
e−

+
2

3
γ2

(
1− 3β2

3γ

γ + 1

)(
β3κ̃

12
o+ − β2κ̃

13
o+ + β3κ̃

23
o+

)− 2β3γκ̃
12
o+.

(A.58)

The remaining terms can be read off directly from the coefficients of EjBk and EjEk:

κ̃′12
e− = −2β1β2γ

2κ̃tr +
β1β2(β2

2 − β2
1)γ4

(γ + 1)2
κ̃22
e−

− β1β2γ
2(1 + γ + (β2

1 − β2
3)γ2)

(γ + 1)2
κ̃33
e−

+

(
1 +

γ2(β2
1 + β2

2)

γ + 1
+

2β2
1β

2
2γ

4

(γ + 1)2

)
κ̃12
e− +

β2β3γ
2

γ + 1

(
1 +

2β2
1γ

2

γ + 1

)
κ̃13
e−

+
β1β3γ

2

γ + 1

(
1 +

2β2
2γ

2

γ + 1

)
κ̃23
e− −

2β1β2β3γ
3

γ + 1
κ̃12
o+

+ β1γ

(
1 +

2β2
2γ

2

γ + 1

)
κ̃13
o+ − β2γ

(
1 +

2β2
1γ

2

γ + 1

)
κ̃23
o+,

(A.59)



Appendix A: Appendices to Chapters 2 and 3 159

κ̃′13
e− = −2β1β3γ

2κ̃tr +
β1β3(β2

3 − β2
1)γ4

(γ + 1)2
κ̃33
e−

− β1β3γ
2(1 + γ + (β2

1 − β2
2)γ2)

(γ + 1)2
κ̃22
e−

+
β2β3γ

2

γ + 1

(
1 +

2β2
1γ

2

γ + 1

)
κ̃12
e− +

(
1 +

γ2(β2
1 + β2

3)

γ + 1
+

2β2
1β

2
3γ

4

(γ + 1)2

)
κ̃13
e−

+
β1β2γ

2

γ + 1

(
1 +

2β2
3γ

2

γ + 1

)
κ̃23
e− − β1γ

(
1 +

2β2
3γ

2

γ + 1

)
κ̃12
o+

+
2β1β2β3γ

3

γ + 1
κ̃13
o+ − β3γ

(
1 +

2β2
1γ

2

γ + 1

)
κ̃23
o+,

(A.60)

κ̃′23
e− = −2β2β3γ

2κ̃tr +
β2β3γ

2

γ + 1

(
1 +

(β2
2 − β2

1)γ2

(γ + 1)2

)
κ̃22
e−

+
β2β3γ

2

γ + 1

(
1 +

(β2
3 − β2

1)γ2

(γ + 1)2

)
κ̃33
e−

+
β1β3γ

2

γ + 1

(
1 +

2β2
2γ

2

γ + 1

)
κ̃12
e− +

β1β2γ
2

γ + 1

(
1 +

2β2
3γ

2

γ + 1

)
κ̃13
e−

+

(
1 +

γ2(β2
2 + β2

3)

γ + 1
+

2β2
2β

2
3γ

4

(γ + 1)2

)
κ̃23
e− − β2γ

(
1 +

2β2
3γ

2

γ + 1

)
κ̃12
o+

+ β3γ

(
1 +

2β2
2γ

2

γ + 1

)
κ̃13
o+ −

2β1β2β3γ
3

γ + 1
κ̃23
o+,

(A.61)

κ̃′12
o+ = 2β3γ

2κ̃tr − (β2
2 − β2

1)β3γ
3

γ + 1
κ̃22
e− −

(
β3γ +

(β2
3 − β2

1)β3γ
3

γ + 1

)
κ̃33
e−

− 2β1β2β3γ
3

γ + 1
κ̃12
e− − γ

(
1 +

2β2
3γ

2

γ + 1

)[
β1κ̃

13
e− + β2κ̃

23
e−
]

+ γκ̃12
o+ +

β3γ
2(1 + 2γ)

γ + 1

[
β3κ̃

12
o+ − β2κ̃

13
o+ + β1κ̃

23
o+

]
,

(A.62)

κ̃′13
o+ = −2β2γ

2κ̃tr −
(
β2γ +

(β2
2 − β2

1)β2γ
3

γ + 1

)
κ̃22
e− −

(β2
3 − β2

1)β2γ
3

γ + 1
κ̃33
e−

+
2β1β2β3γ

3

γ + 1
κ̃13
e− + γ

(
1 +

2β2
2γ

2

γ + 1

)[
β1κ̃

12
e− + β3κ̃

23
e−
]

+ γκ̃13
o+ +

β2γ
2(1 + 2γ)

γ + 1

[
β3κ̃

12
o+ − β2κ̃

13
o+ + β1κ̃

23
o+

]
,

(A.63)
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κ̃′23
o+ = 2β1γ

2κ̃tr + β1γ

[
1− (β2

2 − β2
1)γ2

γ + 1

]
κ̃22
e− + β1γ

[
1− (β2

3 − β2
1)γ2

γ + 1

]
κ̃33
e−

− γ
(

1 +
2β2

1γ
2

γ + 1

)[
β2κ̃

12
e− + β3κ̃

13
e−
]− 2β1β2β3γ

3

γ + 1
κ̃23
e−

+ γκ̃23
o+ −

β1γ
2(1 + 2γ)

γ + 1

[
β3κ̃

12
o+ − β2κ̃

13
o+ + β1κ̃

23
o+

]
.
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A.3 Second Order Sidereal Signals for Optical Res-

onator Experiments

To maximize the utility of this result, we now translate it to the A0,1,2,3,4, B0,1,2,3,4

and C0,1,2,3,4 coefficients of [28] which describe the time-dependence of potential LV

signals in optical cavity experiments. Such time dependence would arise from the

variation of the mixing between photon sector SME parameters as defined in the

Sun-centered frame due to the changing boost of the Earthbound laboratory frame.

To move from the Sun-centered frame to a frame at rest with respect to some point

on the Earth requires both a boost and a rotation. To simplify our calculations, we

perform the rotation in the Sun-centered frame prior to applying the boost. As a

result, all time-modulation of LV signals takes place at frequencies defined in the rest

frame of the Sun, and not on Earth. The effects of time-dilation upon these signal

frequencies are small, and as they are well-separated from one another, should not

lead to significant errors in experimental analyses. The boost from the Sun-centered

frame to the laboratory frame is, as in [28],

~β = β⊕


sin Ω⊕T

− cos η cos Ω⊕T

− sin η cos Ω⊕T

+ βL


− sinω⊕T

cosω⊕T

0

 , (A.65)

and the rotation is

R =


cosχ cosω⊕T⊕ cosχ sinω⊕T⊕ − sinχ

− sinω⊕T⊕ cosω⊕T⊕ 0

sinχ cosω⊕T⊕ sinχ sinω⊕T⊕ cosχ

 . (A.66)
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Taken from [28], the observable for optical resonator experiments is a fractional

frequency shift:

δν

ν
= −1

4

[
2(κDE)33

lab/ε− (κHB)11
lab − (κHB)22

lab

]
− 1

2
(κHB)12

lab sin 2θ − 1

4

[
(κHB)11

lab − (κHB)22
lab

]
cos 2θ.

(A.67)

Where θ is the angle between the x-axis and the cavity orientation for horizontally

positioned resonators, and ε is the transverse relative permittivity of any medium

within the cavity. In what follows, unprimed κ̃’s are laboratory-frame parameters,

primed κ̃′s are in the rest frame of the Sun, and the standard Sun-centered frame κ̃s

are distinguished by the use of capital X, Y , and Z indices. In terms of the lab-frame

κ̃jke−, and κ̃tr, the observable is

δν

ν
= −

[
1 + ε

2ε
κ̃tr +

2− ε
4ε

κ̃33
e−

]
+

1

2
(κ̃12

e−) sin 2θ − 1

4

[
2κ̃22

e− + κ̃33
e−
]

cos 2θ

= A+B sin 2θ + C cos 2θ.

(A.68)

Defining

ε+ =
2 + ε

3ε
and ε− =

2− ε
ε

, (A.69)

the A coefficient is given by

A = −1

8

[
(9 + 3|β|2)γ2ε+ − (1 + 4β2

3γ
2)ε−

]
κ̃′tr

+
(β2

2 − β2
1)γ2

4

(
ε+ − β2

3γ
2

(γ + 1)2
ε−

)
κ̃′22
e−

− ε−
4

[
1 +

2β2
3γ

2

γ + 1
− β2

3(β2
1 − β2

3)γ4

(γ + 1)2

]
κ̃′33
e− +

3(β2
3 − β2

1)γ2ε+
4

κ̃′33
e−

+
β1β2γ

2

2(γ + 1)
ε−κ̃

′12
e−

+
γ2

2

(
3ε+ −

(
1

1 + γ
+

β2
3γ

2

(γ + 1)2

)
ε−

)[
β1β2κ̃

′12
e− + β1β3κ̃

′13
e− + β2β3κ̃

′23
e−
]

− γ

2

(
3γ2ε+ − β2

3γ
2

γ + 1
ε−

)[
β3κ̃

′12
o+ − β2κ̃

′13
o+ + β1κ̃

′23
o+

]
+
β3γ

2
ε−κ̃

′12
o+

(A.70)
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and the B coefficient by

B = −β1β2γ
2κ̃′tr +

1

2
κ̃′12
e− +

γ

2

(
β1κ̃

′13
o+ − β2κ̃

′23
o+

)
+

γ2

2(γ + 1)

[
β2β3κ̃

′13
e− + β1β3κ̃

′23
e− − β1β2κ̃

′33
e− + (β2

1 + β2
2)κ̃′12

e−

− 2β1β2γ
(
β3κ̃

′12
o+ − β2κ̃

′13
o+ + β1κ̃

′23
o+

)]
+

β1β2γ
4

(γ + 1)2

[
1

2

(
(β2

2 − β2
1)κ̃′22

e− + (β2
3 − β2

1)κ̃′33
e−
)

+ β1β2κ̃
′12
e− + β1β3κ̃

′13
e− + β2β3κ̃

′23
e−

]
,
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and the C coefficient by

C =
1

2
(β2

2 − β2
1)γ2κ̃′tr −

1

2
κ̃′22
e− −

1

4
[2γ − 1] κ̃′33

e− −
γ

2

(
β2κ̃

′13
o+ + β1κ̃

′23
o+

)
+

γ2

2(γ + 1)

[
β1β3κ̃

′13
e− − β2β3κ̃

′23
e− − (β2

1 + β2
2)κ̃′22

e− − (β2
2 + β2

3)κ̃′33
e−

− γ(β2
1 − β2

2)
(
β3κ̃

′12
o+ − β2κ̃

′13
o+ + β1κ̃

′23
o+

)]
+

(β2
1 − β2

2)γ4

2(γ + 1)2

[
1

2

(
(β2

2 − β2
1)κ̃′22

e− + (β2
3 − β2

1)κ̃′33
e−
)

+ β1β2κ̃
′12
e− + β1β3κ̃

′13
e− + β2β3κ̃

′23
e−

]
.

(A.72)
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If we include only contributions to second order in components of β, and thus set

γ = 1, since there are no terms proportional to γ and not a component of β (except

in the C coefficient, where we find 2γ − 1 ∼ 1 + |β|2...), we find

A = −1

8
(9ε+ − ε−)κ̃′tr +

3

16
(ε+ − ε−)

(
κ̃′33
e− − 2β3κ̃

′12
o+

)
+

1

24
(33ε+ − ε−)

[
−|~β|2κ̃′tr −

(β2
2 − β2

1)

2
κ̃′22
e− −

(β2
1 + β2

3)

2
κ̃′33
e−

+
1

2

[ (
β2

3 κ̃
′33
e− + β1β2κ̃

′12
e− + β1β3κ̃

′13
e− + β2β3κ̃

′23
e−
)

− (β3κ̃
′12
o+ − β2κ̃

′13
o+ + β1κ̃

′23
o+

) ]]
− 3β2

3

8
(ε+ − ε−)κ̃′tr −

3β1β2

16
κ̃′12
e−

+
1

48
(42ε+ − 10ε−)

(
β2

3 κ̃
′33
e− + β1β2κ̃

′12
e− + β1β3κ̃

′13
e− + β2β3κ̃

′23
e−
)
,
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B = −β1β2κ̃
′
tr +

1

2
κ̃′12
e− +

1

2

(
β1κ̃

′13
o+ − β2κ̃

′23
o+

)
+

1

4

[
β2β3κ̃

′13
e− + β1β3κ̃

′23
e− − β1β2κ̃

′33
e− + (β2

1 + β2
2)κ̃′12

e−

]
,
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C =
1

2
(β2

2 − β2
1)κ̃′tr −

1

2
κ̃′22
e− −

1

4

[
1 + |β|2] κ̃′33

e− −
1

2

(
β2κ̃

′13
o+ + β1κ̃

′23
o+

)
+

1

4

[
β1β3κ̃

′13
e− − β2β3κ̃

′23
e− − (β2

1 + β2
2)κ̃′22

e− − (β2
2 + β2

3)κ̃′33
e−

]
.
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Breaking this result up into different sidereal components, and ignoring terms pro-

portional to β⊕βL and β2
L, as such are significantly smaller than β2

⊕, we finally obtain

A = A0 + A1 sinω⊕T⊕ + A2 cosω⊕T⊕ + A3 sin 2ω⊕T⊕ + A4 cos 2ω⊕T⊕ (A.76)

B = B0 +B1 sinω⊕T⊕ +B2 cosω⊕T⊕ +B3 sin 2ω⊕T⊕ +B4 cos 2ω⊕T⊕ (A.77)

C = C0 + C1 sinω⊕T⊕ + C2 cosω⊕T⊕ + C3 sin 2ω⊕T⊕ + C4 cos 2ω⊕T⊕ (A.78)
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where1

A0 = −1
8
(9ε+ − ε−)(κ̃tr) + 1

8
ε−(1− 3 cos2 χ)(κ̃e−)ZZ

+ 1
4
β⊕{2(3ε+ − ε− cos2 χ) sin η cos Ω⊕T⊕(κ̃o+)XY

− 1
2
(6ε+ − ε− sin2 χ)(cos η cos Ω⊕T⊕(κ̃o+)XZ + sin Ω⊕T⊕(κ̃o+)Y Z)}

− 1
4
β2
⊕

{
sin Ω⊕T⊕ cos Ω⊕T⊕ cos η(6ε+ − ε− sin2 χ)(κ̃e−)XY

+ 1
2

[
6ε+ − ε− sin2 χ

]× [sin2 Ω⊕T⊕ − cos2 η cos2 Ω⊕T⊕
]

(κ̃e−)Y Y

+ 1
2

[
sin2 Ω⊕T⊕(6ε+ − ε− sin2 χ)

−2 sin2 η cos2 Ω⊕T⊕(3ε+ − ε− cos2 χ)
]

(κ̃e−)ZZ

+
[
6ε+ − ε−

(
sin2 χ− (1− 3 cos2 χ) sin2 η cos2 Ω⊕T⊕

)]
(κ̃tr)

+ 1
2

sin η cos Ω⊕T⊕(12ε+ − ε− + ε− cos2 χ)

× [sin Ω⊕T⊕(κ̃e−)XZ − cos η cos Ω⊕T⊕(κ̃e−)Y Z
] }
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A1 = −1
2
ε− sinχ cosχ(κ̃e−)Y Z

+ 1
2
β⊕ε− sinχ cosχ

{
sin η cos Ω⊕T⊕(κ̃o+)XZ

− cos η cos Ω⊕T⊕(κ̃o+)XY
}

+ 3
2
βLε+(κ̃o+)Y Z

− 1
4
β2
⊕ε− sinχ cosχ cos Ω⊕T⊕

{
cos Ω⊕T⊕(κ̃e−)Y Z

− sin Ω⊕T⊕
[
sin η(κ̃e−)XY + cos η(κ̃e−)XZ

]
− sin η cos η cos Ω⊕T⊕

[
4(κ̃tr) + (κ̃e−)XX

] }

(A.80)

1Note that the following table of Aj coefficients does not agree with those presented in [28].
This is the result of a minor calculation error on the part of [28], where the transformation in their
equation (30) is not correctly applied. Their error effectively mapped ε− to 3ε+ and ε+ to ε−/3.
This is of no great consequence to any experimental limits derived from either expression, since none
yet reported have relied upon the value of the Aj coefficients.
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A2 = −1
2
ε− sinχ cosχ(κ̃e−)Y Z

+ 1
2
ε−β⊕ sinχ cosχ

{
sin Ω⊕T⊕(κ̃o+)XY

− sin η cos Ω⊕T⊕(κ̃o+)Y Z
}

+ 3
2
ε+βL(κ̃o+)XZ

− 1
4
β2
⊕ε− sinχ cosχ

{(
1− cos2 η cos2 Ω⊕T⊕

)
(κ̃e−)XZ

+ sin η sin Ω⊕T⊕ cos Ω⊕T⊕
(
4(κ̃tr) + (κ̃e−)Y Y

)
− cos η cos Ω⊕T⊕ sin η cos Ω⊕T⊕(κ̃e−)XY

− cos η cos Ω⊕T⊕ sin Ω⊕T⊕(κ̃e−)Y Z
}
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A3 = −1
4
ε− sin2 χ(κ̃e−)XY

− 1
4
ε−β⊕ sin2 χ

{
sin Ω⊕T⊕(κ̃o+)XZ

+ cos η cos Ω⊕T⊕(κ̃o+)Y Z
}

− 1
8
ε−β

2
⊕ sin2 χ

{
(1− sin2 η cos2 Ω⊕T⊕)(κ̃e−)XY

+ sin η cos η cos2 Ω⊕T⊕(κ̃e−)XZ

+ sin η sin Ω⊕T⊕ cos Ω⊕T⊕(κ̃e−)Y Z

+ cos η sin Ω⊕T⊕ cos Ω⊕T⊕
(
4(κ̃tr) + (κ̃e−)ZZ

)}
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A4 = +1
8
ε− sin2 χ

[
(κ̃e−)Y Y − (κ̃e−)XX

]
+ 1

4
ε−β⊕ sin2 χ

{
sin Ω⊕T⊕(κ̃o+)Y Z

− cos η cos Ω⊕T⊕(κ̃o+)XZ)
}

− 1
8
ε−β

2
⊕ sin2 χ

{
(κ̃e−)XX

+ sin2 η cos2 Ω⊕T⊕(κ̃e−)Y Y − sin2 Ω⊕T⊕(κ̃e−)ZZ

+ 2(cos2 η cos2 Ω⊕T⊕ − sin2 Ω⊕T⊕)(κ̃tr)

− sin η sin Ω⊕T⊕ cos Ω⊕T⊕(κ̃e−)XZ

− sin η cos η cos2 Ω⊕T⊕(κ̃e−)Y Z
}

(A.83)
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B0 = 1
2
βL sinχ(κ̃o+)XY (A.84)

B1 = +1
2

sinχ(κ̃e−)XZ

− 1
2
β⊕ sinχ

{
sin Ω⊕T⊕(κ̃o+)XY

− sin η cos Ω⊕T⊕(κ̃o+)Y Z
}

+ 1
2
βL cosχ(κ̃o+)XZ

+ 1
4
β2
⊕ sinχ

{
sin η cos η cos2 Ω⊕T⊕(κ̃e−)XY

+ sin η sin Ω⊕T⊕ cos Ω⊕T⊕
[
4(κ̃tr) + (κ̃e−)Y Y

]
+
(
sin2 η + cos2 η sin2 Ω⊕T⊕

)
(κ̃e−)XZ

− cos η sin Ω⊕T⊕ cos Ω⊕T⊕(κ̃e−)Y Z
}

(A.85)

B2 = −1
2

sinχ(κ̃e−)Y Z

+ 1
2
β⊕ sinχ

{
sin η cos Ω⊕T⊕(κ̃o+)XZ

− cos η cos Ω⊕T⊕(κ̃o+)XY
}

− 1
2
βL cosχ(κ̃o+)Y Z

− 1
4
β2
⊕ sinχ

{
cos2 Ω⊕T⊕(κ̃e−)Y Z

− sin Ω⊕T⊕ cos Ω⊕T⊕
[
sin η(κ̃e−)XY + cos η(κ̃e−)XZ

]
− sin η cos η cos2 Ω⊕T⊕

[
4(κ̃tr) + (κ̃e−)XX

] }
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B3 = +1
4

cosχ
(
(κ̃e−)Y Y − (κ̃e−)XX

)
+ 1

2
β⊕ cosχ

{
sin Ω⊕T⊕(κ̃o+)Y Z

− cos η cos Ω⊕T⊕(κ̃o+)XZ
}

+ 1
4
β2
⊕ cosχ

{
sin η sin Ω⊕T⊕ cos Ω⊕T⊕(κ̃e−)XZ

+ sin2 Ω⊕T⊕
[
2(κ̃tr)− (κ̃e−)XX

]
− cos2 η cos2 Ω⊕T⊕

[
2(κ̃tr)− (κ̃e−)Y Y

]
+ cos η sin η cos2 Ω⊕T⊕(κ̃e−)Y Z

}

(A.87)
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B4 = +1
2

cosχ(κ̃e−)XY

+ 1
2
β⊕ cosχ

{
sin Ω⊕T⊕(κ̃o+)XZ

+ cos η cos Ω⊕T⊕(κ̃o+)Y Z
}

+ 1
4
β2
⊕ cosχ

{
sin η cos η cos2 Ω⊕T⊕(κ̃e−)XZ

− sin η sin Ω⊕T⊕ cos Ω⊕T⊕(κ̃e−)Y Z

+ (1− sin2 η cos2 Ω⊕T⊕)(κ̃e−)XY

+ cos η sin Ω⊕T⊕ cos Ω⊕T⊕
[
(κ̃tr) + (κ̃e−)ZZ

] }
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C0 = +3
8

sin2 χ(κ̃e−)ZZ

+ 1
4

sin2 χβ⊕

{
sin Ω⊕T⊕(κ̃o+)Y Z

+ cos Ω⊕T⊕
[
2 sin η(κ̃o+)XY + cos η(κ̃o+)XZ

] }
+ 1

8
β2
⊕ sin2 χ

{ [
2(κ̃tr)− (κ̃e−)Y Y

]
+ sin2 η cos2 Ω⊕T⊕

[
(κ̃e−)ZZ − (κ̃e−)XX − 6(κ̃tr)

]
+ sin2 Ω⊕T⊕

[
(κ̃e−)Y Y − (κ̃e−)XX

]
+ 2 cos η sin Ω⊕T⊕ cos Ω⊕T⊕(κ̃e−)XY

− sin η sin Ω⊕T⊕ cos Ω⊕T⊕(κ̃e−)XZ

+ sin η cos η cos2 Ω⊕T⊕(κ̃e−)Y Z
}

(A.89)
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C1 = −1
2

sinχ cosχ(κ̃e−)Y Z

+ 1
2
β⊕ sinχ cosχ

{
sin η cos Ω⊕T⊕(κ̃o+)XZ

− cos η cos Ω⊕T⊕(κ̃o+)XY
}

− 1
2
βL(κ̃o+)Y Z

+ 1
4
β2
⊕ sinχ cosχ

{
sin Ω⊕T⊕ cos Ω⊕T⊕ sin η(κ̃e−)XY

+ sin Ω⊕T⊕ cos Ω⊕T⊕ cos η(κ̃e−)XZ

+ sin η cos η cos2 Ω⊕T⊕
[
4(κ̃tr) + (κ̃e−)XX

]
− cos2 Ω⊕T⊕(κ̃e−)Y Z

}
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C2 = −1
2

cosχ sinχ(κ̃e−)XZ

+ 1
2
β⊕ cosχ sinχ

{
sin Ω⊕T⊕(κ̃o+)XY

− sin η cos Ω⊕T⊕(κ̃o+)Y Z
}

− 1
2
βL(κ̃o+)XZ

− 1
4
β2
⊕ cosχ sinχ

{
cos η sin η cos2 Ω⊕T⊕(κ̃e−)XY

+ (1− cos2 η cos2 Ω⊕T⊕)(κ̃e−)XZ

− cos η sin Ω⊕T⊕ cos Ω⊕T⊕(κ̃e−)Y Z

+ sin η sin Ω⊕T⊕ cos Ω⊕T⊕
(
4(κ̃tr) + (κ̃e−)Y Y

)}

(A.91)

C3 = +1
4

(
1 + cos2 χ

)
(κ̃e−)XY

+ 1
4

(
1 + cos2 χ

)
β⊕

{
sin Ω⊕T⊕(κ̃o+)XZ

+ cos η cos Ω⊕T⊕(κ̃o+)Y Z
}

+ 1
8

(
1 + cos2 χ

)
β2
⊕

{
(1− sin2 η cos2 Ω⊕T⊕)(κ̃e−)XY

+ sin η cos η cos2 Ω⊕T⊕(κ̃e−)XZ

− sin η sin Ω⊕T⊕ cos Ω⊕T⊕(κ̃e−)Y Z

+ cos η sin Ω⊕T⊕ cos Ω⊕T⊕
[
4(κ̃tr) + (κ̃e−)ZZ

] }

(A.92)
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C4 = +1
8

(
1 + cos2 χ

) (
(κ̃e−)XX − (κ̃e−)Y Y

)
− 1

4

(
1 + cos2 χ

)
β⊕

{
sin Ω⊕T⊕(κ̃o+)Y Z

− cos η cos Ω⊕T⊕(κ̃o+)XZ
}

− 1
8

(
1 + cos2 χ

)
β2
⊕

{
sin η sin Ω⊕T⊕ cos Ω⊕T⊕(κ̃e−)XZ

+ sin η cos η cos2 Ω⊕T⊕(κ̃e−)Y Z

− (1− sin2 η cos2 Ω⊕T⊕)
[
(κ̃tr)− (κ̃e−)Y Y

]
+ sin2 Ω⊕T⊕

[
3(κ̃tr) + (κ̃e−)ZZ

]
− cos2 η cos2 Ω⊕T⊕(κ̃tr)

}
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A.4 Coordinate Rescalings

Here we present the details of our calculation of the scale S at which Lorentz

violation has been constrained for photons relative to electrons, based entirely upon

constraints obtained from terrestrial experiments. To accomplish this, we must make

direct comparisons between the results of several experiments which variously report

constraints upon Lorentz violation for photons, electrons, and protons. Making use

of these constraints is somewhat complicated by the assumptions made regarding the

possibility of Lorentz violation in other sectors of the SME.

The result of any physical measurement is necessarily a dimensionless quantity, as

any statement of a system’s length, mass, or velocity can only be expressed in units

defined by the characteristics of a selected reference. Similarly, measurements of shifts

and anisotropies in the vacuum speed of light must be defined in terms of the velocity

of a chosen reference particle. In the SME, the limiting velocity of any such reference

particle is also subject to Lorentz-symmetry violating shifts and anisotropies. As a

result, constraints upon the deviation of the speed of light based upon interactions of

light with electrons must be narrowly interpreted as limits on the difference between

the degree to which Lorentz symmetry is violated in each sector. This is a general

feature of all tests of Lorentz symmetry, which generally must be described as setting

limits on combinations of coefficients associated with not one, but all involved particle
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species. As we outline below, the specific combination depends upon our choice of

coordinate system.

Of particular interest in estimating S are the constraints on the electron cµνe co-

efficients. As has been noted elsewhere [27, 28, 39], in the context of one-flavor QED

where for simplicity we have set all other SME coefficients to zero, a symmetric and

traceless cµνe exhibits the same phenomenology as a theory in which cµνe = 0 but

(kF )µνρσ =
1

2
(ηµρk̃νσ − ηµσk̃νρ + ηνσk̃µρ − ηνρk̃µσ) (A.94)

in the photon sector, where

k̃µν = −2cµν +O ((cµν)2
)
. (A.95)

Note that k̃µν = (kF ) µαν
α is composed of κ̃e−, κ̃o+, and κ̃tr. Thus, k̃µν parameterizes

the ways that cph can deviate from the canonical c, which in this theory is the limiting

velocity for electrons. It follows that a k̃µν model must be physically equivalent to a

cµν model if equation (A.95) holds. This equivalence can be formally established via

coordinate rescalings that transform one model into the other [27,28,39]. This implies

that for experiments in which the relevant physics is confined to the interaction of

photons with electrons, constraints on k̃µν can be interpreted as limits on the electron

cµνe coefficients. More generally, the results of such tests can only depend upon (and

thus provide bounds for) the value of 2cµνe − k̃µν .
Experimental tests of Lorentz and CPT symmetry are not usually confined to one-

flavor QED; other particle species are often involved. In such situations, the above

analysis is readily generalized. Because we may only measure differences between k̃µ

and the species specific cµν coefficients, we may choose one particle species to serve

as the reference “ruler”, and thus work in a coordinate system in which that species’

cµν coefficient (or k̃µν , if the reference is light) is zero.

In this context, we may now estimate the value S provided by terrestrial experi-

ments for the interaction of light with electrons. Specifically, we will use the results

of a Cs-fountain clock experiment [72], and those of a series of tests involving optical

resonators [7]. These tests are sensitive to Lorentz violation in conventional matter,

which is made up of protons, neutrons, and electrons, interacting electromagnetically.
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In this four-species system, there can exist only three independent combinations of

cµνp , cµνn , cµνe and k̃µν , where the subscripts p, n, and e respectively denote the coeffi-

cients belonging to protons, neutrons, and electrons. We define our coordinates such

that the protons’ cµνp vanish.

Although the Cs-fountain test [72] involves protons, neutrons, electrons, and elec-

tromagnetism, the particular transitions under consideration are insensitive at leading

order to the neutron SME coefficients [68]. To eliminate the strong magnetic-field de-

pendence present in each of the observed transition frequencies, the analysis of [72]

uses a specific observable constructed from three frequencies so as to be insensitive to

the electron’s SME coefficients. As a result, the Cs-fountain of [72] is only sensitive to

the value of 2cµνp − k̃µν . The result is a constraint upon the eight spatially anisotropic

components of this term at the level of

|2cµνp − k̃µν | < 10−21 . . . 10−25 . (A.96)

We note that Ref. [72] chooses to state these limits in coordinates such that k̃µν = 0,

which corresponds to using light as a reference. In our coordinates, the Cs-fountain

experiment provides the constraint |k̃µν | < 10−21 . . . 10−25 for the anisotropic compo-

nents of k̃µν .

Next, we consider optical resonator experiments [7], which as mentioned in Sec.3.2,

measure the resonance frequencies f of light propagating in vacuum inside two differ-

ently oriented Fabry-Pérot cavities. As previously shown [21,27,28], these experiments

are sensitive to spatial anisotropies in the speed of light (k̃µν) and to variations in

the dimensions of the resonators themselves. As before, all four of the above particle

species are involved in this experiment. The cavity size, however, is primarily deter-

mined by the electromagnetic interactions in the chemical bonds. It therefore follows

that the neutron’s contribution to the cavity size must be suppressed because it is

uncharged, having only a magnetic moment. Moreover, the cavities are made of fused

silica SiO2, and the common isotopes of Oxygen and Silicon have even numbers of

neutrons and spin zero. Pairing effects would therefore tend to further suppress the

influence of the neutron spin, and so we conclude that the cavity frequencies should

be largely unaffected by cµνn . This leaves two independent combinations of parame-
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ters capable of influencing the observable F constructed from the cavity frequencies

f . This observable is given by, to leading order

F = const. + Aµν(2c
µν
e − k̃µν) +Bµν(2c

µν
p − k̃µν) , (A.97)

where Aµν and Bµν are constants, and cµνp = 0 in our chosen coordinates. This

decomposition has been explicitly derived for resonators made of different materi-

als, including fused silica [21, 33, 61], permitting independent constraints upon the

anisotropic components of cµνe and k̃µν to be obtained by combining the results of two

different optical resonator experiments [33]. Based on this comparison, the parity-

even anisotropic components of k̃µν and cµνe are independently constrained at the level

of 10−16 [33]. More recent improvements upon the fused silica resonator experiment,

combined with the result [61] that Aµν and Bµν are of similar size, provides limits on

the parity-odd components of 2cµνe − 2k̃µν at the level of 10−13 [7].

Taken together, the data in Refs. [11,57–62] establishes that S ∼ 10−13, dominated

by the contribution of the parity-odd κ̃o+ and c0J
e coefficients. Because the limit

we will derive on κ̃tr lies above this scale, we may drop all other Lorentz-violating

corrections from our analysis, as claimed in the text.

Because our analysis deals only with the interaction of photons with electrons, we

are free to express our analysis in coordinates in which cµνe = 0, and do so in the main

text. This leaves only the κ̃tr component of (kF )µνρσ, and so equation (A.95) implies

that a model with

cµνe = −1

4
κ̃tr diag(3, 1, 1, 1) (A.98)

will exhibit the same phenomenology. This is done with the understanding that our

constraint on κ̃tr based on the (3.43) and (3.44) effects is really a constraint upon

κ̃tr− 4
3
c00
e . An exception to this convention can be found in the calculation presented

in Appendix A.5, which is more easily performed using the cµνe model.

A.5 Photon-decay rate

Photon decay rates in the presence of Lorentz violation have already been deter-

mined [219]. However, this result is not directly applicable in the present context
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because it refers to the dimension-three Chern–Simons type SME coefficient (kAF )µ.

Moreover, it considers photon triple splitting instead of pair creation. In this ap-

pendix, we derive the tree-level photon decay rate into a fermion–antifermion pair in

the presence of the dimension-four κ̃tr coefficient appropriate for our purposes.

Our starting point is a model with Lorentz-violating photons and conventional

charged leptons. However, in the present situation it is more convenient to consider

a physically equivalent model constructed with the coordinate redefinition discussed

in part 2.5. In particular, we remove all Lorentz violation from the photon sector at

the cost of introducing a Lorentz-breaking cµν coefficient in the lepton sector:

L′ = 1

2
iψ (γµ + cµνγν)

↔
Dµ ψ −mψψ − 1

4
F 2 , (A.99)

where Dµ = ∂µ + ieAµ is the usual covariant derivative. The Lorentz-violating SME

coefficient cµν is given explicitly by equation (A.98). We have chosen to calculate the

effects of κ̃tr using this alternative representation for two reasons. First, perturbative

calculations in quantum field theory rely on the quantization of the free-field sectors

of the model. Such quantization has not yet been fully addressed, whereas the quan-

tization of SME fermions is comparatively well understood [4, 5, 26]. Second, this

choice of coordinates permits us to employ the methodology and notation of previous

tree-level calculations involving cµν fermions [52].

Due to the presence of κ̃tr, the lepton sector of the model (A.99) contains uncon-

ventional time derivatives. It follows that the time evolution of ψ can be non-unitary,

so its asymptotic states cannot directly be identified with physical free-particle states.

A standard approach to avoid this potential interpretational difficulty is a redefinition

of the spinor field chosen to eliminate the additional time derivatives [52,220]. In the

present situation, the field redefinition just amounts to a rescaling

ψ ≡ 1√
1− 3

4
κ̃tr

χ , (A.100)

so it is not strictly mandatory. We nevertheless implement the redefinition (A.100)

both for generality and compatibility to previous [52] and future studies.
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With these considerations, the Lagrangian (A.99) becomes

L =
1

2
iχ η̃µνγν

↔
Dµ χ− m̃χχ− 1

4
F 2 , (A.101)

where we have defined

m̃ ≡ m

1− 3
4
κ̃tr

,

η̃µν ≡ diag(1,−λ,−λ,−λ),

λ ≡ 1 + 1
4
κ̃tr

1− 3
4
κ̃tr

.

(A.102)

We emphasize that the field redefinition (A.100) is a canonical transformation, and as

such it leaves unchanged the physics. In particular, the free fermions in model (A.99)

possess the same dispersion relation as those in (A.101).

We remark that equation (A.100) fails to be manifestly Lorentz coordinate covari-

ant, so the specific form of Lagrangian (A.101) holds only in the frame in which the

field redefinition has been performed. Here, we specify this to be the Sun-centered

celestial equatorial frame (SCCEF). Since κ̃tr is isotropic, and the fractional contribu-

tion from all other SCCEF κ̃’s in the Earth’s inertial frame is suppressed by at least

four orders of magnitude, (A.101) is also the leading order Lagrangian in the frame

of any Earth-based laboratory. Note also that η̃µν , and thus the Lagrangians (A.99)

and (A.101), are singular for κ̃tr = −4 and κ̃tr = 4
3
as λ becomes zero or infinite

in these limits. On the other hand, the dispersion relation (3.46) establishes that at

κ̃tr = 1 the model becomes singular. This apparent paradox arises because the coor-

dinate rescaling required to generate Lagrangian (A.99) from the original κ̃tr model

has been implemented only at leading order in κ̃tr.

The Feynman rules can now be inferred from Lagrangian (A.99). The appropriate

tree-level Feynman diagram for photon decay is depicted in Figure A.1. For the

corresponding matrix element, we obtain

iMrs = −ie εµ(p) η̃µν u(r)(q) γν v
(s)(k) , (A.103)

where the various polarization and momentum assignments are defined in Figure A.1.

The next step is the calculation of |Mrs|2 followed by the usual summation over final
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Figure A.1: Tree-level Feynman diagram for photon decay. Lorentz-violating
effects are contained in the modified dispersion relation for qα and kα as well
as in the electromagnetic vertex containing η̃µν .

spin states and averaging over the initial photon polarizations. We obtain

|M|2 ≡ 1

2

∑
ε

∑
r,s

|Mrs|2 = e2
[
4m̃2 + 2λ2(1− λ2)(~q 2 + ~k2) + (1− λ2)2E2

γ

]
,

(A.104)

where Eγ = |~p| is the photon energy and ~q and ~k are the lepton and anti-lepton 3-

momenta, respectively. To arrive at this result, energy–momentum conservation, the

usual relation for photon-polarization sums, and trace identities for Dirac matrices

have been used. Moreover, we have employed the results for SME spinor projectors

in [52] with the normalization chosen such that N(~q) = 2Eq = 2
√
m̃2 + λ2~q 2, etc.

The final step is the phase-space integration. In the conventional Lorentz-symmetric

case, the decay rate for massive particles is defined in the particle’s rest frame with

a kinematic factor inversely proportional to its mass. This fact seems to interfere

with a trivial extension to the present massless case. We therefore adopt the con-

vention of [128] and define the decay rate in terms of the photon energy Eγ in the

Sun-centered celestial equatorial frame:

Γpair =
1

4π2

1

2Eγ

∫
d3q

2Eq

d3k

2Ek
|M|2 δ(4)(p− q − k) . (A.105)
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This yields

Γpair = α
[κ̃tr(κ̃tr − 4)E2

γ + 4m2]
√
κ̃tr(κ̃tr − 4)E2

γ − 8m2

3
8
E2
γ(4 + κ̃tr)(4− 3κ̃tr)

√
κ̃tr(κ̃tr − 4)

(A.106)

for the exact tree-level decay rate within the context of Lagrangian (A.101). It should

be understood that equation (A.106) applies only for −4 < κ̃tr < 0 and for photons

above threshold. We note that undoing our initial coordinate redefinition would

generate sub-leading corrections to (A.106).
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Appendices to Chapter 4

B.1 (kF ) Identities

Since kF has the symmetries of the Riemann tensor, we know that

(kF )κλµν = (kF )µνκλ = −(kF )λκµν = −(kF )κλνµ (B.1)

and

(kF )κλµν + (kF )κνλµ + (kF )κµνλ = 0. (B.2)

This means that given a set of four 4-vectors

v = (v0, ~v) (B.3)

x = (x0, ~x) (B.4)

y = (y0, ~y) (B.5)

z = (z0, ~z), (B.6)

177
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then the product (summed over repeated indexes) (kF )κλµνw
κxλyµzν can be written

as

(kF )κλµνw
κxλyµzν = (kF )0λµνw

0xλyµzν + (kF )jλµνw
jxλyµzν

= (kF )0λ0νw
0xλy0zν + (kF )0λjνw

0xλyjzν

+(kF )jλ0νw
jxλy0zν + (kF )jλkνw

jxλykzν

= (kF )0j0kw
0xjy0zk + (kF )0kjνw

0xkyjzν

+(kF )jλ0kw
jxλy0zk + (kF )jλkνw

jxλykzν

= (kF )0j0kw
0xjy0zk + (kF )jλkνw

jxλykzν

+(kF )0kj0w
0xkyjz0 + (kF )0kjlw

0xkyjzl

+(kF )j00kw
jx0y0zk + (kF )jl0kw

jxly0zk

= (kF )0j0kw
0xjy0zk + (kF )j0k0w

jx0ykz0 + (kF )jlk0w
jxlykz0

+(kF )j0klw
jx0ykzl + (kF )jlkmw

jxlykzm + (kF )0kj0w
0xkyjz0

+(kF )0kjlw
0xkyjzl + (kF )j00kw

jx0y0zk + (kF )jl0kw
jxly0zk

= (kF )0j0kw
0xjy0zk + (kF )0j0kw

jx0ykz0 − (kF )jl0kw
jxlykz0

+(kF )j0klw
jx0ykzl + (kF )jlkmw

jxlykzm − (kF )0j0kw
0xkyjz0

+(kF )jl0kw
0xkyjzl − (kF )0j0kw

jx0y0zk + (kF )jl0kw
jxly0zk

= (kF )0j0k

(
w0xjy0zk + wjx0ykz0 − w0xkyjz0 − wjx0y0zk

)
+(kF )jl0k

(
w0xkyjzl − wjxlykz0 + wjxly0zk

)
+(kF )j0klw

jx0ykzl + (kF )jlkmw
jxlykzm

= (kF )0j0k

(
w0xjy0zk + wjx0ykz0 − w0xkyjz0 − wjx0y0zk

)
+(kF )jl0k

(
w0xkyjzl − wjxlykz0 + wjxly0zk − wkx0yjzl

)
+(kF )jlkmw

jxlykzm
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In terms of κ̃e−, κ̃o+, and κ̃tr, this becomes

(kF )κλµνw
κxλyµzν =− 1

2

([
w0~x− ~wx0

] · (κ̃e− + Iκ̃tr) ·
[
y0~z − ~yz0

])
− 1

2

([
w0~x− ~wx0

] · κ̃o+ · [~y × ~z] +
[
y0~z − ~yz0

] · κ̃o+ · [~w × ~x]
)

− 1

2
([~w × ~x] · (κ̃e− + Iκ̃tr) · [~y × ~z]) .

(B.7)
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Appendices to Chapter 5

C.1 Exact Time Distribution

C.1.1 Probability of Beam Passage

The angular distribution relative to the surface normal of thermally emitted par-

ticles emitted from a locally smooth surface is commonly known to follow a cosine

distribution [221]. According to [222], the first to show the cosine law was [223], using

the 2nd law of thermodynamics as a foundation. The result follows from the assump-

tion that the gas and surface are in thermodynamic equilibrium with one another,

and so the angular distribution of particles emitted from the surface must precisely

complement the angular distribution of particle impinging upon it, lest there be any

net transfer of energy between the surface and the gas. Since one can show that

the angular distribution with which particles in gaseous thermal equilibrium impinge

upon a given point on a fixed surface is proportional to cos θ, the emitted parti-

cles must also follow the cosine distribution. Microscopic theories which yield the

cosine law have also appealed to reciprocity and detailed balance considerations, al-

though [224] provided a derivation of the cosine law which depends merely upon such

reciprocity without relying on detailed balance. Note that this ignores such processes

as atomic/molecular diffraction from the coated surface of the cell. It is commonly

accepted that in equilibrium, the overall distribution of scattered atoms/molecules

180
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must go as cos θ, although atoms belonging to a particular class of scattering process

may not. Cases in which the atomic/molecular vapor is not in thermal equilibrium

with the cell walls also yield different results. For example, it has been demonstrated

by [225] that the parallel and normal velocity components of nonthermalized atoms

impinging on a surface will thermalize at different rates.

For our purposes, we shall assume that the system is in equilibrium, no diffraction

takes place, and that at the cell walls, all atoms are adsorbed and subsequently re-

emitted according to a cos θ distribution. This guarantees that the atomic velocities

are Maxwell distributed at all points inside the cell, and precludes any net flow of

the gas due to the cell walls. We may effectively treat the cell wall as if it were a

completely permeable interface between the cell interior and a larger gas reservoir.

If we count only those atoms which cross into the cell-region from this imaginary

reservoir, we would find a total flux ΦR, proportional only to the surface area of

the cell, equal to the flux desorbed from the actual cell walls. Similarly, for the

beam interaction region, we can define a flux Φr, of atoms entering the region ρ < r,

proportional to its surface area. Because there is no correlation between an atom’s

position and its velocity, and since an atom which contributes to the flux Φr must

necessarily have contributed to the flux ΦR, the conditional probability that an atom

contributes to Φr given its contribution to ΦR is simply the ratio of the fluxes, and

thus the ratio of the surface area of the interaction region to that of the enclosing

vessel. Thus, for the case of an infinite cylindrical cell, the probability that an atom

which is desorbed from the coating will pass through the interaction region is r/R.

To properly determine the properties of the ultra-narrow EIT resonance in an anti-

relaxation coated cell, however, we need not only the probability of interacting with

the beam, but also the mean time of and between such interactions.

C.1.2 General Form of the Crossing Time Distribution

In general, there will exist a function which expresses the time necessary for a

particle to move from one boundary to another as a function of the initial particle

velocity v and some geometric parameters θ which define the particle’s trajectory in
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relation to the boundaries. This function will be given as

t(v, θ), (C.1)

whose solution for v is given by T (t, θ), and whose partial derivative with respect to

v is t′(v, θ). We now wish to find the probability density function (p.d.f.) for the time

spent crossing from one boundary to another. Given a thermal gas in equilibrium

at temperature T , the p.d.f. for each of the particle velocity components is a simple

Maxwellian. The distribution of the two-dimensional projection of those velocities is

given by

f(v) = 2πv

(
M

2πkT

)
e−v

2M/2kT , (C.2)

from which we may infer that the p.d.f. for the time t for a randomly selected crossing

is then

g(t, θ) = −2πT (t, θ)

(
M

2πkT

)
e−T (t,θ)2M/2kT 1

t′(T (t, θ), θ)
Θ(θ), (C.3)

with Θ(θ) accounting for the distribution of trajectories, and the minus sign results

from swapping the limits of integration (time goes to zero as velocity goes to infinity).

For free particles, the function t(v, θ) = (1/v)d(θ), and so t′(v, θ) = −(1/v2)d(θ),

and T (t, θ) = (1/t)d(θ). This decoupling of the free trajectory from the initial particle

velocity neglects the effects of external forces such as gravity, and should be valid for

small vapor cells. This has the result that

g(t, θ) = 2π

(
M

2πkT

)
d(θ)2

t3
e−d(θ)2M/2kT t2Θ(θ) (C.4)

It may easily be verified that integrating this p.d.f. over t from 0 to ∞, one obtains

Θ(θ). Integrating tg(t, θ) over the same region yields∫ ∞
0

dt tg(t, θ) =

√
π

2

M

kT
d(θ)Θ(θ) (C.5)

Which means that the mean time crossing the geometrical region is simply
√

π
2
M
kT

times the mean distance the particle must travel.
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C.1.3 Cylindrical Cell with Infinite Length

We need to know the p.d.f. for the time atoms spend crossing the beam and sitting

in the dark. We shall begin by seeking the p.d.f. for the time an atom spends traveling

between two points on a circle (which may represent the circular cross section of a

cylindrical or spherical cell). The distance an atom must cover depends as the cosine

of the angle (θ) the atom’s trajectory makes with the normal to the surface, thus for

a cell with a circular cross section of diameter D,

tcross =
D

v
cos θ, (C.6)

Thanks to equation (C.6), we may infer the probability distribution of the time the

atoms spend crossing the cell to be

g(t, θ) =
M

kT

(D cos θ)2

t3
e−

M(D cos θ)2

t22kT cos θ (C.7)

Where we have also set Θ(θ) ≡ cos θ, as must be the case for the angular distribution

of atoms desorbed from a smooth surface (see part C.1.1). We may express the above

p.d.f. in the more general form:

g(t, θ) =
32τ 2 cos3 θ

π3t3
e−

16τ2 cos2 θ
π3t2 (C.8)

Where τ = D
√

π3M
32kT

, so that τ is the mean of t, assuming θ may vary between 0

and π/2. Note that because g(t, θ) ∝ 1/t3, the variance of this distribution in t is

undefined. This is a common characteristic of systems dominated by particles in

free ballistic motion, exhibiting effusive rather than diffusive transport [226]. Despite

this complication, the mean of e−(α−i∆)t does exist, and has a formal definition (for

complex x): 〈
e−xt

〉
=

∫ π/2

−π/2
dθ

τ 2x2 cos3 θ

4
√
π

G3,0
0,3

(
τ 2x2 cos2 θ

2

∣∣∣∣
−1,− 1

2
,0

)

=
τ 2x2

4
G3,1

1,4

(
τ 2x2

2

∣∣∣∣−1

−1,− 1
2
,0,− 3

2

)
.

(C.9)

where Gm,n
p,q is the Meijer-G function. G3,1

1,4 can only be evaluated numerically, and

becomes progressively more difficult to compute for large absolute values of the ar-

gument τ 2(α − i∆)2/2. Examination of the function (C.9) in figure C.1 reveals a
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Figure C.1: Real (a) and imaginary (b) parts of the mean of 〈e−(α−i∆)t〉 over
the exact p.d.f. with mean τ = 1, as a function of ∆, in units of ∆/α.

Lorentzian structure, which suggests that we might approximate the marginal prob-

ability density function g(t) with an exponential. Figure C.2 depicts the mean of

〈e−(α−i∆)t〉 over the exponential p.d.f.

g(t) =

√
πe−
√

π
2
t
τ√

2τ
. (C.10)

The rescaling of τ for the exponential p.d.f. is carried out to ensure that the mean

of 〈e−(α−i∆)t〉 over the exponential has a width similar to that of the average over the

exact p.d.f. A similar rescaling is commonly used when approximating gaussians with

lorentzians in convolutions [227,228].

C.1.4 Endcap Corrections

Now we will consider how to account for the ends of the cylinder. For a cylinder

of radius R and length L, the probability that an atom will hit the end of the cylinder

rather than the side is simply the ratio of the surface areas of the end and the sides,

or
2πR2

2πRL
=
R

L
(C.11)

which is simply half of the the inverse aspect ratio. Having already calculated the

average time of flight for atoms which hit the cylinder walls, we may easily infer the
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Figure C.2: Real (a) and imaginary (b) parts of the mean of 〈e−(α−i∆)t〉 over
an exponential function with mean

√
π/2τ , τ = 1, as a function of ∆, in

units of ∆/α.

average time of flight for atoms which hit the endcaps. If the atom hits the endcap, it

must necessarily land at some distance R′ from the center of the endcap. The average

time of flight, for atoms starting from the side and landing on the endcap, is given by

1

2
(τw + τend,R′) =

1

2

R2 cos−1(r/R)− r√R2 − r2

〈vxy〉(R− r) +
1

2

R′2 cos−1(r/R′)− r√R′2 − r2

〈vxy〉(R′ − r)
(C.12)

Of course, atoms can hit the endcap at any radius R′ ∈ [0, R], so we must integrate

over the various possibilities, to obtain

τend =

∫ R

r

R′dR′

π(R2 − r2)

R′2 cos−1(r/R′)− r√R′2 − r2

〈vxy〉(R′ − r) (C.13)

which can be evaluated numerically. By symmetry, this also equals the average time

of crossing for an atom which leaves the endcap and hits the side of the cylinder. So

the overall average time atoms which miss the beam take to cross the cell is given by(
1− R

L

)2

τw +

(
1− R

L

)
R

L
(τw + τend) +

(
R

L

)2

τend =

(
1− R

L

)
τw +

R

L
τend (C.14)

The ends of the cylinder may also affect the average amount of time atoms spend

interacting with the beam. Assuming that atoms do not interact with the beam while

adsorbed on the cell coating, and since the average time atoms spend in the beam is
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a linear function of the beam radius r, we have

τend =
〈tb〉
r

∫ r

0

r′dr′

πr2
r′ =

〈tb〉
3π

(C.15)

and so the average time the atoms interact with the field is given by

〈tb〉
(

1− (3π − 1)r

3πL

)
(C.16)

Thus the net effect of the ends of the cylinder is to decrease the average amount of

time the atoms spend in the dark, and interact with the beam. Because the beam

diameter is generally smaller than the diameter of the cell (i.e. , the beam has a high

aspect ratio), this reduction is most significant for estimating the amount of time

atoms spend in the dark.

C.1.5 Limitations

This approximation is best for systems with beam diameter much smaller than

that of the cell (d/D � 1). The exponential p.d.f. is sharply peaked at t = 0, and

so it tends to overestimate the fraction of atoms which cross the beam in a very

short time. A result of this is that the approximate model predicts that atoms can

survive more beam interactions before being appreciably optically pumped than they

do in the exact model, and so tends to predict smaller ultra-narrow EIT bandwidths.

For very small beams, when the mean crossing time τ is sufficiently small compared

to the optical pumping rate, this overestimate has a relatively small effect, and so

our model’s predictions achieve better agreement with experiment, as illustrated by

Figure 5.9.
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