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Abstract

We report on improved operation and understanding of the 3He and 129Xe Zeeman maser

and its use in testing new theories in fundamental physics. The 3He and 129Xe Zeeman

maser can make differential measurements of magnetic field versus new spin dependent

forces that couple to the neutron, as 3He and 129Xe have nuclear gyromagnetic ratios that

differ by a factor of ∼2.75, but whose spin-1/2 nuclear moments are due almost entirely to

unpaired neutrons. Specifically, we evaluate the performance of the 3He and 129Xe maser

in terms of searches for Lorentz and CPT symmetry breaking background fields to the

universe described by the Standard Model Extension of Kostelecký and coworkers [1] and

for placing limits on anomalous spin-spin coupling between neutrons such as those due to

spin dependent forces mediated by the proposed axion particle [2]. The 3He and 129Xe

maser has previously been used to place a limit on the coupling of the neutron to Lorentz

and CPT symmetry violating fields at the level of 10 -31 GeV (50 nHz in the 3He Zeeman

frequency). Improvements we have made to the maser system have increased our sensitivity

by almost a factor of four and we believe reasonable future upgrades could lead to a further

order of magnitude improvement. In this work we have also measured the nuclear Zeeman

frequencies of a 3He and 129Xe maser while modulating the nuclear spin polarization of

a nearby 3He ensemble in a separate glass cell. We place limits on the coupling strength

of neutron spin-spin interactions mediated by light pseudoscalar particles like the axion

(gpgp/(4π~c)) at the 3× 10−7 level for interaction ranges longer than about 40 cm.
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Chapter 1

Introduction to the 3He and 129Xe

Zeeman Maser

Precision atomic measurements have frequently been used to test fundamental physics and

search for potential modifications to our current understanding of the universe. In this work,

we describe an experimental search for new forces that couple to the spin of the neutron

generated either by the spins of other neutrons or background fields to the universe. We

detect the presence of such new fundamental physics by measuring the differential nuclear

Zeeman splittings or Larmor frequencies of co-located 3He and 129Xe noble gases held in

a glass cell. These monatomic noble gases have spin-1/2 nuclei whose gyromagnetic ratios

are different by a factor of ∼ 2.75, but whose nuclear magnetic moments are largely due

to unpaired neutrons. Since the new physics we are searching for couples with the same

strength to all neutrons we are able to separate the effects of magnetic fields from new spin

dependent forces with our 3He and 129Xe comagnetometer, which is operated as a Zeeman

maser for each species.

Like many atomic measurements, our experiments involve a three step process where

we (i) prepare the system in a particular (useful) state; then (ii) remove the preparation

interaction as its strong coupling, necessary to manipulate the populations of the states,

results in an undesirable shifting in the energy separation of those states; and finally (iii)

1
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measure the atomic system with a minimum of perturbations to search for the possible new

physics of interest. Our state preparation consists of polarizing the 3He and 129Xe nuclear

spins in their higher-energy Zeeman states via collisional hyperfine interactions with Rb

vapor whose valence electron spins have been polarized by optical pumping with a resonant

laser. This population inversion for the 3He and 129Xe spins takes place in one bulb of our

double-bulb glass cell, referred to as the pump bulb, which is typically kept at a constant

120 ◦C to generate an appreciable Rb vapor pressure. The polarized noble gases then diffuse

down a narrow tube into a much cooler bulb at 50 ◦C, and hence a negligible Rb vapor

pressure, where the nuclear spins inductively couple to a doubly resonant circuit tuned

to both the 3He and 129Xe Larmor frequencies. With a sufficient flux of polarized nuclei

into the second bulb, referred to as the maser bulb, the feedback from the resonant circuit

creates active Zeeman masers from both noble gases (simple and more complex schematics

of the experiment are shown in Fig. 1.1 and Fig. 3.1). The advantages of running the

system as a maser is that it operates in steady state, there are no large transient changes,

and we can continuously monitor the Larmor frequencies. On the other hand, the feedback

from the resonant circuit, necessary for masing, is clearly not a small perturbation; and

hence the circuit requires very careful stabilization to avoid fluctuations in its resonant

frequencies and thus the maser signals. Similarly, the nuclear Larmor frequencies must stay

matched to the circuit resonances, so we provide a stable, homogeneous magnetic field by

placing our double bulb cell inside a solenoid located within three nested layers of magnetic

shielding; and stabilize the magnetic field generated by the solenoid with feedback generated

by comparing the Larmor frequency of one maser to a frequency standard (typically a H

maser) that is unaffected by the new physics we are probing.

The 3He and 129Xe maser frequencies, ωHe and ωXe, including the Larmor frequency

and shifts generated by new spin dependent forces, ωSF , are given by,

ωHe = γHeB0 + αHeωSF (1.1)

ωXe = γXeB0 + αXeωSF (1.2)
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Figure 1.1: Schematic (not to scale) showing spin-exchange optical pumping of 3He and
129Xe in the pump bulb and active masing with feedback in the maser bulb.

where B0 is the magnetic field of the solenoid, γHeand γXe are the gyromagnetic ratios, and

αXe = 0.75 [3] and αHe = 0.87 [4] are the fraction of the nuclear spin due to the neutron.

We can extract the new physics shift by eliminating the common mode magnetic field giving

us the comagnetometry signal,

ωHe −
γHe
γXe

ωXe =

(
αHe − αXe

γHe
γXe

)
ωSF ≈ −1.2ωSF . (1.3)

It is very difficult to measure gyromagnetic ratios accurately and our maser system has a

myriad of other mundane frequency shifts besides ωSF , so in order for a new spin dependent

force to be detectable by our 3He and 129Xe masers we have to be able to modulate the

strength of the force’s interaction in some manner. For detecting background fields to the

universe, such as the Lorentz and CPT symmetry violating fields posited by Kostelecký
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and coworkers in their Standard Model Extension [1], we orient our solenoid field and

nuclear spins along the east-west direction parallel to the Earth’s surface and wait for the

Earth to rotate through the presumably homogeneous background field. This generates a

modulation in the comagnetometry signal with the period of the sidereal day due to the

changing orientation of the spins with respect to the background field and requires careful

engineering of the experiment to stabilize all the mundane shifts of the masers over that

timescale. In order to detect new forces between neutron spins, such as the new forces

mediated by the postulated axion particle [2], we need both our 3He and 129Xe detector

and a neutron spin source to apply the force. For our spin source we use a much larger

cell filled with a high pressure of 3He gas and operated at high temperature to generate a

dense Rb vapor for more rapid polarization of the 3He which ultimately leads to ∼2× 1021

polarized neutron spins located 40 cm from the maser bulb. We modulate the orientation

of the spin source spins using adiabatic fast passage techniques from NMR and apply the

modulation with a frequency that gives us the maximum sensitivity from the 3He and 129Xe

masers.

To give a sense of scale of the experiment, the pump and maser bulbs each have volumes

of order 5 cm3 and are separated by ∼ 3 cm. The cell typically contains of order 50 Torr

of 129Xe and 1000 Torr of 3He and the vapor pressure of Rb is more than two order of

magnitude lower in the maser bulb than the pump bulb. The solenoid provides a 6 G

magnetic field giving maser frequencies of 7.1 kHz for 129Xe and 19.6 kHz for 3He. The

solenoid is about 1 m long and 20 cm in diameter surrounded by three layers of shields

whose outer dimensions are 1.5 m in length and 40 cm in diameter. When freely precessing

in the maser bulb, without feedback from the resonant circuit, the noble gas nuclear spins

have coherence times on the order of 100 s to a few 100 s which corresponds to line-widths

of 3 to 1 mHz. Once the masers have achieved steady state operation they deliver an

output power to the resonant circuit of order 1 fW, which is limited by thermal Johnson

noise in the circuit, leading to a signal-to-noise ratio (SNR) of ∼ 500 /
√

Hz. Our ability

to detect changes in the maser frequencies is the same as for measuring the center point



Chapter 1: Introduction to the 3He and 129Xe Zeeman Maser 5

of any spectral line profile, the width of the line divided by the SNR of the measurement,

which gives us a sensitivity of about 10 µHz/
√

Hz for the comagnetometry measurement.

However, this sensitivity scaling is only correct if the line shape has been resolved and

similarly, in the case of our continuous measurement, our sensitivity is worse for timescales

shorter than our non-masing line widths. For a measurement of one day in length, this level

of sensitivity corresponds to an uncertainty of ∼ 30 nHz/
√

day, which is a level we have

been able to reach for measurements of forces between spins, due to the ability to optimize

the frequency of the modulation of the interaction, but not for background fields as we

suffer from other frequency fluctuations when looking for modulations with the (very small)

sidereal day frequency. Additionally, for a measurement of new forces between neutron

spins, the size of the neutron spin source (∼2× 1021 neutron spins in our experiment) and

its proximity to the 3He and 129Xe maser (41 cm in our experiment) also determine the

limits that we can place on the existence of new forces.

With previous versions of our 3He and 129Xe masers we have limited coupling to back-

ground fields to the universe at the level of ∼50 nHz in the 3He maser frequency [5, 6]; and

with the improved version of the experiment described in this thesis we have more recently

limited coupling to other neutron spins to ∼6 nHz [7] using the spin source described above

(3 nHz corresponds to approximately 1 pG or 0.1 fT or 10 -32 GeV). However, very recent

measurements of these same effects by the Romalis group at Princeton employing a different

comagnetometer using 3He and the electron spin of K – which does not have nearly as narrow

line widths as our maser, but has spectacular SNR due to it optical detection method – have

set limits of ∼0.6 nHz [8] for coupling of neutrons to background fields and ∼0.02 nHz [9]

for coupling to other neutron spins over similar length scales. Additionally, the Heil group

at Mainz is developing a 3He and 129Xe comagnetometer that measures the free precession

of the nuclear spins with a SQUID [10]. This system has better SNR than our experiment

and line widths more than two orders of magnitude narrower than ours, which could lead to

even more sensitive measurements than the K-3He comagnetometer. With such dramatic

improvements by these alternative approaches, an important question this thesis addresses
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is whether we can further improve our experiment to the point that it becomes competitive

with the K-3He or the 3He and 129Xe free precession comagnetometers. To that end we

have developed a more complete theoretical model of our maser system than has previously

been presented. Our model agrees well with experimental measurements of our upgraded

3He and 129Xe maser; and leads us to conclude that our experimental approach is unlikely

to surpass those of the Romalis and Heil groups.

The body of this thesis is organized around increasing levels of specificity. In Ch. 2

we discuss the theory of the maser by breaking it down into the three distinct regions of

the double bulb cell, using our typical experimental parameters as examples; (i) the pump

bulb where there is optical pumping of the Rb and collisional interactions with the Rb and

noble gases; (ii) the transfer tube between the bulbs where polarization can be lost during

diffusion due to interactions with the walls and remnant Rb; and (iii) the maser bulb where

the noble gases couple to the resonant circuit. We then discuss solutions to the general

theory, both steady state solutions, which give us the threshold condition for achieving

masing and the power output of the maser, as well as transient solutions around the steady

state equilibrium, which determine our sensitivity limits for measuring the frequency due to

different input fluctuations. We also discuss extensions to the basic theory to include next

order effects that can lead to frequency shifts. We detail the physical mechanisms behind

the relaxation and decoherence of the noble gas polarizations and enumerate the various

frequency shifts that can affect the masers as well as their approximate values and the size of

their fluctuations due to fluctuating experimental parameters and how we could avoid these

fluctuations by modulating the experiment. Finally, we discuss the sensitivity of the maser

frequency with regards to additional noise source inputs and how the sensitivity scales with

experimental parameters, what aggressive, but realistic goals might be for improvement and

whether they are worth pursuing in light of the other competitive experiments. In Ch. 3

we discuss the details of our specific implementation of the maser, how we stabilize crucial

experimental parameters, and how we measure the parameters of our resonant circuit and

the rate constants that determine the maser behavior and validate our models. In Ch. 4
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we discuss using the maser to measure Lorentz symmetry and CPT violating background

fields to the universe as parameterized by Kostelecký and coworkers in their Standard

Model Extension; and the analysis tools we use to optimize the extraction of the relevant

parameters from the data. In Ch. 5 we discuss the limits we set on anomalous spin-spin

coupling due to new forces between neutron spins using the updated version of the 3He and

129Xe maser described in this thesis.



Chapter 2

Theory of the 3He and 129Xe

Zeeman Maser

The key characteristic of a maser is a continuous supply of atoms or molecules with a pop-

ulation inversion between two states whose energy difference corresponds to a frequency in

the microwave regime or lower. A population inversion means that there is a net popula-

tion in the excited state and this energy is used to amplify microwave (or lower frequency)

electromagnetic radiation that matches the energy difference of the two states via stim-

ulated emission, hence “microwave amplification by stimulated emission of radiation” or

maser. The radiation can either come from an external source or it can come from the

atoms themselves; and, with appropriate feedback, can lead to continuous generation of

resonant radiation, frequently referred to as an active maser. In our experiment the two

states are the Zeeman states of the spin-1/2 nuclei of the monatomic noble gases 3He and

129Xe. The population inversion is achieved via collisions of the noble gas atoms with Rb

atoms whose electrons have been spin-polarized by optical pumping with a resonant laser.

We generate an active maser by coupling the noble gas atoms to a resonant circuit, which

provides positive feedback to the atomic ensembles.

The 3He and 129Xe maser sensitivity to new physics is limited by our ability to measure

the frequency of the radiation the masers’ produce. It is also limited by our ability to keep

8
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that frequency stable against perturbations (other than the new physics) over the timescale

that the shift due to the new physics is expected to change, such as the Earth rotating

through a background field. The sensitivity of a maser frequency measurement is limited

by the maser’s signal to noise ratio, as determined by its output power compared to noise

sources, and the characteristic time that the atoms involved in the masing stay coherent

with each other. In this chapter we will develop simple analytic models to capture the

physics of the 3He and 129Xe maser (Sec. 2.1) and solve them to find steady state solutions

and transient fluctuations around those solutions (Sec. 2.2), which will show how noise

couples into each maser to distort its frequency. We will also list the effects that can lead

to loss of polarization and coherence of the masers (Sec. 2.3); as well as additional effects

that can perturb the maser frequency (Sec. 2.4); and their estimated size in our system.

Lastly, we will discuss the 3He and 129Xe maser sensitivity to new physics in light of other

noise sources; and what future directions would be most fruitful to improve its performance

(Sec. 2.5). All formulas in this chapter are in SI units, but frequently values will be given

in terms of units that make sense for the scale of the experiment, such as centimeters and

Gauss rather than meters and Tesla; conversion is obviously necessary before using the

formulas.

2.1 Double Bulb Maser

The 3He and 129Xe maser is designed to physically separate the mechanisms of noble gas

Zeeman population inversion and active masing from feedback using two glass bulbs con-

nected by a narrow tube. As shown in Fig. 1.1, population inversion occurs in the pump

bulb and masing occurs in the maser bulb after the spin polarized 3He and 129Xe gases

have diffused down the transfer tube. By physically separating the two bulbs we can hold

them at very different temperatures, ∼120 ◦C for the pump bulb and ∼50 ◦C for the maser

bulb, and hence the Rb vapor pressure is two orders of magnitude smaller in the maser

bulb than the pump bulb. While a relatively high Rb density is desirable for efficient noble
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Region Description Parameter Value Units

Pump bulb temperature TP 120 ◦C
volume VP 6 cm3

radius RP 0.8 cm
length LP 2.8 cm

Maser bulb temperature TM 50 ◦C
volume VM 4 cm3

radius RM 1 cm

Transfer tube length Lt 3 cm
radius Rt 0.17 cm
aperture area At 0.1 cm2

Table 2.1: Typical double bulb physical characteristics.

gas Zeeman population inversion, the same relatively strong interaction between the Rb

electron spin and noble gas nuclear (largely neutron) spin, which leads to noble gas polar-

ization, also generates a large frequency shift of the noble gas Zeeman frequency, limiting

maser frequency stability and our ability to search for new physics. This double bulb design

was used in the first 3He Zeeman maser for the same reason, avoiding difficult-to-stabilize

frequency shifts, although their method of polarization of the 3He was different than ours

[11].

A completely general theory for the 3He and 129Xe maser is not a practical goal. Hence,

we will be making many approximations (and if necessary determining the next order cor-

rections) for which we will need some approximate values for a typical maser experiment

in order to take appropriate limits. The typical radius of a bulb is 1 cm (the maser bulb is

a sphere and the pump bulb is a cylinder, but they have similar volumes) and the length

of the transfer tube is about 3 cm. The typical gas diffusion coefficient (within about a

factor of 2) is 0.5 cm2/s and hence the typical time to diffuse across a bulb is a second.

The noble gas nuclear spin polarization aligned with the main applied magnetic field (B0)

is referred to as the longitudinal polarization and the characteristic time scale over which it

is lost is called T1. The value for T1 due to collisions with the wall and other uncontrollable

interactions is tens of minutes to hours (many 100s to 10,000s of seconds), depending on the
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mechanism and noble gas species. The component of the noble gas nuclear spin polarization

precessing in the plane transverse to the main magnetic field is referred to as the transverse

polarization and the characteristic timescale for it to lose its coherence is called T2, which

is typically 100 to a few hundred seconds. Keeping these characteristic length and time

scales in mind, we move onto the details of the theory, which is organized into three parts,

one for each part of the maser: pump bulb, transfer tube, and maser bulb. In each section

we will also give specific numbers for a typical double bulb cell filled at room temperature

(∼ 23 ◦C) with 800 Torr of 3He, 40 Torr of 129Xe, and 150 Torr of N2; and then operated

with the pump bulb at a temperature of 120 ◦C and the maser bulb at 50 ◦C. See Tab. 2.1

for a listing of typical physical characteristics.

2.1.1 Pump Bulb - Spin Exchange Optical Pumping

In the pump bulb we are primarily concerned with the efficient generation of a population

inversion or polarization of the spin-1/2 nuclei of 3He and 129Xe. This is achieved via

spin exchange optical pumping (SEOP) with Rb (always assumed to have natural isotopic

abundance), which is a two step process for transferring the angular momentum of photons

from a laser to the noble gas nuclear spin. In the first step, circularly polarized laser light

resonant with the Rb D1 electronic transition (794.7 nm, 2S1/2 to 2P1/2) and propagating

along the same axis and the main magnetic field, B0 (see Fig. 1.1), optically pumps the

spin of the Rb valence electron. In the second step, during collisions between polarized

Rb atoms and unpolarized noble gas atoms, the nuclear spins of the noble gas atoms are

polarized via dipolar magnetic field interactions. A detailed review of the physics of these

processes can be found in [12] with further theoretical details in [13], but here we will just

give an overview.

The optical pumping of Rb is complicated in general due to its different hyperfine

manifolds, but it is simplified in most cases by pressure broadening of the transitions from

collisions with the noble gas atoms and N2 buffer gas to the point that the hyperfine levels are

completely mixed. The broadening of the Rb D1 line (Lorentzian FWHM) is approximately
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19 GHz/amagat for either 3He or 129Xe and 18 GHz/amagat for N2 (see [14]), so for typical

pressures in our cells the line width is > 20 GHz, which is significantly larger than the

∼7 GHz splitting of the hyperfine manifolds.1 We prevent spontaneous emission from the

excited 2P1/2 state of Rb – since the random polarization and direction of the photon would

work against optical pumping – by including enough N2 in the cell that the non-radiative

decay path to the 2S1/2 state via Rb-N2 collisions dominates over spontaneous emission.

Lastly, the hyperfine interaction means that we are not just polarizing the valence electron,

but also the Rb nuclear spin, which acts as a store of angular momentum. There is also

rapid collisional exchange of spin between Rb atoms that redistributes the spin between

the nucleus and electron. These effects are parameterized by the slowing down factor,

SF , for loss and gain rates of the electronic spin. SF depends on the Rb electronic spin

polarization, varying from SF = 5.44 to 10.8 for fully polarized to unpolarized Rb. With

these simplifications the optical pumping of the Rb can be described by a rate equation,

ṖRb =
γopt
SF

(1− PRb)−
Γsd
SF

PRb (2.1)

where γopt is the optical pumping rate, which depends on the spectral overlap of the laser

flux and the pressure broadened Rb D1 line; and Γsd is the spin destruction/loss rate due to

both spin exchange collisions with noble gases and the much larger cross section spin rotation

collisions that transfer the spin angular momentum to the rotational angular momentum

around the center of mass of the collision. There is also a gain term from spin exchange

with polarized noble gases, but it is very small and only relevant in regions away from the

optical pumping laser light.

Spin destruction collisional interactions are either binary collisions or three body col-

lisions that produce a weakly bound van der Waals molecule that breaks upon its next

binary collision. The theory for the van der Waals molecules is, in particular, rather com-

plicated: see [15] and [16] for extensive early work including measurements and [13] for

11 amagat is the density of an ideal gas of 1 atm at 0 ◦C, 2.69 × 1019 cm -3.
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a more recent formulation. Hence we will not delve into the details, but will give some

general comments on spin polarization loss rates with infrequent weak interactions in order

to gain insight into their scaling with gas density and temperature. In general, in the limit

that a state changing interaction is weak, such that ΩIτI � 1, where ΩI is the effective

Rabi frequency of the interaction, τI is the duration of the interaction, and all other state

evolution during τI is similarly small, the fraction of the state lost per interaction event is

1 − cos(ΩIτI) ≈ (ΩIτI)
2/2. Thus given a rate of interaction events of 1/TI we have a loss

rate of

ΓI ≈
1

TI

(ΩIτI)
2

2
. (2.2)

For binary collisions, the interaction time is the very short duration of the collision (order of

10 -12 s) τI = τc, which satisfies the small interaction and evolution requirements, but does

not scale with any system parameter; and the rate of interactions is the rate of collisions

with Rb, 1/TI = γc, which scales linearly with gas density. Thus the binary collision portion

of the spin destruction rate is proportional to the gas density:

Γsd,bc = ksd,XenXe + ksd,HenHe + ksd,N2nN2 + ksd,RbnRb (2.3)

where the n are the gas densities and ksd = 〈σsdv〉 are the velocity distribution averaged

spin destruction rate constants for binary collisions. The values for ksd are temperature

dependent due to changes in both velocity and cross section, so the values given in Tab. 2.2

are appropriate for our typical temperatures.

For spin destruction due to van der Waals molecules, we are only interested in Rb-

Xe pairs as these have been shown to have the greatest influence [15, 16]. The rate of

interactions of Rb-Xe van der Waals molecules is the molecular formation rate 1/TI ≈

γc,Xe(
∑

i aiγc,iτc) where the term in parentheses is the probability of having a third atom

collide during the Rb-Xe collision, the sum is over all gas species, and the ai represent each

species efficacy in taking away the extra energy/momentum to allow the molecule to form.

To break the van der Waals molecules we need to have a binary collision that is the reverse
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of the original three body collision; and since they are weakly bound compared to the kinetic

thermal energy (20 meV [17]) the inverse interaction time is roughly the same as the third

body collision rate 1/τI ≈
∑

i aiγc,i. Hence, we find the van der Waals molecule component

of the spin destruction rate to scale with the fractional composition of the gases, but not

with the overall pressure,

Γsd,vdW ∝
nXe∑
i aini

(2.4)

where if aXe = 1, then aN2 = 0.28 and aHe = 0.17 ([18] for aXe/aN2 and [19] for aN2/aHe)

and we ignore Rb due to its low relative density in our cells. However, for Rb we have

not strictly satisfied the requirement that all other state evolution is small over the course

of the interaction time, as the hyperfine splitting of the Rb ground states is several GHz,

so there is some suppression of the spin destruction effect for our (relatively large) typical

total cell pressures (see [20]). Fortunately, careful experimental measurements of the spin

destruction rate have been made for a gas composition that is close enough to ours that we

could scale the rate to our gas mixture. In [20] they measured the Rb spin destruction rate

for a mixture of 98% 4He / 1% N2 / 1% Xe, so the third body gas is dominated by He. Our

typical cell has a composition of 81% 3He / 15% N2 / 4% Xe, which is still dominated by

He, making Γsd,vdW ∝ nXe/nHe. Using the data in Fig. 3 from [20] for our total gas density

and multipling by the slowing down factor of 10.8 and the scaling factor of 4.8 to convert

to our gas mixture gives us Γsd,vdW ≈ 5.2× 103 s -1.

To determine the gas densities needed to calculate the spin destruction rate in Eq. 2.3,

we can use the ideal gas law along with the gas pressures the cell was filled with for 3He,

129Xe, and N2. For Rb density in m -3, we use Killian’s vapor pressure formula (see [21])

nRb =
109.55−4132/T

kBT
, (2.5)

where T is the temperature in Kelvin and kB is Boltzmann’s constant. [Note: there is

disagreement in the literature among experimental groups as to the accuracy of Killian’s

formula, with some groups finding good agreement with independent measurements, while
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Gas Species ksd (cm3/s) n (cm -3) Γsd,bc (s -1) Ref.

129Xe 9× 10 -15 1× 1018 9× 103 [20]
3He 1× 10 -18 2× 1019 2× 101 [22]
N2 8× 10 -18 4× 1018 3× 102 [23]
Rb 4× 10 -13 2× 1013 1× 101 [22]

Table 2.2: Rate constants for spin destruction of Rb when colliding with different atoms
in binary collisions. Approximate gas densities, for typical 3He and 129Xe maser operating
conditions in the pump bulb: 120 ◦C temperature; cell filled at room temperature with
800 Torr 3He, 40 Torr 129Xe, and 150 Torr N2. As can be seen, the spin destruction rate
is completely dominated by 129Xe. See the text for the van der Waals spin destruction
contribution from Rb-Xe pairs.

others have consistent disagreement by factors of 2 or 3, and some do not even have consis-

tency between different cells they have manufactured. We have not attempted to indepen-

dently measure the Rb density, so we use Killian’s formula here with the caveat that it may

be incorrect by as much as a factor of two.] We can now calculate typical gas densities for

our experiment as shown in Tab. 2.2, which reveals that 129Xe completely dominates the

binary collision spin destruction rate with the total rate,

Γsd = Γsd,bc + Γsd,vdW (2.6)

about 50% greater than the binary collision rate. Thus, from the steady state solution to

Eq. 2.1,

PRb =
γopt

γopt + Γsd
(2.7)

we can see that the resonant laser power necessary to highly polarize a given number of Rb

atoms is effectively determined by the Xe density in the cell.

In general γopt is a function of position in the pump bulb due to the depletion of the

laser as it propagates through the cell. There are also position dependent losses for Rb as

collisions with the wall depolarize the Rb. We also have to take into account the overlap of

the spectrum of the laser, which typically spans 500-1000 GHz for the arrays of free running

diodes we use, with the Rb D1 line. Taking these factors into account requires numerical
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simulation for accurate calculation of PRb, as described in [24] and our own implementation

in [25]. Under typical operating conditions we estimate the pump bulb Rb absorbs about

400 mW of the laser light and we achieve PRb ≈ 60− 70% with a transient optical pumping

time of SF /(γopt + Γsd) ≈ 0.2 ms, which is so short that PRb can always be considered to

be in steady state.

We now consider the second step of SEOP, the spin exchange collisions between Rb and

the noble gases. During each collision the magnetic dipole interaction potential between

the Rb electronic spin, S, and the noble gas nuclear spin, I, is given by,

V (R) = A(R)I · S +B(R)I · (3RR− 1) · S (2.8)

where R is the internuclear separation. The first interaction term is due to the delta

function component of the dipole field (referred to as the hyperfine, contact, or Fermi contact

interaction) and is typically the dominant term in spin exchange with the coefficient given

by,

A(R) =
8πgsµBµng

3I
|ψ(0)|2 (2.9)

where ψ(0) is the Rb valence electron wavefunction during the collision (hence the wave-

function depends on R) at the location of the noble gas nucleus. Similarly to the optical

pumping of Rb, we can write the noble gas polarization rate equation as,

Ṗng = γse,ng(PRb − Png)− ΓngPng (2.10)

where Png is the polarization of a particular noble gas, Γng is the polarization loss rate due

primarily to collisions with the walls, and γse,ng is the spin exchange rate which, like the

spin destruction rate and with the same scaling properties, consists of a binary collision

term and a van der Waals molecule term with the molecule term only being important for

129Xe. For 3He, spin exchange is given by γse,He = kse,HenRb where kse,He = 〈σsev〉 is the

velocity distribution averaged binary collision rate constant and for 129Xe we add a van der
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Gas Species kse (cm3/s) nRb (cm -3) γse (s -1) Ref.

129Xe 2.2× 10 -16 2× 1013 4× 10 -3 [28, 29]
3He 6.8× 10 -20 2× 1013 1× 10 -6 [22, 30]

Table 2.3: Rate constants for binary collision spin exchange of 3He and 129Xe with Rb. See
the text for the much larger van der Waals molecule spin exchange contribution for 129Xe.

Waals molecule term (see [18]),

γse,Xe = nRb

(
kse,Xe +

ζγM
nXe + aHenHe + aN2nN2

)
(2.11)

where aHe and aN2 are the same as in Eq. 2.4, ζ is a constant that depends on the polar-

ization of Rb and varies between ζ = 0.095 and ζ = 0.179 for fully and unpolarized Rb

respectively ([26] and [18]), and γM is a constant rate. In [18] they find γM = 2.9× 104 s -1

using the Killian formula for determining nRb, while in the more recent measurement in [26]

they find γM = 1.0 × 105 s -1 while measuring nRb with Faraday rotation, and hence find

nRb to be consistently a factor of 2 below the Killian formula. We do not have independent

measurements of nRb in our cell, so choose to use γM = 1.0× 105 s -1 with the assumption

that the more recent measurement has greater accuracy. Unfortunately, using Eq. 2.11 to

match spin exchange data in [27] (see Fig. 5.7 in that work), where they used a similar

gas mixture to ours, gives a rate per Rb density 6 times larger than they observed; how-

ever, it does agree fairly well with our data (see Sec. 3.7). The binary collision components

of spin exchange along with values for our typical cells are given in Tab. 2.3 and, unlike

the spin destruction terms, these have been experimentally shown to have no measurable

temperature dependence over our typical operating ranges. To calculate the van der Waals

component of spin exchange for 129Xe we use the gas density values for our typical cells in

Tab. 2.2 and assume our Rb is almost fully polarized, giving γse,vdW,Xe = 3.4 × 10 -2 s -1,

which indicates this process completely dominates over the binary collision term, giving a

total rate of γse,Xe = 3.8× 10 -2.
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Returning to the polarization of the noble gases, in steady state we have,

Png = PRb
γse,ng

γse,ng + Γng
(2.12)

where in order to maximize polarization we have to minimize Γng, which is dominated by

losses from collisions with the walls. Not surprisingly, 129Xe tends to interact with the

cell walls far more than 3He, so in order to reduce Γng for 129Xe we coat the surface of

the cell with a silane compound to reduce interactions with the wall. We also note from

these calculations that 129Xe polarizes >3× 104 times faster than 3He, so ideally we would

raise the cell temperature to increase nRb via Eq. 2.5 and possibly lower nXe to reduce

the laser power needed to polarize the Rb (although this is limited by the van der Waals

molecule spin destruction term). However, the silane coating tends to react with Rb at

higher temperatures and thus ultimately limits our ability to polarize 3He.

In addition to providing a source of polarization for the noble gas atoms, the polarized

Rb also generates a local magnetic field that shifts the Larmor frequency of the noble gas

atoms. The magnetic field experienced by the noble gases from the Rb magnetization is

very different for 3He and 129Xe since the average field they experience is dominated by the

strong hyperfine contact interactions during collisions, the same interactions that lead to

spin exchange. For a spherical volume of polarized Rb the shift on a noble gas atom is,

δωng = (kng − 1)γngBRb, BRb =
2µ0

3
MRb, MRb = γRb

~
2
nRbPRb, (2.13)

where kng is the enhancement factor over the expected shift from a bulk magnetization,

and has values kHe ≈ 5 and kXe ≈ 700 (see [31] and [32] respectively for details); and

γRb/(2π) ≈ 467 kHz/G for 85Rb, the dominant isotope. A fraction of the shift for 129Xe is

due to contact interactions that occur when 129Xe-Rb van der Waals molecules are formed,

but it is relatively small, ∼ 5% [32], so we will ignore it as we are interested in the gross

size of the effect. For the typical density and polarization values we have been using this

gives shifts of δωHe/(2π) ≈ 3 mHz and δωXe/(2π) ≈ 150 mHz. Given the extremely large
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shift for 129Xe and the very unstable nature of the Rb density with temperature it is clear

why we can only measure the noble gas Zeeman frequencies in the cooler maser bulb with

no optical pumping light.

To complete our discussion of spin exchange we consider what the Rb polarization will

be in the dark away from the laser light and what effect it will have on the noble gas

polarizations. Away from the laser light, both within and out of the pump bulb, non-zero

Rb polarization arises from diffusive transport of polarization from the pump bulb and spin

exchange collisions with polarized noble gases. Given the much stronger spin exchange and

spin rotation collisional interactions between Rb and 129Xe than with 3He we only need to

consider the 129Xe polarization as a spin exchange source of Rb polarization. In general the

steady state equation we need to solve is,

ṖRb = 0 = DRb∇2PRb −
Γsd
SF

PRb +
γse,Rb
SF

PXe (2.14)

where DRb is the Rb diffusion coefficient and γse,Rb = γse,XenXe/nRb and PXe are po-

sitionally dependent as well. The characteristic length scale over which 129Xe collisional

interactions start to dominate over diffusive transport is given by,

l =

√
SFDRb

Γsd
, (2.15)

where the length l is the 1/e length in the transition of PRb from the pump bulb down

the transfer tube to equilibrium exchange with Xe. For our typical gas density values,

DRb ≈ 0.6 cm2/s, Γsd ≈ 1.5× 104 s -1, and SF ≈ 11 (assuming PRb ≈ 0), giving l ≈ 0.02 cm

which is much smaller than the length or radius of the transfer tube or radius of the maser

or pump bulbs. Hence we can treat PRb as always being in equilibrium exchange with PXe

outside the laser light and unaffected by the walls, with the local Rb polarization given by,

PRb =
γse,Rb
Γsd

PXe. (2.16)
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Using the same typical values as above with γse,Rb ≈ 3.4× 103 s -1 and a typical high value

of PXe ≈ 0.5 we find PRb ≈ 0.12 outside the laser light, so Rb is relatively unpolarized

compared to 129Xe and acts as a pure polarization sink outside of the laser light with a

loss rate coefficient of γse,Xe proportional to nRb. At typical pump bulb temperatures and

outside the laser light, where Rb polarization is relatively small, the polarization loss rate

for 129Xe back to Rb is a nontrivial γse,Xe = 7 × 10 -2 s -1 (recall, ζ is larger when the Rb

polarization is low); but at the maser bulb temperature of ∼50 ◦C we have nRb = 1.3×1011

cm -3 from Eq. 2.5, so the loss rate is γse,Xe = 4.4 × 10 -4 s -1 which is ∼ 5 times smaller

than our current wall loss rate, so can be ignored in the maser bulb. We can now also

calculate the hyperfine contact shift in the maser bulb. In the maser bulb the typical value

of PXe < 0.01 gives PRb ≈ 2 × 10 -3 and hence a contact shift of δωXe ≈ 2 µHz, which is

much easier to stabilize than the 150 mHz contact shift in the pump bulb.

2.1.2 Transfer Tube - Diffusive Transport

The next step in developing the double bulb maser equations is to calculate the rate that

noble gas polarization leaves one bulb and arrives in the other bulb via diffusion in the

transfer tube. To calculate the diffusive transport between bulbs we start with the most

general form of the diffusion equation,

Ṁ = ∇ · (D∇M) (2.17)

where the diffusion coefficient, D, is a function of position, due to changes in temperature,

as is the magnetization, M, due to changes in the polarization and/or atomic density. In

an isothermal system, such as the pump and maser bulbs, both the diffusion coefficient and

the density are constant so we end up with a diffusion equation for the polarization,

Ṗ = D∇2P. (2.18)
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As discussed in the introduction to this section (Sec. 2.1), in the pump and maser bulbs the

characteristic diffusion time across the bulbs, a few seconds, is always much shorter than

the noble gas spin relaxation times T1 or T2, several hundred seconds or longer. Thus, if we

assume that the time constant associated with leaving the bulb via the transfer tube is long

too, we can treat the noble gas polarization in the bulbs as being roughly homogeneous.

To calculate the rate at which polarization for each species leaves the pump bulb to move

down the transfer tube we start with the polarization diffusion equation and then take the

volume average of both sides and apply Gauss’s law,

〈ṖP 〉V =
1

VP

∫
bulb

DP∇2PP d
3r =

DP

VP

∫
surface

∇PP · n d2r =
DPAt
VP

∂ΠP

∂y

∣∣∣
y=0

(2.19)

where 〈PP 〉V = PP is the volume average of the longitudinal polarization in the pump bulb;

VP is the volume of the pump bulb (since we have approximated it as homogeneous, the

average can be ignored); DP is the diffusion coefficient at the pump bulb temperature and

gas density; At is the cross sectional area of the transfer tube; and ΠP is the longitudinal

polarization in the transfer tube at the pump bulb end of the tube (as per the coordinates

in Fig. 2.1). We can also write an analogous equation for the maser bulb with appropriate

subscript changes (e.g., DM , VM , etc.) and a change in the overall sign.

The problem is now reduced to determining the steady-state polarization profile in

the transfer tube, but given the considerable change in temperature between the pump

and maser bulb (∼ 70 ◦C) we must use the most general form of the diffusion equation

(Eq. 2.17) and thus any realistic profile of the temperature between the bulbs will lead to a

very complex solution. However, since we are primarily interested in the rate of polarization

transfer into and out of the two bulbs, we see from Eq. 2.19 that we only need an accurate

polarization profile at the entrance and exits to the transfer tube and in these regions

the temperature is quite homogeneous. We will thus approximate the temperature in the

transfer tube as a step function with the step occurring roughly midway between the two

bulbs and the temperature and gas density on either side of the step the same as in the
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nearest bulb. Changes in the temperature of the bulbs would change the height of the step,

but would not change the position of the step. Continuity in the magnetization and the

magnetization flux, but not the polarization, would be required across the step. A cartoon

of this model is presented in Fig. 2.1.

The general equation for noble gas polarization in the transfer tube, Π, in one temper-

ature region is,

Π̇ = D∇2Π− γseΠ (2.20)

where the spin exchange loss is due to unpolarized Rb (assuming Rb polarization is imme-

diately lost to spin rotation collisions, see Sec. 2.1.1). We are only interested in the steady

state solutions, so we only have to solve,

0 = ∇2Π− k2Π (2.21)

where k =
√
γse/D. The boundary conditions at either end of the transfer tube are the

bulb polarizations since we assumed that they were roughly homogeneous,

ΠP (y = 0) = PP and ΠM (y = Lt) = Pz, (2.22)

where Lt is the length of the transfer tube and the other parameters are as labeled in

Fig. 2.1. At the boundary due to the step discontinuity in the temperature we require

continuity in the magnetization,

nPΠP (y = dt) = nMΠM (y = dt) (2.23)

where nP and nM are the gas densities for a specific noble gas species at the temperatures

of the pump and maser bulbs respectively, and continuity in the magnetization flux,

DPnP
dΠP

dy

∣∣∣
y=dt

= DMnM
dΠM

dy

∣∣∣
y=dt

. (2.24)
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Figure 2.1: Schematic representation of the temperature as a function of position between
the dual bulbs and the resulting longitudinal and transverse noble gas polarization distri-
butions in the maser. The solid lines on the graphs are a schematic of the real distributions
and the dashed lines are the step approximations used in the text.
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Equivalent expressions can be written for the transverse polarizations. The only surface

boundary condition remaining to be specified is the wall of the transfer tube, where there

is a small loss in polarization every time an atom collides with the wall. We can express

this loss in terms of the polarization flux going towards the wall, Jin, and away from the

wall, Jout,

Jin =
v̄

4
nΠ (2.25)

Jout = (1− α)
v̄

4
nΠ (2.26)

where α is the fractional loss in polarization per collision and v̄ =
√

8kT/(πm) is the mean

thermal velocity. We can relate this to diffusion via Fick’s Law,

J · n = Jin − Jout = α
v̄

4
nΠ = −D∇(nΠ) · n, (2.27)

so the boundary condition on the transfer tube wall is

D∇Π · n = −κΠ, where κ = α
v̄

4
. (2.28)

We are now left with the question of how to estimate a value for α or κ for each noble gas

species. If we consider the polarization, P , inside a sealed sphere where the characteristic

diffusion time across the bulb is short compared to the wall relaxation time (i.e., our usual

limit), then the full time dependent solution will be dominated by a spatially uniform

polarization with an exponential decay over time (characterized by T1), which we can link

to the boundary condition for the wall and hence κ. To see this we write the time dependent

equation for P in terms of both an exponential time constant and the diffusion equation
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Description Parameter 129Xe 3He Units

Measured lifetime T1 400 >6000 s
Wall loss (inferred) κ 1 <0.1 10 -3 cm/s

Table 2.4: Approximate longitudinal polarization loss parameters due to collisions with the
wall in a typical maser bulb.

and then apply Gauss’s Law to both sides,

Ṗ = − P
T1

= D∇2P (2.29)

−〈P 〉V
T1

=
1

V

∫
surface

D∇P · n d2r (2.30)

〈P 〉V
T1

=
3

R
κPsurface (2.31)

where R is the radius of the sphere and 〈P 〉V is the volume averaged polarization. In

the spatially homogeneous solution limit the volume average polarization is approximately

equal to the surface polarization, Psurface ≈ 〈P 〉V , so now we can directly relate κ to T1,

κ =
R

3T1
, (2.32)

or for a more general geometry,

κ =
VT
ATT1

(2.33)

where VT is the total volume and AT is the total surface area. From polarization lifetime

measurements of 129Xe in maser bulbs with average wall coatings (T1,Xe ≈ 400 sec, R = 1

cm) we estimate κXe ≈ 1 × 10 -3 cm/s in our system. In the case of 3He, the measured T1

is always at least an order of magnitude longer, so κHe < 1× 10 -4 cm/s, see Tab. 2.4.

Having laid out the boundary conditions and determined characteristic values for their

parameters so that we can make approximations, we can now move onto the general solution,

Π(r, y) =

∞∑
n=0

J0

(√
k2
n − k2 r

)(
Ane

kny +Bne
−kny

)
, (2.34)
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where J0 is a Bessel function of the first kind and kn is defined by the wall loss boundary

condition (Eq. 2.28),

D
√
k2
n − k2J1

(√
k2
n − k2 Rt

)
= κJ0

(√
k2
n − k2 Rt

)
, (2.35)

where Rt < 0.2 cm is the radius of the transfer tube. Since we anticipate the polarization

losses across the transfer tube radius to be very small we expand the boundary condition

and solve for the lowest order term that includes the wall losses,

k2
0 = k2 +

2κ

RtD
=

1

D

(
γse +

2κ

Rt

)
, (2.36)

which is justified as long as (k0Rt)
2 � 1 since J0 and J1 have no linear expansion terms.

Even for 129Xe in the presence of pump bulb level Rb densities we have (k0Rt)
2 < 1× 10 -2,

so our approximation for k0 is good and we do not need higher kn terms as the very uniform

radial profile from the k0 term matches well with the uniform polarization in the bulbs as

we discussed above. Thus we can eliminate the radial component from our solution,

Π(y) = Aek0y +Be−k0y (2.37)

and for 3He where k0Lt < 0.1 we can ignore the the losses due to the wall and solve the

linear equation,

Π(y) = A+By. (2.38)

Using either the equation for small transfer tube losses, Eq. 2.37, or for a lossless transfer

tube, Eq. 2.38, we can now calculate the gradients of the transfer tube polarization at

either end and determine loss and gain terms for the pump and maser bulb due to diffusive
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coupling,

ṖP =
DPAt
VP

∂ΠP

∂y

∣∣∣
y=0

= GPMPz −GPPPP (2.39)

Ṗz =
DMAt
VM

∂ΠM

∂y

∣∣∣
y=0

= GMPPP −GMMPz (2.40)

where Pz is the longitudinal polarization in the maser bulb. Due to the added complexity of

the lossy transfer tube equation we will just give the solution for the lossless transfer tube

equation, which is applicable for 3He, using the boundary conditions established earlier,

Eq. 2.22, Eq. 2.23, and Eq. 2.24. We will also make the simplification that the transition

from the pump bulb to maser bulb temperatures happens exactly in the middle of the

transfer tube, so that dt = Lt/2 (see Fig. 2.1), which gives,

ΠP (y) = PP +
DA

DP

(
nM
nP

Pz − PP
)
y

Lt
(2.41)

ΠM (y) =
DM −DP

DM +DP
Pz +

DA

DM

nP
nM

PP +
DA

DM

(
Pz −

nP
nM

PP

)
y

Lt
, (2.42)

where we have defined an “average” diffusion coefficient

DA =
2DMDP

DM +DP
. (2.43)

The rate coefficients for 3He polarization loss from the pump and maser bulbs are given by,

GPP =
DAAt
LtVP

and GMM =
DAAt
LtVM

(2.44)

and the gain rate coefficients are,

GPM =
nM
nP

DAAt
LtVP

and GMP =
nP
nM

DAAt
LtVM

. (2.45)

This satisfies the detailed balance requirement that for a lossless transfer tube the polariza-

tion current leaving the pump bulb must equal to the polarization current arriving in the
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maser bulb and vice versa,

VPnPGPPPP = nP
DAAt
Lt

PP = VMnMGMPPP (2.46)

VMnMGMMPz = nM
DAAt
Lt

Pz = VPnPGPMPz. (2.47)

In the case of 129Xe we need to use the equation for the lossy transfer tube, but we only

need to worry about spin exchange at pump bulb Rb densities as the Rb density is two

orders of magnitude lower at the maser bulb temperature (see the end of Sec. 2.1.1), so we

define two k0 parameters,

k2
0,P =

γse,Xe
DP

+
2κ

RtDP
(2.48)

k2
0,M =

2κ

RtDM
(2.49)

where γse,Xe is given by Eq. 2.11 with ζ ≈ 0.18 since the Rb is essentially unpolarized in the

transfer tube. While the full expressions for the rate coefficients for 129Xe are too cumber-

some to report here, although they are trivially derived using Eq. 2.37 and the boundary

conditions that follow, the fractional transmission of polarization down the transfer tube

(the ratio of magnetization flux at the entrance to the maser bulb to the flux at the pump

bulb), in the limit of small losses and Pz � PP due to masing, has a simple form,

J(y = Lt)

J(y = 0)
≈ 1−

k2
0,M +

(
1 + 2 DPDM

)
k2

0,P

8
L2
t . (2.50)

This expression is not valid for the typical values of our maser (due to the large γse,Xe

losses), but the exact calculation using steady state masing values gives a fractional 129Xe

polarization transmission of approximately 50%.

In order to utilize all the formulas we have just derived it is necessary to know how

the diffusion coefficients for 3He and 129Xe change with different gas mixtures and bulb

temperatures. For a mixture of gases the binary collision diffusion coefficient for gas i in
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Gas Species Ai,j Bi,j

He-He 1.62 1.71
He-N2 0.613 1.524
He-Xe 0.496 1.644
Xe-N2 0.106 1.789
Xe-Xe 0.048 1.9

Table 2.5: Binary diffusion coefficient parameters.

the mixture is given by,

1

Di
=
∑
j

1

Di,j
(2.51)

where Di,j is the diffusion coefficient for binary collisions between gas i and gas j (the

iteration over j includes gas i). Each of the Di,j diffusion coefficients can be parameterized

in terms of the partial pressure of the gas and the temperature using a simple extension of

the hard sphere model to allow for the temperature dependence of the cross section,

Di,j = Ai,j
p0

pj

(
T

T0

)Bi,j
(2.52)

where pj is the partial pressure of gas j, T is the temperature, p0 is one atmosphere, and

T0 = 273.15 K. The constants Ai,j and Bi,j are given in Tab. 2.5 for the gases used in

the cell (note that Ai,j = Aj,i and Bi,j = Bj,i). These constants were extracted from

the more sophisticated models presented in [33, 34] by only evaluating the models around

the temperature range at which we operate. Finally, we can easily determine the partial

pressure of a gas given the bulb temperatures using the ideal gas law and the pressure used

to fill the cell at room temperature,

p = pfill

VM
Tfill

+
VP
Tfill

VM
TM

+
VP
TP

(2.53)

where pfill is the partial pressure when the cell was filled, Tfill was the temperature when the

cell was filled and TP and TM are the temperatures of the pump and maser bulbs. Tab. 2.6
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Region Description Parameter 129Xe 3He Units

Pump bulb density nP 1.2 24 1018 cm -3

diffusion coefficient DP 0.31 1.4 cm2/s
gain time 1/GPM 790 140 s
loss time 1/GPP 450 170 s

Maser bulb density nM 1.5 29 1018 cm -3

diffusion coefficient DM 0.22 1.0 cm2/s
gain time 1/GMP 780 140 s
loss time 1/GMM 450 110 s

Table 2.6: Gas diffusion parameters for a typical cell filled at room temperature with
800/40/150 Torr of 3He/129Xe/N2 and bulb parameters given Tab. 2.1 and Tab. 2.4. Dif-
fusion gain and loss times for 129Xe are calculated using the lossy transfer tube equations
from the text.

summarizes the gas diffusion parameters for 3He and 129Xe in both the pump and maser

bulbs.

2.1.3 Maser Bulb - Maser Equations

In this section we derive the equations of motion for the 3He and 129Xe polarized nuclear

spins operating as a maser. We consider each noble gas species in isolation, operating as

a separate maser, and add the interactions between species in following sections, Sec. 2.2.2

and Sec. 2.2.3. Thus, in this section, when we refer to the maser, we are referring to either

the 3He or 129Xe masing ensembles.

In the maser bulb, feedback is applied to the noble gas population inversions to induce

active maser oscillation. This is done via inductive coupling of the noble gas magnetizations

to a coil that is part of a resonant circuit tuned to the Larmor precession frequencies of

the 3He and 129Xe nuclei. To determine the resulting equations of motion for the noble gas

polarization vectors in this coupled system we begin with the Hamiltonian for a spin-1/2

particle in a magnetic field,

H = −µ ·B = γ
~
2
σ · (BJ + BM ) (2.54)
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where BJ is the magnetic field generated by the currents in the pickup coil and the solenoid,

BM is the magnetic field from the bulk magnetization of the polarized gas, σ is the Pauli

spin matrices, and γ is the absolute value of the gyromagnetic ratio (both 3He and 129Xe

have negative gyromagnetic ratios). Once the maser is operating, the pickup coil generates

a field in the maser bulb along the y-axis oscillating at the maser frequency, yielding a

magnetic field from all current sources of,

BJ =


0

B1 cos(ωM t+ φ)

B0

 . (2.55)

Here B0 is the field from the solenoid, B1 is the field from the pickup coil, and ωM is the

maser frequency with an arbitrary phase φ. The values of the 3He and 129Xe gyromagnetic

ratios and typical maser frequencies with associated B0 values are given in Tab. 2.7. The

magnetic fields from the noble gas magnetization consists of a static term aligned on the

z-axis with B0 as well as a precessing magnetization that rotates in the x-y plane,

BM =


−BMx cos(ωM t+ ψ)

−BMy sin(ωM t+ ψ)

BMz

 (2.56)

where BMi is the field due to the ith component of the magnetization and ψ is an arbitrary

phase. The relative phases between the oscillating magnetic fields can be established from

Eq. 2.60 and Eq. 2.68, given below.

Assuming that the maser frequency is very close to the Larmor frequency we can simplify

the Hamiltonian in the usual way by making the rotating wave approximation (RWA) for

nearly resonant fields (errors due to this approximation will be dealt with in Sec. 2.4) and
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Description Parameter 129Xe 3He Units

Gyromagnetic ratio γ/(2π) 1177.673984(77) 3243.410200(91) Hz/G
Maser frequency ωM/(2π) 7107.300 19574.081 Hz
Solenoid magnetic field B0 6.03503184(39) 6.03503100(17) G

Table 2.7: Noble gas gyromagnetic ratios [35, 36], typical maser frequencies, and corre-
sponding approximate solenoid field.

transform into a frame rotating at ωM ,

H ≈ ~
2

 ω0 + ωz
(
−iΩRe

−iφ − ΩBe
−iψ) e−iωM t(

iΩRe
iφ − ΩBe

iψ
)
eiωM t −(ω0 + ωz)

 RWA (2.57)

HR =
~
2

 −∆ −iΩRe
−iφ − ΩBe

−iψ

iΩRe
iφ − ΩBe

iψ ∆

 Frame rotating at ωM (2.58)

where ω0 = γB0 is the Larmor frequency due to the solenoid, ωz = γBMz is the Larmor

frequency due to the static bulk magnetization,2 ΩR = γB1/2 is the Rabi frequency due to

the pickup coil, ΩB = γ(BMx+BMy)/2 is the Rabi frequency due to the bulk magnetization,3

and ∆ = ωM − (ω0 + ωz) is the detuning of the pickup coil magnetic field from the total

Larmor frequency. In the rotating frame we now have new stationary magnetic fields,

HR =
~
2
σ ·


−ΩR sin(φ)− ΩB cos(ψ)

ΩR cos(φ)− ΩB sin(ψ)

−∆

 =
~
2
σ ·Ω (2.59)

and from this Hamiltonian we can use Feynman’s maser analysis technique [37] to generate

2The effects of the static magnetization of the second noble gas species are considered in Sec. 2.2.2, 2.2.3,
and 2.4.

3The effect of the precessing magnetization of the other noble gas maser, which is far off resonance
compared to the self field we are discussing here, is considered in Sec. 2.4.
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an equation for the time evolution of the ensemble polarization,

Ṗ = Ω×P. (2.60)

To this polarization equation of motion we add terms for the phenomenological relaxation

of the coherence, T2, and polarization, T1, (their origin will be discussed in Sec. 2.3 and

their measurement in Sec. 3.7) as well as a source term, Pz,0, which we will shortly link

back to diffusion in from the transfer tube,

Ṗ =


−ΩR sin(φ)− ΩB cos(ψ)

ΩR cos(φ)− ΩB sin(ψ)

−∆

×P− Px + Py
T2

− Pz − Pz,0
T1

(2.61)

which yields the following system of equations,

Ṗx = (ΩR cos(φ)− ΩB sin(ψ))Pz + ∆Py −
Px
T2

(2.62a)

Ṗy = −∆Px + (ΩR sin(φ) + ΩB cos(ψ))Pz −
Py
T2

(2.62b)

Ṗz = −(ΩR cos(φ)− ΩB sin(ψ))Px − (ΩR sin(φ) + ΩB cos(ψ))Py −
Pz − Pz,0

T1
. (2.62c)

This set of equations can be simplified by converting into a more useful coordinate

system of transverse polarization amplitude, P⊥, and phase, ψ,

Px = P⊥ cos(ψ) Py = P⊥ sin(ψ) (2.63)

(note that the choice of phase in these definitions matches the phases in Eq. 2.56 where the

minus sign comes from the negative gyromagnetic ratio) with time derivatives,

Ṗ⊥ =
ṖxPx + ṖyPy

P⊥
ψ̇ =

ṖyPx − ṖxPy
P 2
⊥

(2.64)
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which gives,

Ṗ⊥ = ΩR cos(θ)Pz −
P⊥
T2

(2.65a)

ψ̇ = −∆ + (ΩR sin(θ) + ΩB)
Pz
P⊥

(2.65b)

Ṗz = −ΩR cos(θ)P⊥ −
Pz − Pz,0

T1
(2.65c)

where θ = φ − ψ. As one would expect, the absolute phases φ and ψ do not matter, only

their phase difference θ, and we have chosen the relative phases of the pickup coil field

in Eq. 2.55 and the polarization in Eq. 2.63 such that there is a maximum generation of

coherent masing, P⊥, when θ is zero. We also note that oscillating fields that are in phase

with the precessing transverse polarization lead to frequency shifts, as evidenced by ΩB;

and those in quadrature (π/2 phase shift) lead to transfer between the longitudinal and

transverse polarizations. Avoiding generation of fields in the undesirable frequency shift

phase quadrature will be a recurring theme.

The Rabi frequency ΩR is due to the field generated by the pickup coil, so in order

to determine ΩR we need to calculate coupling of the atoms to the coil and the size of

the feedback field on the atoms due to that coupling. We first return to the non-rotating

frame and introduce complex fields such that their real parts are the same as their original

definitions to preserve their relative phase relationship,

By = B1e
iωM teiφ (2.66)

Py = −iP⊥eiωM teiψ. (2.67)

The voltage generated in the pickup coil, Vpu, from the precessing noble gas magnetization

can be calculated by the reciprocity theorem [38],

Vpu = − ∂

∂t

∫
Bulb

ξ ·M d3r (2.68)
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where M is the magnetization of the noble gas and ξ is the magnetic field per unit current

generated by the coil given by,

M = µn = −γ ~
2
nP and Bcoil = ξI, (2.69)

where n is the gas density and I is the current flowing through the coil. The field from the

coil inside the maser bulb will not be uniformly aligned with the y-axis as assumed at the

beginning of this section in Eq. 2.55, nor will the dipole axis of the coil necessarily be exactly

aligned with the transfer tube, which we have been using to define the y-axis. However,

the field from the coil averaged over the maser bulb volume (weighted by the magnetization

as in Eq. 2.68) will point in one direction in the plane transverse to the orientation of B0

within the bulb and it is this direction that we define to be the y-axis. Thus we can simplify

Eq. 2.68 to,

Vpu = γ
~
2
nM

∫
Bulb

ξyṖy d
3r. (2.70)

In general Py and ξy are functions of position, but for long coherence times compared to the

characteristic diffusion time in the cell and small transfer tube aperture through which the

atoms can escape we can approximate Py as homogeneous over the volume of the maser bulb

(deviations from this approximation and their consequences will be discussed in Sec. 2.2.2)

and hence it can be taken out of the integral,

Vpu = γ
~
2
nM Ṗyξ0VM where ξ0 =

1

VM

∫
Bulb

ξy d
3r (2.71)

where ξ0 is the volume averaged coil field per unit current and VM is the volume of the

maser bulb. To find the current and hence field produced by the voltage generated in the

coil we use the effective impedance of the doubly resonant circuit near resonance,

Z = Reff + iωLeff −
i

ωCeff
= Reff

(
1 + iQc

(
ω

ωc
− ωc
ω

))
(2.72)

where ωc = 1/
√
LeffCeff is the resonant frequency and Qc = ωcLeff/Reff is the fractional
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FWHM of the resonance. We can remove the enigmatic Reff by making one final substitu-

tion,

Z =
ωcLpu
qc

(
1 + iQc

(
ω

ωc
− ωc
ω

))
=
Lpu
iω

Qc
qc

(
−ω2 + i

ωc
Qc
ω + ω2

c

)
(2.73)

where Lpu is the inductance of the pickup coil and qc = ωcLpu/Reff determines the strength

of the feedback. Note that Qc > qc as Leff > Lpu since there is more than one inductor in

the circuit. Since we have expressed Z in the Fourier domain, we convert Vpu in Eq. 2.71

to the Fourier domain and derive the equation for the feedback field generated by the coil,

By = ξ0I = ξ0
Vpu
Z

=
iωγ ~

2nMPyξ
2
0VM

Z
(2.74)(

−ω2 + i
ωc
Qc
ω + ω2

c

)
By = −ω2KPy (2.75)

and now convert back to the time domain,

B̈y +
ωc
Qc
Ḃy + ω2

cBy = KP̈y (2.76)

with the new definitions,

K = ηµ0
qc
Qc
γ
~
2
nM where η =

ξ2
0VM
Lpuµ0

(2.77)

where K is a coupling constant and η is the pickup coil filling factor,

η =
ξ2

0VM
Lpuµ0

=

1
2µ0

∫
BulbB

2
y d

3r
1
2LpuI

2
=

Field energy in bulb

Total field energy
. (2.78)

We have now reduced the properties of the pickup coil and resonant circuit and their

coupling to the noble gas transverse magnetization to three dimensionless constants Qc,

qc, and η and a resonant frequency ωc, whose typical values for our system are given in

Tab. 2.8. To simplify Eq. 2.76 we take advantage of the fact that all the rates in the maser

as described by Eq. 2.65, 1/T1, 1/T2, ∆, and ΩR, are much slower than the maser frequency

ωM , so we can approximate the time derivatives of By and Py by only expanding to lowest
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Description Parameter 129Xe 3He Units

Circuit resonance ωc/(2π) 7107 19562 Hz
Circuit quality factor Qc 76 58
Circuit feedback strength qc 38 25

Pickup coil field per current ξ0 440 G/A
Pickup coil inductance Lpu 92 mH
Pickup coil filling factor η 0.07

Table 2.8: Doubly resonant circuit and pickup coil parameters.

order in the phase and fractional amplitude fluctuations. This means we only need to

keep terms of order φ̇ and Ḃ1/B1 and we can drop terms that are suppressed by Qc ≈ 50.

Additionally, we do not have to keep any phase or amplitude derivative terms for Py as we

already have equations for Ṗ⊥ and ψ̇ and hence they would be second order here. Taking

these approximations into account we have,

[(
−ω2

M − 2ωM φ̇+ ω2
c

)
+ i

(
2ωM

Ḃ1

B1
+ ωM

ωc
Qc

)]
B1 = iω2

MKP⊥e
−iθ (2.79)

and equating real and imaginary parts gives,

Ḃ1 = − ωc
2Qc

B1 +K
ωM
2
P⊥ cos(θ) (2.80)

φ̇ =
1

2ωM
(ω2
c − ω2

M )−KωM
2

P⊥
B1

sin(θ) (2.81)

φ̇ ≈ ωc − ωM −K
ωM
2

P⊥
B1

sin(θ) (2.82)

where the final approximation assumes that |ωM − ωc|/ωc � 1, which is always the case in

our system.

Now that we have calculated the Rabi frequency ΩR we can move on to the Rabi

frequency generated by the ensemble magnetization, ΩB, and the ensemble magnetization

contribution to the Larmor frequency, ωz. To calculate the field felt by an individual

spin from an ensemble we use a formalism from the derivation of the Clausius-Mossotti or
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Lorentz-Lorenz relation (see Chapter 27 of [39] for a detailed explanation and derivation of

this formalism). The field felt by a test or probe dipole from the entire ensemble is usually

called the local field, Bloc; and we calculate it by removing the field generated by the test

dipole (since it does not feel its own field) and dividing the problem into two regions, the

near microscopic region and the far macroscopic region. The near microscopic region is a

small sphere around the test dipole where we have to calculate the field from the sum of all

the individual dipoles making up the ensemble in the sphere. The far macroscopic region is

everything outside the sphere which we can approximate by the macroscopic field calculated

from a continuum magnetization. We can express this as,

Bloc(r) = Bmicro, near(r) + Bmacro, far(r) (2.83)

and to simplify the calculation of the far macroscopic field we just replace it with the total

macroscopic field minus the macroscopic field from the small sphere assuming that the

magnetization in the sphere is uniform,

Bloc(r) = Bmicro, near(r) + Bmacro(r)− 2µ0

3
M(r). (2.84)

The radius for this sphere can be conservatively estimated as two orders of magnitude larger

than that of a sphere needed for the average volume taken up by a polarized noble gas atom

in the ensemble, that is,

rsphere = 100

(
3

4π

1

nP

)1/3

(2.85)

which for worst case (small nP ), but realistic, numbers for our experiment gives rsphere < 5

µm. This sphere radius, rsphere, is much smaller than the typical size of our ensembles, 1

cm, so the approximation that the sphere is uniformly magnetized is justified and we can

ignore the edge effects of the ensemble where this analysis breaks down. All that is left is

to calculate the value of Bmicro, near(r) for a random distribution of dipoles oriented in one

direction inside the sphere. For simplicity, and without loss of generality, we choose the
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dipoles to be oriented along the z-axis and our sphere to be centered at the origin, then,

Bmicro, near(0) =
∑
i

µ0

4π
m

(
3ri − z

r3
i

+
8π

3
δ(ri)z

)
. (2.86)

Since we are only really interested in the long time behavior of this distribution we can

approximate the actual finite sum with a continuum integral,

Bmicro, near(0) = M
µ0

4π

∫ rsphere

rε

3r− z

r3
i

+
8π

3
δ(r)z d3r, (2.87)

where rε is the distance of closest approach of an ensemble dipole to our test dipole (see

[40] for a derivation of the field distribution from a random distribution of dipoles rather

than just the mean field result expressed here). The first term in the integral is zero for all

values of rε by convention (see [41]) and the second term in the integral is zero as long as

rε > 0, i.e., there is no wavefunction overlap between the ensemble and test dipoles, which is

a good approximation if both dipoles are nuclear dipoles in a noble gas atom, but very poor

if one or more dipoles is from an electron in an atom as with Rb-noble gas spin exchange

as described in Sec. 2.1.1. Thus, for an ensemble of noble gas atoms with polarized nuclear

dipoles, the field felt by the nuclear dipole of another noble gas atom is,

Bloc(r) = Bmacro(r)− 2µ0

3
M(r), (2.88)

so if the macroscopic ensemble is a uniformly magnetized sphere, then a test dipole feels no

field from the ensemble. In our case the magnetization is close to uniform and spherical,

though somewhat distorted by the presence of the transfer tube and, to a lesser extent,

manufacturing imperfections.

A simple way to include the effects of small non-sphericity is to approximate the pertur-

bations away from a perfect uniform sphere as a uniform ellipsoid with its axes aligned to

those of the magnetization. The magnetic field inside an ellipsoid with a uniform magneti-

zation is uniform with the resulting local field (Eq. 2.88) from the magnetization component
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in the i direction given by,

BMi =
2µ0

3
(βi − 1)Mi (2.89)

with elliptical constant βi given by [38],

βi =
3

2
RxRyRz

∫ ∞
0

ds

(s+R2
i )
√

(s+R2
x)(s+R2

y)(s+R2
z)
. (2.90)

In our case the transfer tube effectively extends the ellipse along the y-axis, giving a prolate

spheroid (Ry > Rx = Rz), for which Eq. 2.90 can be solved exactly,

βy =
3

2

1− ε2

ε3

[
ln

(
1 + ε

1− ε

)
− 2ε

]
(2.91)

βx = βz =
3− βy

2
(2.92)

ε =

√
1−

(
Rx
Ry

)2

(2.93)

where ε is the eccentricity. We can now write down expressions for ΩB and ωz in an ellipsoid,

ΩB = −µ0γ
2~nM

2

3

(
βx + βy

4
− 1

2

)
P⊥ ≈ µ0γ

2~nM
ε2

30
P⊥ (2.94)

ωz = −µ0γ
2~nM

2

3

(
βz
2
− 1

2

)
Pz ≈ −µ0γ

2~nM
2ε2

30
Pz (2.95)

where the approximation made is applicable in the limit that ε2 � 1. A generous estimate

for the influence of the transfer tube is an aspect ratio of Ry/Rx = 1.2 which gives ε2 ≈ 0.3,

which is still within the limit of applicability of our approximation. Putting this all together

we finally have an expression for ψ̇ in terms of the other parameters in the model,

ψ̇ ≈ ω0 − ωM + ΩR sin(θ)
Pz
P⊥
− µ0γ

2~nM
ε2

30
Pz. (2.96)

We can now combine the results from the previous two sections on the pump bulb and

transfer tube to generate a complete picture of the double bulb maser. From the pump bulb
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we have spin exchange with Rb as the source of longitudinal polarization, S = γsePRb, as

well as wall relaxation and diffusive exchange with the maser bulb via the transfer tube,

ṖP = S − γsePP −
PP
T
−GPPPP +GPMPz (2.97)

where T represents the time constant for wall relaxation in the pump bulb. In the maser

bulb we have a similar situation for the longitudinal polarization, but we can ignore the

interaction with Rb due to its low density (as shown in Sec. 2.1.1) and we add the effects

due to feedback with the resonant circuit,

Ṗz = GMPPP −
Pz
T1
−GMMPz − γ

B1

2
P⊥ cos(θ). (2.98)

Lastly, transverse noble gas polarization in the maser bulb is only produced in the maser

bulb via coupling to the pickup coil and has diffusive exchange with the pump bulb where the

transverse polarization is effectively zero. Avoiding the production of transverse polarization

in the pump bulb and destroying any transverse polarization that diffuses into the pump

bulb is achieved by adding a small solenoid around the pump bulb that shifts the noble gas

Larmor frequency far away from the maser bulb relative to the atomic line widths, as we

will discuss in Sec. 2.2.2. The equation for the transverse polarization in the maser bulb

thus only contains a diffusive loss rate,

Ṗ⊥ = γ
B1

2
Pz cos(θ)− P⊥

T2
−GMMP⊥. (2.99)

Using the same diffusive loss rate coefficient, GMM , for the transverse polarization as we

calculated for the longitudinal polarization is just an estimate. We do not know the shape

of the transverse polarization profile in the transfer tube (which is necessary to calculate

the rate coefficient accurately, as shown in the previous section) since coherence loss can be

due to both the same wall and collisional effects as for longitudinal polarization loss, as well

as additional effects such as gradients in the magnetic field (see Sec. 2.3 for details) and
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Description Parameter 129Xe 3He Units

Pump bulb lifetime T ′ 20 165 s
Maser bulb lifetime T ′1 200 110 s
Maser bulb coherence time T ′2 200 110 s

Table 2.9: Effective time constants for each bulb using the parameters from Tab. 2.3,
Tab. 2.4, and Tab. 2.6 assuming T1 = T2, which is the best case.

we do not know the field gradients in the transfer tube. However, at least in our current

implementation of the experiment, using GMM in Eq. 2.99 gives reasonable agreement

between our maser model and observed behavior, as discussed below.

Before putting all our equations together, a useful simplification can be achieved by

combining all the loss rates for a given polarization in a given bulb into one time constant

term,

1

T ′
= GPP +

1

T
+ γse (2.100a)

1

T ′1
= GMM +

1

T1
(2.100b)

1

T ′2
= GMM +

1

T2
, (2.100c)

which serves to emphasize that the effective coherence time, T ′2, critical for making sensitive

measurements, can be limited/modified by the geometry of the double bulb cell and diffusion

coefficients of the gases. Tab. 2.9 lists typical values for T ′, T ′1, and T ′2 for our 3He and

129Xe masers. Putting everything together gives us a final set of equations for our model of
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the double bulb 3He and 129Xe maser,

ṖP = S − PP
T ′

+GPMPz (2.101a)

Ṗz = GMPPP −
Pz
T ′1
− γB1

2
P⊥ cos(θ) (2.101b)

Ṗ⊥ = γ
B1

2
Pz cos(θ)− P⊥

T ′2
(2.101c)

ψ̇ = ω0 − ωM + γ
B1

2

Pz
P⊥

sin(θ)− µ0γ
2~nM

ε2

30
Pz (2.101d)

Ḃ1 = − ωc
2Qc

B1 +K
ωM
2
P⊥ cos(θ) (2.101e)

φ̇ = ωc − ωM −K
ωM
2

P⊥
B1

sin(θ), (2.101f)

where there is a separate set of equations for both the 3He and 129Xe masers. We will

solve these equations in the next section in various limits relevant to our maser’s actual

performance.

2.2 Maser Equation Solutions

In the previous section we developed a system of equations to describe the dynamics of the

3He and 129Xe nuclear Zeeman maser. Now we move forward to solving these equation in the

important limits for our measurement. First, we develop the steady state solutions, which

will determine for each species the minimum feedback strength and population inversion

necessary to sustain a maser, the amount of signal power produced by the maser, and, criti-

cally, the equilibrium maser frequency. Next, we investigate the quality of co-magnetometry

from a dual 3He and 129Xe maser and how it is limited by the actual, extended three di-

mensional nature of the maser; as well as changes to the steady state behavior of the maser

due to its extended nature. Lastly, we determine the transient behavior of the maser and

co-magnetometry signals around their steady state values, which will show how thermal

noise sets the noise floor and ultimate sensitivity of the experiment and how noise in the

amplitude of the maser can affect the maser frequency.
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2.2.1 Steady State

In this section we will solve the maser system of equations given by Eq. 2.101 in steady

state to determine the threshold necessary for masing, the output power of the maser, and

the steady state maser frequency. To simplify the solutions we will introduce a few key

parameters whose importance for characterizing maser performance will become evident.

The first parameter is a dimensionless combination of rates,

λ = GPMT
′GMPT

′
1 (2.102)

=

(
GPM

GPP + 1
T + γse

)(
GMP

GMM + 1
T1

)
< 1, (2.103)

which gives the extent that the bulb exchange rates dominate over the other rates that

affect the polarization in the bulbs. The next parameter is the longitudinal polarization in

the maser bulb without any feedback from the resonant circuit,

Pz,0 =
Sλ

GPM (1− λ)
, (2.104)

which can be found by setting K = 0 in Eq. 2.101. Lastly, we have the radiation damping

time (approximation for ωc ≈ ωM ),

1

τRD
=
γKQcωM cos2(θeq)

2ωc
Pz,0 ≈

γKQc
2

Pz,0, (2.105)

which is the contribution of the feedback from the coil to shortening the measured T ′2

(damping the coherence) if the longitudinal polarization has been maximized in the lower

rather than the upper energy state as we do for masing. This role of τRD can be seen

from our equations by reversing the sign of Pz and assuming only a small portion of the

longitudinal polarization has been converted to transverse polarization,

Ṗ⊥ = −γB1

2
Pz,0 −

P⊥
T ′2

= − P⊥
τRD

− P⊥
T ′2
, (2.106)
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where we have approximated B1 by its steady state value.

We can now express the steady state maser equilibrium solutions in terms of these new

parameters,

PP,eq =
ST ′

1− λ

(
1− λ

(
1− τRD

T ′2

))
(2.107a)

Pz,eq =
τRD
T ′2

Pz,0 (2.107b)

P⊥,eq = Pz,0

√
(1− λ)

τRD
T ′1

(
1− τRD

T ′2

)
(2.107c)

B1,eq =
2

γ cos(θeq)

√
(1− λ)

1

T ′1τRD

(
1− τRD

T ′2

)
(2.107d)

tan(θeq) = 2Qc
ωc − ωM

ωc
(2.107e)

ωM = ω0 +
Tc

T ′2 + Tc
(ωc − ω0)− 4

30

ε2

(T ′2 + Tc)qcη cos2(θeq)
(2.107f)

where Tc = 2Qc/ωc is the 1/e time constant of the resonant circuit; and from the values

in Tab. 2.8 we have Tc ≈ 1 ms and hence we can always make the approximation T ′2 +

Tc ≈ T ′2. From these solutions we can immediately see that active masing, P⊥,eq > 0 and

Pz,eq < Pz,0, requires that T ′2 > τRD. For our typical maser parameters T ′2 is more than

a factor of 10 beyond this threshold for both 3He and 129Xe (see Tab. 2.10), so we can

generally make the simplifying approximation (1 − τRD/T ′2) ≈ 1. Ideally we would have

ωc = ωM so that θeq = 0 and we would maximize our signal, but with careful tuning of

the doubly resonant circuit (see Sec. 3.5) we can set the circuit resonant frequencies such

that |ωc − ωM |/ωc < 1 × 10 -3 and since Qc ≈ 50 we have θeq < 0.1 from the steady state

solutions. This small steady state phase shift between the coil field and polarization means

that we can make the approximations sin(θeq) ≈ θeq and cos(θeq) ≈ 1 for equilibrium and

near equilibrium situations. This simplification can be extended further by noting that the

equation for B1 has a very rapid exponential decay term with a time constant of Tc, so

that on timescales relevant to all other maser equations we can treat B1 as always being in

equilibrium, B1 = KQcP⊥ cos(θ). If we substitute this equilibrium solution for B1 into the
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equation for θ,

θ̇ = φ̇− ψ̇ = ωc − ω0 −
ωM
2Qc

tan(θ)− γ

2
KQcPz cos(θ) sin(θ)− µ0γ

2~nM
ε2

30
Pz (2.108)

we see that it too has a rapid decay with a time constant of Tc and hence we can treat it

as being in equilibrium and make the general approximations sin(θ) ≈ θ and cos(θ) ≈ 1.

Combining all these approximations leads to a simplified set of equations for the remaining

maser parameters,

ṖP = S − PP
T ′

+GPMPz (2.109a)

Ṗz = GMPPP −
Pz
T ′1
−
P 2
⊥
τ

(2.109b)

Ṗ⊥ =
PzP⊥
τ
− P⊥
T ′2

(2.109c)

ψ̇ = ω0 − ωM +

(
2Qc
τ

ωc − ωM
ωM

− µ0γ
2~nM

ε2

30

)
Pz (2.109d)

where 1/τ = γKQc/2 with a simplified set of approximate steady state solutions,

PP,eq ≈ ST ′ (2.110a)

Pz,eq ≈
τ

T ′2
(2.110b)

P⊥,eq ≈
√
ST ′1GMP τ (2.110c)

ωM ≈ ω0 +
Tc
T ′2

(ωc − ω0)− 4

30

ε2

T ′2qcη
. (2.110d)

These equations emphasize a very important property of the maser: over timescales long

compared to the Rabi frequency, fluctuations in spin exchange optical pumping (which is

difficult to stabilize due to the sensitivity of the Rb vapor pressure on temperature, Eq. 2.5)

will primarily be manifest as variations in P⊥, as its equilibrium value scales with S, while Pz

will remain constant. This suppresses fluctuations of terms in the maser phase proportional

to the longitudinal polarization, and is one of the significant frequency stability benefits of
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steady state maser operation.

With the steady state solution we can calculate the maser power from the RMS power

dissipated in the resonant circuit,

P = Re(Z(ωM ))〈I2〉 (2.111)

=
ωMLpu
qc

1

2

(
B1,eq

ξ0

)2

(2.112)

=
~ωM

2
VMnMGMPST

′
(

1− τRD
T ′2

)
. (2.113)

Since the threshold condition for the maser is that τRD < T ′2, the fraction of the power

proportional to τRD/T ′2 is an equivalent threshold condition, the threshold power,

Pthreshold =
(1− λ)

T ′2 T
′
1

2ωMVM
µ0ηqcγ2

(2.114)

which for our typical parameters is ∼0.5 fW for 129Xe and ∼0.05 fW for 3He. In the limit

that the maser is well above threshold, τRD/T
′
2 � 1, the power is,

P ≈ ~ωM
2

VMnMGMPPP,eq (2.115)

which is simply the energy delivered per polarized atom (Eq. 2.54) times the number of

polarized atoms arriving per second in the maser bulb. Additionally, we note that well

above threshold the maser power is independent of the strength of the coupling to the

pickup coil, K, or the quality factor of the resonant circuit. We can relate the maser power

to quantities that are easy to measure in the experiment,

P =
〈V 2
pu〉

Z(ωM )
=

(
VRMS

Gamp

)2 1

qcωMLpu
(2.116)

where Gamp is the voltage gain of the amplifier connected to the resonant circuit and VRMS is

the measured RMS voltage at the maser frequency after the amplifier. Tab. 2.10 summarizes

some typical steady state maser operating parameters calculated from the above model.



Chapter 2: Theory of the 3He and 129Xe Zeeman Maser 48

Description Parameter 129Xe 3He Units

Diffusive spreading λ 0.006 >0.95
Maser bulb coherence time T ′2 200 110 s
Radiation damping τRD 12 <7 s
Maser bulb non-masing polarization Pz,0 13 >0.2 %
Pump bulb masing polarization PP,eq 50 0.03 %
Maser bulb masing polarization Pz,eq 0.7 0.014 %
Maser bulb masing coherence P⊥,eq 3 0.012 %
Maser power P 8 0.7 fW

Table 2.10: Calculated steady state maser operating parameters based on typical system
values from Tab. 2.3, Tab. 2.6, Tab. 2.7, Tab. 2.8, and Tab. 2.9.

The final result of the steady state solutions is the maser frequency, which is determined

by three parameters: the Larmor frequency, the resonant circuit frequency, and interactions

due to both the static longitudinal polarizations of both noble gas species and the resonant

precessing transverse polarization of each species on itself. The frequency shift effect of

the resonant circuit is referred to as cavity pulling (originating from masers operated in

regimes where microwave cavities instead of resonant circuits are used) and is suppressed

by the ratio of the circuit time constant to the polarization coherence time, which is often

rewritten in terms of effective quality factors (where we have assumed ωM ≈ ωc),

δωcavity =
Tc
T ′2

(ωc − ω0) =
Qc
Ql

(ωc − ω0) where Ql =
ωMT

′
2

2
. (2.117)

Here Ql is referred to as the line-Q for atomic linewidth. Although this is a fairly large

suppression factor of ∼ 10 -5 using our typical values, we still require a high degree of

fractional stabilization of ωc since its absolute value (∼10 kHz) is so large compared to the

absolute frequency shifts we desire to measure (∼ 100 nHz). The polarization frequency

shifts can be estimated with our simplified model for a uniform ellipse of magnetization:

δωself = − 4

30

ε2

T ′2qcη
, (2.118)

which for our typical values and a large estimate for the eccentricity ε2 = 0.3, corresponding
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to a 20% elongation along the transfer tube aixs, gives a shift of <50 µHz. This is a fairly

small shift in absolute terms, requiring less stabilization of the parameters involved than

δωcavity, especially since qc and η will be very well stabilized in order to control the cavity

pulling. We will explore controlling these frequency shifts more in Sec. 2.4.

2.2.2 Co-magnetometry and the Extended Maser

We now address the quality of co-magnetometry of dual 3He and 129Xe masers in terms of

the overlap of the spatial distributions of the masing ensembles as well as other corrections

to the above theory that couple the maser frequency to all parts of the double bulb cell.

To see the effect of spatial distribution of the masing ensemble on co-magnetometry, we

return to our derivation of the pickup coil coupling to the transverse magnetization from

Sec. 2.1.3,

Vpu = γ
~
2

∫
n(r)ξy(r)Ṗy(r) d

3r. (2.119)

In the original derivation we argued that we could remove Py from the integral as it was

roughly homogeneous across the bulb, but now we will determine the corrections that arise

if we lift that approximation (we will drop the explicit dependence on position, r, for ease

of reading). Following through from the previous derivation we find an equation for the

current in the pickup coil,

İc = − ωc
2Qc

Ic +
ωM
2
K0

∫
n ξy P⊥ cos(θ) d3r where K0 =

γ~qc
2LpuQc

, (2.120)

where the pickup coil magnetic field can be found at any point from B1 = ξyIc, and an

equation for the phase of the current,

φ̇ = ωc − ωM −
ωc

2Qc

∫
n ξy P⊥ sin(θ) d3r∫
n ξy P⊥ cos(θ) d3r

. (2.121)
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By combining this with the equations for the amplitude and phase of the transverse polar-

ization we find in steady state a modified maser frequency equation,

ωM = ω̄T +
Tc
T ′2

(ωc − ω̄T ) where ω̄T =

∫
ωT n ξy P⊥ cos(θ) d3r∫
n ξy P⊥ cos(θ) d3r

(2.122)

and ωT is the total Larmor frequency from the sum of the field from each species’ longitu-

dinal magnetization and the solenoid,

ωT = γBT = γ(B0 +BMz ,He +BMz ,Xe). (2.123)

Here we have excluded the self field effect of the transverse polarization as this is a resonant

effect and hence affects each species differently without any need to consider spatial overlap.

Note that in the derivation of the local field felt by a dipole in a magnetized gas in Sec. 2.1.3

we made no requirement that the gas was made up of one species, so the local field for either

species is the same, as we have expressed above. The maser frequency can thus be thought

of as the weighted average of the positionally dependent Larmor frequency. The lowest

order modification to our homogeneous model is a linear gradient in the field,

BT (r) = BT,0 + ∇BT · r (2.124)

where BT,0 is the uniform component of the field. This means the Larmor component of

the maser frequency is determined by,

ωM = γBT,0 + γ∇BT · 〈r〉P⊥ where 〈r〉P⊥ =

∫
r n ξy P⊥ cos(θ) d3r∫
n ξy P⊥ cos(θ) d3r

, (2.125)

and 〈r〉P⊥ is the weighted position of the pickup coil and magnetization coupling. The

spatial aspect of co-magnetometry thus boils down to whether the two gas species have the

same value of 〈r〉P⊥ and how it depends on experimental parameters. Since both species

couple to one pickup coil, the coil’s spatial dependence is common mode and irrelevant
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for comagnetometry. Additionally, in the maser bulb the temperature and hence density

is uniform, so n can be removed from the equation. This means that we are interested

only in the spatial distribution of P⊥, specifically the next order correction to the diffusive

distribution of P⊥ beyond the uniform solution.

To determine the spatial distribution of P⊥ in the maser bulb we modify the equation for

P⊥ given by Eq. 2.101 to explicitly include diffusion and relegate all transfer tube sources

and sinks as well as wall relaxation to the boundary condition, which leaves us with,

Ṗ⊥ = DM∇2P⊥ + ΩRPz. (2.126)

Now, if we substitute in the steady state solution for Pz from Eq. 2.101, treating PP and

ΩR as constants,4 we have, in steady state,

0 = ∇2P⊥ + SP − k2P⊥ where SP =
GMPT

′
1ΩR

DM
PP,eq and k2 =

Ω2
RT
′
1

DM
(2.127)

with the following boundary condition on the surface of the sphere including wall relaxation

and flux through the entrance of the transfer tube (for convenience the transfer tube is

temporarily oriented along the z-axis),

DMn ·∇P⊥ + κP⊥ =


VM
At

(GMPP⊥,P,eq −GMMP⊥) = Φ− βP⊥ for θ ≤ θ0

0 for θ > θ0

(2.128)

where P⊥,P,eq is the equilibrium transverse polarization in the pump bulb (usually considered

to be near to zero) and θ0 is the angle subtended by the transfer tube aperture in the maser

bulb and is always small in our experiment, θ0 < 0.2. In this boundary condition we have

assumed the previous homogeneous derivation (Sec. 2.1.2) is exact for calculating the flux

through the entrance to the transfer tube and made the very minor approximation that the

4Treating ΩR as a constant may seem like a contradiction since it depends on P⊥, but since ΩR depends
on the integral of P⊥ and we expect that change to be perturbative in this new derivation our treatment is
justified.
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entrance of the transfer tube is also acting like a relaxing wall. The general solution is,

P⊥ =
SP
k2

+
∞∑
l=0

Alil(kr)Pl(cos θ) where il(x) =

√
π

2

Il+1/2(x)
√
x

, (2.129)

Il(x) is a hyperbolic/modified Bessel function of the first kind, and the coefficients Al

are found by solving the boundary condition after using the orthogonality relations of the

Legendre polynomials,

2κ
SP
k2
δl,0 +

[
kDM

(
l
il(kRM )

kRM
+ il+1(kRM )

)
+ κil(kRM )

]
2Al =(

Φ− βSP
k2

)
(Pl−1(cos θ0)− Pl+1(cos θ0))

− β(2l + 1)
∞∑
l′=0

Al′il′(kRM )

∫ 1

cos θ0

Pl′(x)Pl(x) dx (2.130)

where δl,0 is the Kroneker delta function. Clearly this cannot be solved in general, but we

are only interested in perturbations to the lowest order solution, so we expand everything to

lowest order in kRM � 1, we approximate At ≈ πR2
Mθ

2
0 since θ0 � 1, expand all functions

of θ0 to lowest order, and we only keep the l = 0 term in the sum on the right hand side.

With these approximations we find, to order l = 1,

P⊥ = P⊥,eq

(
1 +

GMPP⊥,P,eq −GMMP⊥,eq
P⊥,eq

R2
M

DM

(yM − y)

RM

)
(2.131)

where

P⊥,eq =
ΩRT

′
1GMPPP +GMPP⊥,P,eq
3κ
RM

+ Ω2
RT
′
1 +GMM

, (2.132)

which is exactly the same as P⊥,eq from the previous section where we approximated

P⊥,P,eq = 0 and if we identify RM/(3κ) = T2 as derived by different means in Sec. 2.1.2.

We have also returned to our standard coordinate system such that yM is the center of the

maser bulb and the transfer tube is in the negative y direction relative to the center. This

result is very intuitive, as the size of the polarization gradient relative to the size of the
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bulb is the fractional flux into or out of the bulb multiplied by the characteristic time to

diffuse across the cell. The average position of the transverse polarization in the cell is,

〈y − yM 〉 =

∫
(y − yM )P⊥ d

3r∫
P⊥ d3r

=
GMPP⊥,P,eq −GMMP⊥,eq

P⊥,eq

R2
M

DM

RM
5
, (2.133)

which can be simplified in the limit that P⊥,P,eq � P⊥,eq and the transfer tube is lossless

to,

〈y − yM 〉 ≈
3

10

DP

DP +DM

R2
t

Lt
. (2.134)

This means the average position of the masing ensemble in the maser bulb is almost com-

pletely independent of the overall diffusion coefficient; i.e., making diffusion faster does not

reduce the shift from the center, and it does not differ substantially between gas species. For

our typical values we have 〈y−yM 〉 ≈ 20 µm; and if we use the diffusive loss rate coefficients

that include transfer tube losses from Tab. 2.6, then we find that the difference between

the average positions of 3He and 129Xe is only ∼ 2 µm. However, when measuring this

separation in our experiment by applying a known magnetic field gradient and measuring

the differential frequency shift between species, we find the difference in average 3He and

129Xe masing ensemble positions is ∼20 µm along the y-axis with no significant difference

along the other axes, which suggests that polarization in the transfer tube is significantly

contributing to the average positions of the masers. Furthermore, when measuring the dif-

ference in average position of the masing ensembles in a cell with twice the gas pressure of

our typical cell and hence half the diffusion coefficient, we found the effective maser sep-

aration increased by almost a factor of 10, further emphasizing that this model does not

capture all the maser frequency shift effects of an applied magnetic field gradient. Initial

experimental results showing maser frequency shifts as a function of applied field gradient

with a very limited number of cells were presented in [25], but no further work has been

done and the magnetic field gradient sensitivity of the maser is still not well understood.

One way of reducing the contribution from transverse polarization in the transfer tube

to the masing ensemble average positions is to add a set of small closed loop coils around
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the tube, which we call “choke coils”. The choke coils shield the atoms in the tube from the

pickup coil by generating reactive currents that (partially) cancel out the pickup coil B1

field in the tube (Lenz’s law). This technique has two problems: (i) at these frequencies it

is difficult to make a small coil where the desired reactive part of the impedance dominates

over the resistive, so the choke coils provide different B1 shielding for 129Xe vs 3He; and (ii)

the choke coils generate quadrature fields that extend into the maser bulb, which lead to

frequency shifts. The difference in efficacy of a set of choke coils in shielding the pickup coil

B1 field at the 3He and 129Xe maser frequencies, as well as the quadrature fields generated,

can be seen in Fig. 2.2 and Fig. 2.3. The choke coils in this simulation consist of three

layers of 24 AWG magnet wire with either 6 or 10 turns per layer, with the smaller coil near

the maser bulb. The gap between coils to accommodate the spacer/cell holder between the

maser and pump bulb temperature regions. Self inductances of all the choke coils and mutual

inductance with the pickup coil and between all coil pairs as well as the field generated by

each coil was calculated using Radia [42]. We determine the effect of generating both out

of phase and quadrature fields on the maser frequency by modifying the volume averaged

pickup coil magnetic field per unit current, ξ0, to include both real and imaginary parts,

ξ̃0 = ξ0,r + iξ0,i. (2.135)

In our limit where |ξ0,i| � |ξ0,r| we modify the coupling constant K,

K̃ =
K

ξ2
0

(
ξ2
r + i2ξrξi

)
= Kr + iKi (2.136)

which leads to,

Ḃ1 = − ωc
2Qc

B1 +
ωM
2
P⊥(Kr cos(θ) +Ki sin(θ)) (2.137)

φ̇ = ωc − ωM −
ωM
2

P⊥
B1

(Kr sin(θ)−Ki cos(θ)) (2.138)
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and changes in the steady state solutions,

tan(θeq) =
2Qc
ωc

(ωc − ωM ) +
Ki

Kr
(2.139)

ωM = ω0 +
2Qc
ωcT ′2

(ωc − ωM ) +
Ki

T ′2Kr
− 4

30

ε2

γT ′2qcη cos2(θeq)
(2.140)

giving a new shift of,

δωchoke =
2ξi
T ′2ξr

, (2.141)

which, for a typical system values and a ratio of ξr/ξi < 100 from numerical calculations

using the model choke coils described above, gives a frequency shift of < 30 µHz. While

choke coils have been used in the experiment, their effects on the magnetic field gradient

susceptibility of the maser frequency due to shielding of the transfer tube have not been

experimentally investigated.

In addition to the concern with transverse polarization in the transfer tube coupling to

the pickup coil and affecting the maser frequency, polarization in the pump bulb can also

affect the maser frequency. In this case we will be interested in a discrete model with two

spatially homogeneous ensembles in the pump and maser bulbs. Additionally, we will be

considering large frequency differences between the two bulbs, so we cannot operate in the

limit that there are only small phase shifts (θ � 1) between parts of the maser ensemble,

necessitating a return to the equations of motion expressed in terms of Px and Py, rather

than amplitude and phase. To simplify matters we ignore self field interactions and assume

that the resonant circuit exactly matches the Larmor frequency and pick the arbitrary B1

phase, φ, to be zero. Thus, from Eq. 2.62 for Px and Py in the maser bulb and adding
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diffusive coupling with the pump bulb and coupling of the coil to the pump bulb we have,

Ṗx,P =
γ

2
B1,PPP + ∆PPy,P −

Px,P
T ′2,P

+GPM,⊥Px (2.142a)

Ṗy,P = −∆PPx,P −
Py,P
T ′2,P

+GPM,⊥Py (2.142b)

ṖP = S − PP
T ′

+GPMPz −
γ

2
B1,PPx,P (2.142c)

Ṗx =
γ

2
B1Pz + ∆Py −

Px
T ′2

+GMP,⊥Px,P (2.142d)

Ṗy = −∆Px −
Py
T ′2

+GMP,⊥Py,P (2.142e)

Ṗz = −γ
2
B1Px −

Pz
T ′1

+GMPPP (2.142f)

İc = − ωc
2Qc

Ic +
ωM
2
K0(KMPx +KPPx,P ) (2.142g)

φ̇ = ωc − ωM −
ωc

2Qc

KMPy +KPPy,P
KMPx +KPPx,P

(2.142h)

where Px,P and Py,P are the transverse polarization terms in the pump bulb. We have

also added several new parameters: bulb specific coupling constants KM = nMξ0VM and

KP = nP ξ0,PVP , the pickup coil fields in each bulb are given by B1 = ξ0Ic and B1,P = ξ0,P Ic,

diffusive coupling rates for the transverse polarization GMP,⊥ and GPM,⊥, the difference

between the Larmor frequency in the pump bulb, ω0,P , and the maser frequency, ωM , is

∆P = ωM − ω0,P , and a coherence time for the transverse polarization in the pump bulb

T ′2,P . Our primary concern is to determine how changes in ω0,P , which is a stand in for

the average Larmor frequency in the pump bulb as well as any other frequency shifts that

might occur in the pump bulb (such as the contact shift with polarized Rb), will affect the

overall maser frequency. More specifically we can write ∆P = ∆ + δωP where δωP is the

shift in the pump bulb and then solve our system of equations in steady state for ∆ in terms

of δωP .

Ideally we would solve the above system of equations in general, but this is complicated

to say the least, leading to a solution that gives little intuition. However, we expect the

effect of transverse polarization in the pump bulb to be small, so it is sufficient to solve
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the equations in a perturbative manner. First, we uncouple the transverse polarization

in the pump bulb from the rest of the system by setting all of its gain terms to zero,

GPM,⊥ = B1,P = 0, and solve for the steady state condition which gives Px,P = Py,P = 0

and, since we assumed that ωc = ωM , Py = 0 as well. In this situation the remaining terms

have the same steady state maser solutions as in the previous section with Px = P⊥. Next,

we take the equations for the terms that were zero and solve them assuming that all other

terms have their steady state values,

Ṗx,P =
γ

2
ξ0,P Ic,eqPP,eq + (∆ + δωP )Py,P −

Px,P
T ′2,P

+GPM,⊥Px,eq (2.143a)

Ṗy,P = −(∆ + δωP )Px,P −
Py,P
T ′2,P

+GPM,⊥Py (2.143b)

Ṗy = −∆Px,eq −
Py
T ′2

+GMP,⊥Py,P (2.143c)

φ̇ = − ωc
2Qc

KMPy +KPPy,P
KMPx,eq +KPPx,P

. (2.143d)

In the final step we simplify the remaining equation in ∆ and δωP by only taking the lowest

order term in ∆. This is a reasonable approximation for small values of δωP and an excellent

approximation for large values. This is justified as we expect the decay of the transverse

polarization in the pump bulb to be relatively rapid compared to diffusive exchange and

hence very little will flow back to the maser bulb and the polarization that is in the pump

bulb only couples weakly to the pickup coil and hence will only shift the maser frequency

slightly from the Larmor frequency in the maser bulb.

Following this perturbative prescription we find a skew Lorentzian solution for the maser

frequency,

∆ =
δωPA

δω2
P +B +A

(2.144)



Chapter 2: Theory of the 3He and 129Xe Zeeman Maser 60

where,

A =

(
αNr

T ′2
+GMP,⊥

)(
GPM,⊥ +

αPP,eq
τRDPz,0

)
(2.145)

B =
1

T ′2,P

(
1

T ′2,P
+ αNrGPM,⊥

)
, (2.146)

α = ξ0,P /ξ0 is the ratio of pickup coil field strength in the pump versus the maser bulb, and

Nr = (VPnP )/(VMnM ) is the ratio of the number of noble gas atoms in the two bulbs which

for typical values gives Nr = 1.2 and α = 0.055. This result is initially surprising as even if

there is no coupling of the pickup coil to the pump bulb, α = 0, the Larmor frequency of the

atoms in the pump bulb still affect the overall maser frequency and for 3He it is this type

of coupling, not coupling to the pickup coil, that is the dominant contribution. This would

seem to contradict our earlier conclusion that the maser frequency was the weighted average

of the Larmor frequency where the weights were proportional to the coil coupling (Eq. 2.122),

but that formula was derived without diffusive coupling of the transverse polarization. The

reason that diffusive coupling to other regions can lead to maser frequency shifts is that

for a small difference in the Larmor frequency in the pump bulb, relative to the inverse

exchange time, the polarization that travels there and back can be thought of as still being

coherent, but with a phase shift; and this phase shift times the rate of exchange leads to

a frequency shift in the maser frequency. For large frequency shifts in the pump bulb, the

phase shift developed is no longer perturbative and rather acts as a decoherence mechanism

for the pump bulb relative to the maser bulb, which leads to a reduced maser frequency

shift.

Coupling the maser frequency to the frequency shifts in the pump bulb works against

our original goal of separating the pump and maser bulbs to avoid the large and difficult to

stabilize Rb contact shifts that always accompany effective spin exchange. Ironically, the

large shift in the pump bulb for 129Xe, which was a prime motivator for separating the two

bulbs, actually makes 129Xe less susceptible to this problem since it detunes the pump bulb

frequency far from the small shift limit and well into the wings and shortens T ′2,P such that
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Figure 2.4: Measured and calculated 3He maser frequency shifts due to frequency shifts
of transverse 3He polarization in the pump bulb. The isolated shifting of the pump bulb
frequency was achieved with a solenoid wrapped directly around the bulb.

the total maser frequency shift is probably only a few µHz and small shifts in the pump

bulb are suppressed by ∼ 105. For 3He, the Rb contact shift is not large enough to be far

away from the small shift limit, so its maser frequency is very susceptible to changes in the

3He frequency in the pump bulb from either the Rb contact shift (even though it is so much

smaller for 3He) or from magnetic field gradients that penetrate the magnetic shields. To

eliminate this possibility we add a small solenoid wrapped around the pump bulb to shift

the pump bulb 3He Larmor frequency several hundred mHz away from the maser bulb. We

have also used this pump bulb solenoid to measure the 3He maser frequency shift due to

frequency shifts in the pump bulb as shown in Fig. 2.4. The measured maser frequency

shift data is in good agreement to a fit with the model given by Eq. 2.144 with two free

parameters giving T ′2,P = 45 s and 1/GPM,⊥ = 1/GMP,⊥ = 110 s, which is a reasonable

3He coherence time in the pump bulb (it is ∼70 s in the maser bulb for this cell) and close

to the expected value of 90 s for the diffusive transport, and all other parameters fixed

to the expected 3He values for the cell. Additionally, we have added two other curves to
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Fig. 2.4 showing the same model with either the coil coupling set to zero, α = 0, which only

reduces the size of the maser frequency shift slightly, and with the diffusive coupling of the

transverse polarization set to zero, GMP,⊥ = GPM,⊥ = 0, which reduces the frequency shift

to a negligible level, showing the dominance of the diffusive coupling effect discussed above.

Additionally, as the above model shows, the use of choke coils to reduce the coupling

of transfer tube polarization to the pickup coil will not reduce the transfer tube’s role in

affecting the maser frequency as much as expected due to diffusive coupling. This diffusive

exchange in the transfer tube is especially troubling as there is high density Rb with a

polarization of several percent in the warmer parts of the transfer tube (see the end of

Sec. 2.1.1), which can cause Rb contact shifts that will diffusively couple to the maser

frequency. Unfortunately, modeling the transfer tube as part of the masing ensemble is

complicated and would require numerical solutions. So, with the caveat that transverse

polarization in the transfer tube is a somewhat unknown quantity, we can now write down

a relatively complete account of the frequencies of the masers with first order corrections

for all terms that would otherwise be common mode,

ωM,Xe = γXe (ξsIs +Bex +BMz) + δωXe (2.147)

ωM,He = γHe (ξsIs +Bex +BMz + 〈δr〉 ·∇(ξsIs +Bex +BMz)) + δωHe (2.148)

where B0 = Isξs with Is and ξs the current and field per unit current of the solenoid, BMz

is the field from the longitudinal magnetizations of the noble gases, Bex is any external field

that penetrates the shields or any magnetic field generated by currents inside the shields

other than the solenoid, 〈δr〉 is the difference in average positions of the two species, and δω

includes all terms that are not due to macroscopic longitudinal magnetic fields and hence not

common mode, such as, cavity pulling, self field interactions with transverse magnetization,

contact shifts during collisions, and coupling to the pump bulb as well as additional shifts

we will consider in Sec. 2.4. We stabilize the frequency of the 129Xe maser by comparing

it to a stable frequency reference and feeding back to the current in the solenoid. We
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then compare the 3He maser frequency against the same reference giving us the difference

frequency between the two masers, which is the co-magnetometry signal,

ωM,He − γR ωM,Xe = γHe (−αr(Bex +BMz) + 〈δr〉 ·∇(Bex +BMz))

+ αrγR ωM,Xe + δωHe − (1 + αr)γR δωXe (2.149)

where γR = γHe/γXe = 2.75408156(20) (see Tab. 2.7) and

αr = 〈δr〉 · ∇ξs
ξs

. (2.150)

In the center of our solenoid along the y-axis we have ∇ξs/ξs ≈ 7×10 -6 cm -1, so with a typ-

ical cell value for the average maser separation of 〈δr〉 ≈ 20 µm we have αr ≈ 2×10 -8. With

such a small value for αr we can clearly make the approximation (1+αr)γR δωXe ≈ γR δωXe

since δωXe is also small (i.e., only a few orders of magnitude larger than our sensitivity at

long time scales). With our relatively high solenoid fractional field homogeneity we can also

approximate αr(Bex + BMz) ≈ 0 since their fractional homogeneity will not be as good as

the solenoid and hence the shift from these fields will be dominated by their own gradients.

Lastly, there is the question of the term αrγRωM,Xe, which is a fairly large shift of ∼ 400

µHz, its stability will be discussed in Sec. 2.4. The reader may also notice that we have

neglected to include factors of the form 1 − Tc/T ′2 from Eq. 2.122 in the co-magnetometry

signal, but these factors are so close to unity, Tc/T
′
2 ≈ 10 -5, that they are only significant

when combined with the maser frequencies themselves, at which point we revert to the

cavity pulling equations embedded in δωHe and δωXe.

2.2.3 Transients

In this section we will linearize the maser equations around the steady state solutions

to determine how fluctuations in the system can limit our ability to measure the maser

frequency at different time scales. Additionally, we will try to find a mechanism for the
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behavior observed in previous thesis [43, 25] that the maser frequency was highly correlated

to the maser amplitude at long time scales, which was exploited to improve the sensitivity of

the maser at those time scales. We begin with a general expression for a non-linear system

like the maser written in terms of a set of first order differential equations,

ẋ = f(x,u) (2.151)

where x is the state of the system undergoing dynamic evolution, in our case the ensembles

polarization, field, and phase, and u are the inputs to the system, such as temperature and

resonant laser power. We Taylor expand the equations around the steady state solution,

ẋ0 = 0 = f(x0,u0), to obtain a linearized set of equations,

δẋ ≈ Jx[f(x0,u0)]δx + Ju[f(x0,u0)]δu = Aδx + Bδu (2.152)

where δx = x− x0 and δu = u− u0 are the perturbations away from steady state and Jx

and Ju are the Jacobian matrices taking derivatives with respect to the state and input

variables respectively. Since the fluctuations that enter our system are typically random in

nature, we describe them in terms of their power spectra and thus we convert our linear

time model into a set of frequency transfer functions, which can transform our input noise

spectra into measured noise in the amplitude and frequency of the maser. This is a standard

procedure in control theory and so we will borrow their notation (see [44] for a more general

discussion). In general we have,

δẋ = Aδx + Bδu (2.153a)

y = Cδx + Dδu (2.153b)

where y is the measured output of the system, in our case the frequency and amplitude of

the maser. To find the transfer functions for the system we take the Laplace transform and
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solve for the ratio of output to input,

H(s) =
Y(s)

U(s)
= C(sI−A) -1B + D (2.154)

where I is the identity matrix and in our system D = 0. We define the state of our system

as the familiar,

δx =



δPP

δPz

δP⊥

δψ

δB1

δφ


(2.155)

with the Jacobian of the full equations (Eq. 2.101) at their steady state values given by,

A =



− 1
T ′ GPM 0 0 0 0

GMP − 1
T ′1

−γB1,eq

2 0 −γB1,eq

2KQc
0

0
γB1,eq

2 − 1
T ′2

0 1
KQcT ′2

0

0
γKQcθeq

2 − µ0γ
2~nM ε2

30 −KQcθeq
B1,eqT ′2

− 1
T ′2

θeq
B1,eqT ′2

1
T ′2

0 0 KωM
2 0 − 1

Tc
0

0 0 −KωMθeq
2B1,eq

1
Tc

θeq
B1,eqTc

− 1
Tc



. (2.156)

In considering the different possible fluctuating input parameters to include in δu, the

most important is thermal Johnson noise in the resonant circuit. Johnson noise is white

(constant spectral density), but we are only interested in its value near the maser frequency

in a bandwidth of ∆ω ≈ ωM/Qc. We represent this in the time domain as a voltage made

up of two quadratures oscillating at the maser frequency with relatively slowly varying,
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independent random amplitudes,

Vn = Vn,1 cos(ωM t) + Vn,2 sin(ωM t) (2.157)

or converted into a complex form such that the real part is the same as above,

Ṽn = (Vn,1 + iVn,2) eiωM t. (2.158)

If we add this noise term to the voltage generated in the pickup coil we find the following

modified equation for the pickup coil field,

B̈y +
ωc
Qc
Ḃy + ω2

cBy = KP̈y +
ξ0qc
LpuQc

˙̃
V n, (2.159)

which, to lowest order with V̇n,i/Vn,i � ωM as constructed, leads to additional terms in the

field amplitude and phase,

Ḃ1 = · · ·+ ξ0qc
2LpuQc

Vn,1 = · · ·+ 1

Tc
Bn,1 (2.160)

φ̇ = · · ·+ ξ0qc
2B1LpuQc

Vn,2 = · · ·+ 1

B1Tc
Bn,2, (2.161)

where Bn,i = ξ0Vn,i/Reff.

In addition to the Johnson noise in the resonant circuit, major sources of noise are

changes in the resonant laser power in the pump bulb as well as the pump bulb temperature

(driven by the laser). Laser power fluctuations are incorporated by adding a fluctuation

to the spin exchange parameter, S = ksenRbPRb. Calculating the term for temperature

fluctuations in the pump bulb is far more difficult as it affects many parameters and hence

it will be calculated with a numerical derivative and not considered in this first analytic

calculation. Combining the two Johnson noise terms with the spin exchange term we
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generate our input perturbation matrix,

B =



1 0 0

0 0 0

0 0 0

0 0 0

0 1
Tc

0

0 0 1
B1,eqTc


. (2.162)

Lastly, the measurement parameters of the maser consist of its amplitude and frequency,

which are given by,

C =

 0 0 0 0 0 s
2π

0 0 0 0 1
B1,eq

0

 (2.163)

where we have the frequency in Hz in the first row and the fractional amplitude in the

second. Although C was supposed to consist only of constants, we get around this by

adding a derivative term, CDδẋ, to the equation for the output y in Eq. 2.153 and then

solving in the same manner as before, giving the result C + sCD above.

We now generate the matrix of transfer functions, H, where the rows correspond to

the different measured outputs and each column is due to a different input. Since the

fluctuations of each input are independent we determine the effect of the input fluctuations

on the output by summing the product of each fluctuation’s power spectrum with the

magnitude squared of the appropriate transfer function,

Sout,i =
∑
j

|Hi,j |2Sin,j =
∑
j

Si,j . (2.164)

Note that we will typically be interested in the size of each input contribution, Si,j , to the

total. If the fluctuations are not independent, then this can be expressed in B by having one

noise input affect multiple system parameters. Although power spectra are easily combined

and compared as above, they do not have dimensions that are easily interpreted. Thus,
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much like the standard deviation is typically reported instead of the variance, we will use

the square root of the power spectrum instead of the power spectrum itself,

σout,i =

√∑
j

(|Hi,j |σin,j)
2 =

√∑
j

(σi,j)
2 where σ =

√
S, (2.165)

and we will show the results for both the individual terms, σi,j , as well as the total output.

Typically the input power spectra in our experiment are well modeled as either purely

white noise, Sin = Sw, or as white noise combined with random walk behavior as in,

Sin = Sw(1 + (ωRω )2), where ωR is the crossover frequency from white noise to random walk.

To compute the input noise power spectrum of the slowly varying Johnson noise am-

plitudes, Vn,i, we start by noting the power spectrum of Vn is the usual SVn = SJ =

4kBTMReff over the bandwidth ∆ω = ωM/Qc around the maser frequency. Each of the

terms Vn,1 cos(ωM t) and Vn,2 cos(ωM t) make up one quadrature of the signal and hence

contribute half of the total power for Vn. However, since the slowly varying amplitudes,

Vn,i, only cover the bandwidth from ω = 0 to ω = ∆ω/2, in order for each term to provide

half the total power, the amplitudes must have twice the spectral density,

PVn = SVn∆ω =
1

2

(
SVn,1

∆ω

2

)
+

1

2

(
SVn,2

∆ω

2

)
=⇒ SVn,i = 2SJ . (2.166)

Hence, the noise power spectrum of the magnetic field generated by the thermal Johnson

noise is,

SBn,i =
8kBTMξ

2
0

Reff
= B2

1,eq

4kBTM
P

. (2.167)

The laser power fluctuations are certainly more complicated, but we start by representing

them as a flat power spectral density with a value of SS = (βS)2 where β is the fractional

size of the fluctuation.

Before diving into the solutions for the full interaction of Johnson and spin exchange

optical pumping noise with the maser frequency, we first consider a slightly simpler case. If

we have perfect tuning of the resonant circuit, θeq = 0, and a perfect spherical magnetization,
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ε = 0, then the phase and amplitude components of the maser are no longer coupled, and

our model reduces to just the phase components,

 δψ̇

δφ̇

 =

 − 1
T ′2

1
T ′2

1
Tc

− 1
Tc


 δψ

δφ

 (2.168)

which are only coupled to the phase component of the Johnson noise. In the standard limit

that Tc ≪ T ′2, the spectral density of the maser frequency given by the transfer function is,

σν,Jp =
1

πT ′2

√
kBTM
P

√
1 + (ωT ′2)2

1 + (ωTc)2
. (2.169)

This noise spectrum has three regimes: a flat spectrum for frequencies high compared to the

resonant circuit coherence time; a decreasing spectrum for frequencies between the circuit

and nuclear spin coherence time, which is called the white phase noise regime; and a flat

spectrum for frequencies lower than the nuclear coherence time, which is called the white

frequency noise regime. Thus, the most sensitive measurements are be made in the white

frequency noise regime at modulation frequencies lower than ν = 1/(2πT ′2) (about 1 mHz

for our typical maser) with the ultimate sensitivity given by,

σν,Jp =
1

πT ′2

√
kBTM
P

. (2.170)

It is this modulation frequency regime that we will be paying the most attention to when

considering the influence of various input fluctuations. For our typical maser parameters in

Tab. 2.9 and Tab. 2.10, the ultimate sensitivity is σν,He = 6 µHz/
√

Hz for 3He and σν,Xe = 1

µHz/
√

Hz for 129Xe. The noise for the co-magnetometry signal, ωM,He − γR ωM,Xe, can be

calculated by propagation of error,

σν =
√

(σν,He)2 + (γR σν,Xe)2 (2.171)

giving σν = 6.6 µHz/
√

Hz, which shows that our ultimate noise floor is dominated by the



Chapter 2: Theory of the 3He and 129Xe Zeeman Maser 70

3He signal.

Returning to the transfer functions for the full set of inputs we have chosen, the solutions

are complicated in general, with resonance peaks around the Rabi frequency among other

features, but we will restrict the development of analytic solutions to their behavior in the

white frequency noise regime. The phase component of the Johnson noise leads to the same

fluctuation in the maser frequency as the ultimate sensitivity given above and leads to no

fluctuation in the maser amplitude. The amplitude component of the Johnson noise leads

to fluctuations in the maser frequency due to coupling through cavity shifts and self field

interactions,

σν,Ja =
1

πT ′2

√
kBTM
P

∣∣∣∣θeq +
2ε2

15ηqc

∣∣∣∣ = σν,Jp

∣∣∣∣θeq +
2ε2

15ηqc

∣∣∣∣ , (2.172)

which for our typical system values gives σν,Ja ≈ 0.13σν,Jp, a completely irrelevant contri-

bution once it is added in quadrature. We also generate fluctuations in the fractional maser

amplitude,

σA,Ja =
1

(1− τRD
T ′2

)

√
kBTM
P

≈
√
kBTM
P

, (2.173)

which is the inverse of the ultimate amplitude SNR and shows that the ultimate maser

frequency fluctuation is just the maser coherence line width divided by the maser SNR.

Unfortunately, in this frequency regime the amplitude fluctuations tend to be dominated

by random walk like behavior from the laser, which makes it impossible to use as a check

on the maser SNR. However, the amplitude noise in the regime between the Rabi frequency

resonances and the inverse resonant circuit lifetime is also white and given by,

σν,Ja,mid = 2

√
kBTM
P

= 2σA,Ja. (2.174)

This middle regime is particularly useful as all spin exchange fluctuations from the pump

bulb are suppressed by slow diffusive coupling, giving us a clean check of the maser power

to compare with Eq. 2.116.

The fluctuations in the spin exchange optical pumping of the noble gases lead to maser
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frequency fluctuations,

σν,S =
ωβ

1− τRD
T ′2

∣∣∣∣θeq4π
− ε2

30πηqc

∣∣∣∣ (2.175)

that are not white, but rather decrease in amplitude with decreasing frequency. Thus, a

random walk in SEOP only leads to white noise in the maser frequency. This decreasing

sensitivity of the maser frequency to fluctuations in S is to be expected given that the

maser frequency only couples to Pz and the steady state value of Pz is independent of S

(see Eq. 2.109 and Eq. 2.110). The fluctuations in fractional maser amplitude due to spin

exchange are white,

σA,S =
β

2(1− τRD
T ′2

)
(2.176)

and the amplitude and frequency components can be combined,

σν,S = νσA,S

∣∣∣∣θeq − 2ε2

15ηqc

∣∣∣∣ , (2.177)

so that fluctuations in the amplitude beyond the Johnson noise can be used to estimate the

contribution to the frequency noise from this mechanism. For our typical maser conditions

at a low modulation frequency of ν0 = 11.6 µHz, a one day long modulation, the fractional

amplitude noise has a random walk spectrum with a value of σA,S ≈ 0.5 ν0/ν fractional

amplitude/
√

Hz and the quantity in the absolute value sign above is approximately 0.1, so

we have a white frequency noise of σν,S = 0.5 µHz/
√

Hz which is clearly irrelevant in our

case compared to the frequency noise generated by the phase component of the Johnson

noise. Additionally, this mechanism for amplitude to frequency noise coupling is clearly

not the one that causes the observed correlations between maser frequency and amplitude

mentioned at the beginning of this section.

To complete our discussion of transients and fluctuations we extend our model to include

a second maser and phase locking of one maser to a reference frequency by applying feedback

to the current source driving B0. Adding a second maser requires adding a second set of
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state variables and couplings between the two masers,

 δẋHe

δẋXe

 =

 AHe,He AHe,Xe

AXe,He AXe,Xe


 δxHe

δxXe

+ Bδu (2.178)

where the diagonal A matrices are the same as before with the appropriate steady state

values for each species and the off diagonal terms consist of coupling between species,

limited here to local magnetic fields generated by longitudinal magnetization as described

in Sec. 2.2.2. Additionally, it is important to distinguish in B between common mode input

fluctuations that affect (or can affect) all state parameters of both masers at the same time,

such as laser power and temperature, and independent fluctuations that affect only one

state parameter of one maser, such as Johnson noise, as this changes the effectiveness of co-

magnetometry in reducing the fluctuations. To incorporate the phase lock of the magnetic

field we switch to the Lorentz transform representation and add a feedback term, F, to the

input parameters,

Y = H(U + F) where F = G(R−Y) (2.179)

where R is the reference and G is the open loop feedback transfer function. A detailed and

thorough introduction to types of feedback control can be found in [44], but we will give a

brief outline of the typical methods we use. The feedback in G typically includes a sum of

terms that are proportional to, the integral of, and the derivative of the difference between

the output and the reference (called PID feedback),

Gi,j = G

(
1 +

ωI
s

+
s

ωD

)
(2.180)

where G is the proportional gain, ωI gives the frequency below which the integral term

becomes important, and ωD gives the frequency above which the differential term becomes

important. The integral term provides increasing feedback gain at low frequencies, which

prevents the output signal from drifting away from the reference. The derivative term

provides increasing gain at higher frequencies, which is used to cancel the effects of lag
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in the system to provide feedback control over a greater bandwidth (typically derivative

control is implemented such that it is closer to a lead term as described in [44]). For our

simulation we only include proportional and and integral control. With the addition of

feedback, we now have a new total transfer function for the fluctuation inputs to the system

as well as for the reference inputs,

TU = (I + HG) -1H (2.181)

TR = (I + HG) -1HG (2.182)

such that the measured output noise power spectrum is given by,

SY,i =
∑
j

|TU,i,j |2SU,j +
∑
j

|TR,i,j |2SR,j (2.183)

which shows that for sufficiently high feedback gain the measured output noise is dominated

by the reference noise rather than the input fluctuations. In our simulations we set the

reference noise to zero as it is negligible for our typical maser.

We now have a model that includes enough of the actual system behavior to compare

to typical maser data. The data comes from a cell with fill pressures of 800/45/150 Torr of

3He/129Xe/N2, which are very similar to the typical maser cell we have been documenting in

tables in this chapter, though the measured maser powers (from Eq. 2.116) and coherence

times for both species are smaller than we calculated for our typical cell, only 0.6/5 fW and

80/200 s for 3He/129Xe. The shorter coherence times are due to a slightly smaller maser

bulb volume than our typical cell model and the lower maser powers are due to a lower

laser power. We adjusted these model parameters to match the measured maser power and

coherence time. In the model we include input noise from the Johnson noise of the circuit

as well as a white plus random walk noise model for the resonant laser power and the pump

bulb temperature derived from approximate monitors of those variables in the experiment

(see Fig. 2.5). We calculate numerical derivatives of the maser state with respect to the
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Figure 2.5: Measured noise spectral densities for pump bulb temperature and laser power
fluctuations and approximate white noise plus random walk models used in the simulation.
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laser power and pump bulb temperature using a one dimensional model of optical pumping

as described in [25] to calculate the Rb polarization and take into account the temperature

dependence of the Rb and other gas densities as well as the diffusion coefficients. We also

calculate the magnetic field gradients generated in the maser bulb by the magnetizations

in the pump bulb and include their effect as described at the end of Sec. 2.2.2 assuming a

typical transverse polarization separation of 〈δr〉 ≈ 20 µm.

In Fig. 2.6 we show the resulting calculated spectra of the fractional 3He and 129Xe

maser amplitude fluctuations from the largest contributors in the model as well as the

maser spectra from a 26 day long data set. The figure also contains a 4 day subset of

the data when the maser power was the most stable, and to which the power given by

the model was matched. The points shown in the data spectra are generated by averaging

power spectra over bins whose size scales logarithmically, hence there is less scatter in the

high frequency points. The spectra show three distinct regions. First, for high frequency

modulations above 10 mHz the fluctuations in the pump bulb do not affect the maser due

to the long time necessary for diffusive coupling; hence the masers are dominated by the

white Johnson noise of the resonant circuit. Second, there is resonant behavior at a few mHz

where fluctuations in the pump bulb become evident. Third, for low modulation frequencies

below 1 mHz, the quasi-steady state regime, the maser amplitudes follow the random walk

behavior of the laser power and pump bulb temperature fluctuations. The model and data

for 129Xe match very well, both the thermal noise floor at high frequency and the size and

location of the resonance peak. The agreement for 3He is less good, suggesting there is some

excess input noise at its Larmor frequency.5

We achieved reasonable agreement between our model and data for the amplitude spec-

tra of the maser, so we now compare our model and data for the maser frequency spectra

with some confidence. As shown in Fig. 2.7, we see the individual and combined effects of

the noise inputs on the 3He frequency spectrum when the 129Xe frequency is phase locked,

5There is also a small peak in the 3He spectrum at about 65 mHz, which is an artifact of our digitization
electronics and not real. The peak also shows up in the 3He frequency spectrum.
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i.e., our co-magnetometry signal. We also see the reduction in frequency noise for 129Xe

between the anticipated unlocked noise floor and the measured locked noise floor, which is

limited by our reference and measurement technique. The significant reduction between the

measured and modeled 129Xe frequency noise confirms that our reference and measurement

noise are negligible and that all frequency noise in 129Xe has been transfered to 3He, as

shown in the figure. In comparing the data and the model we divide the spectra into the

same three regions as we did for the amplitude spectra. For high frequency modulations

above 10 mHz we are dominated by Johnson noise and the measured noise is a little higher

than the model, as we would expect from the amplitude noise in this regime. For frequen-

cies slightly above 1 mHz we have resonant behavior in the model, which is dominated by

laser induced amplitude noise in 129Xe being converted to phase noise via cavity pulling.

We see no sign of this resonant peak in the data and the model suggests that this is only

possible with rather precise matching of the resonant circuit to within < 3 Hz of the Lar-

mor frequency, which is close to the accuracy limit of our technique to calibrate the circuit

resonance. In the calculations for Fig. 2.7 we used a detuning of −5 Hz in the model,

which should just be visible in the experimental data; but it is not and hence −5 Hz is

a worst case scenario for this model and data. A useful test of this aspect of the model

would be to change the frequency the 129Xe maser is locked to by ±20 Hz relative to the

circuit resonance, which, given the size of the amplitude noise in this data set, would result

in a noise spike three times larger than the phase noise floor in the data shown here and

hence could be detected in a short data set. For modulation frequencies below 1 mHz in

the frequency noise we have a flat region in the model that is dominated by Johnson noise

in the circuit, with the random walk amplitude fluctuations mostly being converted into

white noise as we saw in the analytic results for the approximate low frequency behavior

of the model (see Eq. 2.177). The emerging random walk behavior at very low frequencies

due to laser power fluctuations comes from the inclusion of the field gradient generated by

polarization in the pump bulb; and the random walk from the temperature fluctuations

is due to both the change in the field gradient and modulation of T ′2 due to changes in
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the diffusion coefficients, which affects both cavity pulling and self field interactions (see

Eq. 2.117 and Eq. 2.118). The disagreement between the data and the model in the white

frequency noise regime between 100 µHz and 1 mHz is due to the excess noise at the 3He

maser frequency that we saw in the amplitude spectrum, as we get good agreement when

taking this noise into account and using the measured coherence times.

For modulation frequencies below 100 µHz the data exhibits random walk behavior

that is not accounted for in the model, and which significantly limits our sensitivity for

modulations at the 11.6 µHz of the Earth’s rotation. For this cell we believe the frequency

drift is caused by a slow decay in the quality of the wall coating over time, which led to

a reduction in the measured 129Xe T ′2 from 200 to 100 seconds between the beginning and

end of the data set shown here; and that this wall decay coupled with a non-zero cavity

pulling led to the random walk in frequency. The loss in wall coating quality is also evident

in the steady 30% loss in power of the 129Xe maser over this period due to decreased T1.

However, other cells filled with similar gas pressures and having similar T ′2s have had very

stable T ′2s, but have had similar input noise as well as maser amplitude and frequency noise

spectra. In fact they can have higher frequency noise spectra that are only reduced to near

or below the level shown here when the amplitude and frequency correlations are taken into

account. Such correlations are clearly not demonstrated by the terms we have included in

our model and are probably due to some of the complications discussed in Sec. 2.2.2: e.g.,

effects in the transfer tube that are difficult to model and are likely sensitive to changes

in diffusion constants due to temperature changes. The mechanisms behind this correlated

behavior are still not well understood.

2.3 Polarization Relaxation Mechanisms

In the previous section we introduced phenomenological relaxation times for the longitudinal

and transverse polarization as T1 and T2, respectively.6 In this section we will detail the

6Note: the T1 and T2 terms do not include the diffusive bulb escape rate GMM that we included in the
effective lifetime terms T ′1 and T ′2 at the end of Sec. 2.1.3.
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physics underlying these relaxation processes. Relaxation of the 3He and 129Xe nuclear

spin longitudinal and transverse polarization is primarily due to changes in local magnetic

fields due to collisions or diffusion through macroscopic field gradients. These magnetic

field changes induce fluctuations in the Larmor frequency that degrade spin coherence and

fluctuations in the quantization axis that degrade spin polarization. Additionally, spin

angular momentum can be lost during collisions when it is coupled to the angular momentum

of the colliding pair or transfered from one species to another or to a wall. As illuminated

in the previous section, minimizing spin relaxation is critical to making sensitive maser

frequency measurements. Details of how we measure the noble gas spin relaxation rates are

given in Sec. 3.7.

2.3.1 Polarization Lifetime T1

There are five depolarization mechanisms that we will discuss in this section: spin ex-

change collisions with Rb, motion through macroscopic transverse magnetic field gradients,

dipole-dipole coupling between noble gas atoms during binary collisions that couple the

spin angular momentum into the angular momentum of the pair, coupling of spin angular

momentum into the rotational angular momentum of transient noble gas molecules, and

collisions with the wall. The first and last of these depolarization mechanisms, spin ex-

change with Rb and wall collisions, we have already discussed in Sec. 2.1.1 and Sec. 2.1.2

respectively, so we will only give a brief reminder of the physics here and approximate num-

bers in a typical cell that we use. As a guideline of the importance of each depolarization

mechanism for our typical cells the total depolarization rates measured for 3He and 129Xe

are 1/T1,He = γ1,He < 2 × 10 -4 s -1 (with the lowest value we have measured in any cell of

γ1,He ≈ 2× 10 -5 s -1) and 1/T1,Xe = γ1,Xe ≈ 2× 10 -3 s -1 respectively.

In the absence of laser light to maintain Rb polarization, spin exchange collisions with

Rb act as a source of polarization loss for the noble gas polarization as discussed at the end

of Sec. 2.1.1 with loss rate coefficients for 3He and 129Xe of γse,He and γse,Xe respectively.

Using the values from Tab. 2.3 for the spin exchange coefficients and Eq. 2.5 for the vapor
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pressure of Rb, we find that at the 120 ◦C temperature of the pump bulb the rates are

γse,Xe = 7 × 10 -2 s -1 and γse,He = 2 × 10 -6 s -1, which is only significant for 129Xe; and at

the maser bulb temperature of 50 ◦C we have γse,Xe = 4 × 10 -4 s -1 and γse,He = 9 × 10 -9

s -1, which is insignificant for both species.

Diffusion through gradients of a magnetic field perpendicular to the average solenoid

field orientation generate fluctuations in the quantization axis of the noble gas nuclear spins

which leads to a decrease in the ensemble polarization. In the regime that we operate in

where the Larmor frequency is low enough that the phase evolution between collisions in

the gas is much less than one, but high enough that there is significant phase evolution

during the characteristic crossing time of the cell, the rate of depolarization is given by,

γ1,∇B⊥ = D
|∇Bx|2 + |∇By|2

B2
0

(2.184)

where is assumed that B0 is aligned along the z-axis. This was originally derived in [45, 46]

and extended to additional regimes in [47], which also includes an intuitive introduction

to this result (an intuitive explanation can also be gained by applying our discussion of

repeated weak interaction events in Sec. 2.1.1). In our solenoid we do not have an inde-

pendent measurement of the transverse magnetic field gradients; but assuming they are

no larger than the largest B0 gradient, then |∇Bx|/B0 ≈ 3 × 10 -5 cm -1 (and similarly for

abs∇By/B0). Taking the fastest diffusion coefficient in our typical cells from Tab. 2.6 of

D = 1.4 cm2/s for 3He in the pump bulb we have γ1,B ≈ 3 × 10 -9 s -1, which means this

mechanism is an insignificant contributor for our typical cells, even if we had field gradients

30 times larger than the ones considered here.

During binary collisions between noble gas atoms there is a dipole-dipole interaction

between their nuclei that couples the angular momentum of the nuclear spin to the angular

momentum of the pair around the center of mass. For 3He-3He collisions this process is
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calculated and measured in [48] giving a density dependent depolarization rate of,

γbc,He = 3.7× 10 -7 s -1 nHe
1 amagat

(2.185)

where nHe is the density of 3He in amagats (1 amagat is the density of 1 atm at 0 ◦C). For

our typical cells nHe ≈ 1 amagat, rendering this mechanism insignificant. For 129Xe-129Xe

collisions this process has been measured most recently in [49], giving a rate of,

γbc,Xe = 5.0× 10 -5 s -1 nXe
1 amagat

(2.186)

which again is insignificant in our system. Additionally, there is probably a 129Xe-3He

binary collision interaction that may be significant for 3He compared to 3He-3He collisions,

but still probably small compared to γ1,He. However, the depolarization rate from this

collisional interaction has not been measured.

In addition to binary collisions, we can also have three body collisions that form tempo-

rary molecules, particularly 129Xe-129Xe molecules. During the lifetime of such molecules

there is a coupling between the angular momentum of nuclear spins of the molecule and

rotational angular momentum of the molecule, which leads to depolarization. For mixtures

of pure 129Xe this has been calculated and measured in [50] to be,

γm,Xe = 6.7× 10 -5 s -1, (2.187)

which can be reduced by the addition of other gases that act as break up agents for the

129Xe molecules (the effectiveness of different gases was also measured in [50]).7 While

there is also a three-body depolarization mechanism for 3He, it is believed to be completely

dominated by the binary collision mechanism for all densities of interest [48], and in any

case is not a significant mechanism in our system.

7The scaling of interactions during binary collisions and temporary molecules with different gas densities
is discussed in Sec. 2.1.1
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Having dispensed with the above mechanisms as being only minor contributors to the

observed noble gas depolarization rate, we are left with the poorly understood catch-all,

wall collisions, whose detailed mechanisms are still a subject of active research: see the

series of articles [51, 52, 53] for a discussion of wall relaxation mechanisms for 3He; and

[54] for 129Xe with silicone coated walls. In Sec. 2.1.2 we derived the polarization loss rate

due to wall collisions for a diffusing gas in the limit that each collision had a very small

probability of depolarization,

γ1,wall = α
v̄

4

AT
VT

(2.188)

where α is the depolarization probability per collision, v̄ is the average thermal velocity,

AT is the total surface area of the cell, and VT is the total cell volume. Crucially, the

wall depolarization rate is independent of the diffusion coefficient in this limit; hence the

only way to significantly reduce the rate is to reduce α (assuming the surface area to

volume ratio of your cell is close to that of a sphere). The value of α depends on both the

strength of the interactions with atoms on the wall and the time it resides on the wall, so

not surprisingly, like all other interactions we have discussed, α is much larger for 129Xe

than 3He. To try and reduce α for 129Xe we coat the cell walls with a silane compound

called octadecyltrichlorosilane (CH3-(CH2)17-SiCl3) or OTS, whose silane group bonds to

the silicon in the glass walls of the cell leaving a long hydrocarbon chain as a buffer that

reduces α for 129Xe (OTS and wall losses are discussed further in Sec. 3.1).

2.3.2 Coherence Time T2

All the effects in the previous section on depolarization contribute to the decoherence rate of

the noble gas spins and, in addition, gradients in B0 inhomogeneously broaden the Larmor

frequency, i.e., lead to decoherence. The effect of gradients in B0 is somewhat mitigated by

motional averaging as each atom samples all of the cell multiple times while it diffuses. The

effect of motional averaging is calculated by Cates et al. in [47] for linear B0 gradients and

we will now use their formalism to calculate the effects for higher order gradients in B0.
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The formalism in [47] uses second order perturbation theory to calculate the effects

of gradients in B0 on the lifetime of the lowest order diffusion mode of the transverse

polarization (the uniform mode) using the specific example of a spherical cell. They begin

with a general Hamiltonian made up of a magnetic field generating a uniform Larmor

frequency Ω0 and a non-uniform Larmor frequency Ω1,

H = H(0) +H(1) = ~Ω0 ·K + ~Ω1 ·K (2.189)

where K is the nuclear spin and the effects of H(1) are perturbative. Hence, they seek a

perturbative solution to the general Liouville equation of motion for the density matrix,

ρ̇ =
1

i~
[H, ρ] +D∇2ρ (2.190)

with the series solution,

ρ(r, t) =
∑
i

Pifi(r)e−γt (2.191)

where Pi are the eigenpolarizations of the unperturbed Hamiltonian and the index i runs

over all polarizations. Cates et al. then find the general result for the lowest order pertur-

bation correction to γ by assuming that the unperturbed diffusion modes are completely

dominated by the lowest order uniform mode, as is the case in our cells as shown in Sec. 2.2.2.

In order to proceed further they use the example of a spherical cell and a linear magnetic

field gradient, but we will use a more general field gradient expansion using the solution to

Laplace’s equation in spherical coordinates (see [41]), which describes any magnetic field in

free space using spherical harmonics,

Ω1 =

∞∑
l=1

l∑
m=−l

Ω1;lmr
lYlm(θ, φ). (2.192)

Here we have eliminated terms that diverge at at the origin as well as the spatially uniform
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term (l = 0); and the spherical harmonic coefficients for a generic field can be found from,

Ω1;lm =
l + 3

Rl+3

∫ π

0

∫ 2π

0

∫ R

0
Ω1Y

∗
lm(θ, φ)r2 sin(θ) dr dφ dθ (2.193)

where integration is only performed over the spherical cell volume with a radius of R.

Using the spherical harmonic basis has two advantages, it matches the spherical harmonics

that make up the higher order diffusion modes and it is the basis used to construct coils to

generate magnetic field gradients to remove inhomogeneities (as we will see in Sec. 3.2). The

result is that the real part of the lowest order correction to γ for the transverse polarization

(the imaginary part, which generates a frequency shift, will be discussed in Sec. 2.4) from

a general gradient in the magnetic field is given by (following the notation of Cates et al.),

1

T2,∇B
= γ2,∇B = Re

(
γ

(2)
0;11

)
=

1

2
γ1,∇B⊥ +

∞∑
l=1

l∑
m=−l

Al|RlΩ1z;lm|2
R2

D
(2.194)

where Ω1z is due to the gradient in B0 (assumed to be aligned with the z-axis) and γ1,∇B⊥

is the same as in the previous section (see Eq. 2.184, which does not need to be extended to

higher order gradients as it makes a very small contribution to the decoherence rate). The

coefficients in the sum above are given by,

Al =
∞∑
n=1

3l2

2πx4
ln[x2

ln − l(l + 1)]
(2.195)

and the xln are given by the boundary condition to the diffusion equation,

djl(x)

dx

∣∣∣∣
x=xln

= 0, (2.196)

which assumes the walls are non-relaxing. The non-relaxing wall approximation is obviously

not true in our cells, but the wall relaxation rate is slow enough that the uniform diffusion

mode is an excellent approximation for the unperturbed Hamiltonian and has little effect

on the shape of the higher order modes. Additionally, the decoherence effects of the walls
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l Al Al/A1

1 1.09× 10-2 1
2 2.98× 10-3 0.273
3 1.25× 10-3 0.115
4 6.45× 10-4 0.059
5 3.77× 10-4 0.035
6 2.39× 10-4 0.022
7 1.61× 10-4 0.015
8 1.14× 10-4 0.011

Table 2.11: Coefficients for the decoherence rate due to magnetic field gradients of order l.

can be added to the decoherence rate of the magnetic field gradients in the same way as

it was added in the previous section to the depolarization rate. Although it is possible to

exactly calculate the values of Al as shown by Cates et al., the sum in Eq. 2.195 is roughly

made up of terms of 1/x6
ln and the difference between successive xln is roughly π, so the

sum rapidly converges and only the first few terms of the sum are necessary for a result

accurate to a few percent. The results of a numerical calculation of Al using the first 40

numerical values of xln for each l are shown in Tab. 2.11 along with the decrease in the

effect on decoherence of higher order gradients relative to linear gradients.

To compare our result to Cates et al. we evaluate our result for a linear gradient in one

direction,

Ω1 =
∂Ω1z

∂z
z (2.197)

where ∂Ω1z/∂z is a constant, making the only non-zero spherical harmonic component,

Ω1z;1,0 = 2

√
π

3

∂Ω1z

∂z
(2.198)

and giving a decoherence rate of,

γ2,∇B = 0.0457

(
∂Ω1z

∂z

)2 R4

D
. (2.199)
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This gives us the same result as Cates et al., where they find for a constant linear gradient,

γ2,∇B =
8

175
(∇Ω1z)

2 R
4

D
(2.200)

and 8/175 ≈ 0.04571. This linear terms is also the dominant contributor to the non-

homogeneous portion of the magnetic field generated by our solenoid with a fractional

gradient of |∇B0|/B0 ≈ 3×10 -5 cm -1 in the vicinity of the geometric center of the solenoid.

In the maser, the rate constant that determines its ultimate frequency sensitivity,

Eq. 2.170, is not just the decoherence rate, but also the observation time of the spins’

precession, which is limited by diffusive escape from the maser bulb. In Sec. 2.1.3 we com-

bined the decoherence rate with the diffusive maser bulb escape rate, GMM , to give an

effective decoherence rate, 1/T ′2. In terms of the mechanisms we have discussed in this

section the effective decoherence rate in our cells is dominated by,

1

T ′2
= GMM + γ2,∇B + γ1,wall. (2.201)

Ideally, therefore, we would reduce the magnetic field gradient contribution to < 30% of

the total such that it does not significantly impact the maser’s sensitivity. In our typical

cell, this magnetic field gradient requirement is more stringent for 129Xe than 3He due

to the smaller 129Xe diffusion coefficient and bulb escape rate, which offsets its smaller

gyromagnetic ratio. For our typical main field of B0 ≈ 6 G and using the fractional linear

gradient given above we have |∇B0| ≈ 180 µG/cm; and for 129Xe in the maser bulb of a

typical cell DM = 0.22 cm2/s and R = 1 cm, which gives a clearly unacceptable rate of

γ2,∇B = 0.4 s -1. To come within 30% of the measured effective decoherence rate for 129Xe

of 1/T ′2 = 5 × 10 -3 s -1 in the absence of magnetic field gradients, we must decrease the

gradients to ∇B0 ≈ 10 µG/cm. This is achieved experimentally with a set of first and

second order magnetic field gradient shim coils, which we estimate can reduce the magnetic

field gradient component of the decoherence rate of 129Xe to ∼ 6 × 10 -4 s -1 and of 3He to

∼1 × 10 -3 s -1 for cells of this size and diffusion coefficients (see Sec. 3.2 for more details).
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Presumably there is additional magnetic field gradient decoherence due to higher order field

gradients for which shim coils could be developed, although the number of coils necessary

to completely eliminate each gradient order grows rapidly. Thus, in summary, our maser’s

noble gas decoherence rates are not presently dominated by magnetic field gradients; and

even smaller effective decoherence rates could be achieved by modifying the cell geometry.

Although it was not used in our work, higher order perturbation theory effects of mag-

netic field gradients on decoherence rates have also been calculated in [55]. The other com-

mon cell geometry, the cylinder, has also been evaluated through slightly different means

in [56].

2.4 Frequency Shifts

In addition to constructing a 3He and 129Xe maser with excellent absolute frequency sensi-

tivity limited by thermal Johnson noise, we must also consider mechanisms that shift the

maser frequency away from the Larmor frequency and fluctuations of system parameters

that determine these frequency shifts. Such frequency shifts can degrade the maser’s fre-

quency sensitivity, especially for slowly modulated signals. We have already considered

several frequency shift mechanisms in Sec. 2.2 and we even considered the effects of mea-

sured fluctuations in Sec. 2.2.3. Here we reconsider all the shifts given before as well as

several new shifts, giving typical fluctuation estimates (see Tab. 2.12), keeping in mind that

we are ultimately interested in the comagnetometry signal, ωM,He − γR ωM,Xe, which can

significantly suppress the effects of common mode system fluctuations. In order to put the

size of these frequency shift mechanisms in the context of our typical maser performance,

we recall from the end of Sec. 2.2.3 that the experimentally-realized frequency noise spectral

density of the dual maser is limited only by thermal Johnson noise for modulation frequen-

cies between 1 mHz and 100 µHz; and hence no frequency shift mechanism is large enough

to limit the maser sensitivity in this regime. However, for slower modulations, less than

100 µHz, the frequency noise has a random walk spectrum caused by some frequency shift
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instability. We are particularly interested in the noise amplitude for one modulation over a

day, 11.6 µHz, where the realized noise density is ∼100 µHz/
√

Hz. If we consider just the

random walk component of the frequency noise (the white frequency and phase noise are

due to thermal Johnson noise, and so are not relevant) then in the time domain this noise

spectrum corresponds to an average peak to peak variation over the course of a day of about

2 µHz in the maser frequency; and it is this level that our frequency shift mechanisms much

reach to explain the data. Additionally, in order for an improved version of the 3He and

129Xe maser to only be limited by Johnson noise for a one day modulation, all frequency

shifts must be smaller than ∼200 nHz peak to peak. The scale of variation of some of the

parameters that determine the frequency shifts can also be found at the end of Sec. 2.2.3,

where we can read off from the random walk dominated power spectra that the transverse

polarization in the maser bulb changes by about 1%, as does the longitudinal polarization

in the pump bulb; and the temperature in the pump bulb varies by 0.05 ◦C, which modifies

the diffusive bulb escape rate and hence T ′2 by at most 1 × 10 -4 of its value (as before, all

variations are peak to peak values over a one day period). Measurements of the stability of

T ′2 in non-masing conditions in a typical cell were limited only by measurment noise for 3He

(white noise spectrum) with a fractional limit of 1× 10 -3, but showed a steady systematic

drift for 129Xe at a fractional rate of 3×10 -3/day even after the cell had been in the system

for ∼2 weeks. However, once the trend was removed from the 129Xe T ′2 measurements, the

noise was comperable to 3He. Higher SNR measurements of T ′2 would need to be made to

determine if there is random walk noise below this current measurement limit.

We begin with the Ramsey shift [57] on a two level system due to an off resonant

oscillatory field (for optical regime electric dipole transitions this is usually referred to as a

light shift or AC Stark shift),

δωM = ωM − ω0 =
Ω2
R,2

2(ω0 − ω2)
(2.202)

where ω0 is the unperturbed maser frequency, ω2 is the frequency of the second off resonant
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field, and ΩR,2 is the Rabi frequency generated by the second field. This is correct in

the limit that |ω0 − ω2| � ΩR,2, which is always the case in our experiment. For the

comagnetometry signal where each maser acts as the off resonant field for the other we

have,

δ(ωM,He − γR ωM,Xe) =
γHe

(
γHeB

2
1,Xe + γXeB

2
1,He

)
8(ωM,He − ωM,Xe)

. (2.203)

For the typical maser we have been describing in this chapter, the steady state B1 values

are B1,He = 0.9 µG and B1,Xe = 5 µG, which means the comagnetometry Ramsey shift is

dominated by the field from the 129Xe nuclei and is approximately 10 nHz, which makes

it irrelevant given our power fluctuations on a one day time scale are at the 1% level. In

addtition to the fields generated by the masers there are stray AC magnetic fields, typically

60 Hz power line harmonics, that penetrate our magnetic shields and couple to our resonant

circuit. We purposefully tune our masers to avoid these stray fields, but even for relatively

small detunings of 10-20 Hz the stray fields are so weak that their Ramsey shifts are only

in the range of 10 pHz and hence irrelevant even if they were turned all the way off and on.

A special limit of the Ramsey shift is the Bloch Siegert shift [58] due to the counter

rotating term we ignored in the rotating wave approximation made at the beginning of our

derivation of the maser equations (Sec. 2.1.3). This field is effectively a rotating field at the

negative of the resonant frequency, hence

δωM =
ΩR

2

4ω0
(2.204)

and for the comagnetometry signal we have,

δ(ωM,He − γR ωM,Xe) =
γHe

(
B2

1,He −B2
1,Xe

)
16B0

. (2.205)

For our typical maser this has an approximate value of −3 nHz, again making it irrelevant

compared to our sensitivity level and signal modulation frequencies.

As discussed in Sec. 2.3.2, diffusion through magnetic field gradients generates both
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decoherence as well as a frequency shift. The frequency shift is shown in [47] to be,

δω∇B ≈
γR2

10

(
|∇Bx|2 + |∇By|2

)
B0

, (2.206)

which, for typical values of ∇Bx ≈ 180 µG/cm, B0 = 6 G, and R = 1 cm yields δω∇B ≈ 3

µHz for 3He. However, when we consider the overall comagnetometry signal,

δ(ωM,He − γR ωM,Xe) ≈
γHeR

2

10

(
|∇Bx,He|2 + |∇By,He|2

)
−
(
|∇Bx,Xe|2 + |∇By,Xe|2

)
B0

(2.207)

we see this magnetic field gradient shift is massively suppressed as both species experience

nearly identical gradients and hence is completely irrelevant.

Thus far we have treated our system as existing in an inertial frame, but this is obviously

not the case as the surface of the Earth is rotating. Much like in the derivation of the maser

equations when we saw that moving in a rotating frame eliminated the effects of the B0

field; being on the Earth, rotating at a frequency ω⊕, adds an effective magnetic field to B0

of ω⊕/γ which is on the order of 10 nG. Since we are primarily interested in the magnitude

of the field and not small changes in its orientation, only the component of the Earth’s

rotation that is aligned with B0 has any significant effect (the other components are made

irrelevant due to the quadrature sum when calculating the magnitude). Hence, we only care

about the z-axis component in the lab frame,

ω⊕,z = ω⊕(cos(χ) sin(α) cos(β) + sin(χ) sin(β)) (2.208)

where χ is the latitude, α is the angle north of east, and β is the angle of inclination, which

gives a comagnetometry signal of,

δ(ωM,He − γR ωM,Xe) = (1− γR)ω⊕,z. (2.209)

In our experiment, located at a latitude of χ = 42.37◦, B0 is roughly aligned east-west,
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α < 0.1 rad, and horizontally, β < 0.01 rad, with fluctuations estimated at <10 µrad over

the course of a day. This leads to a total frequency shift of < 1 µHz and an insignificant

fluctuation in the maser comagnetometry signal of <0.1 nHz over a one day period.

A mismatch between the Larmor frequency and the resonant frequency of the circuit

leads to a frequency shift in the maser frequency referred to as cavity pulling and derived

in Sec. 2.2.1,

δωcavity =
2Qc
T ′2

ωc − ω0

ωM
. (2.210)

In our typical cell, 129Xe is set to near zero detuning, which means a fractional detuning of

|ωc − ω0|/ωM ≈ 2 × 10 -4 while 3He has a fractional detuning of 1 × 10 -3 giving a shift of

< 300 µHz. While it is possible to use comagnetometry to try and suppress the effects of

fluctuations in the cavity pulling parameters, it would only be possible for one parameter

and would require a level of fine tuning that is better utilized to make the cavity pulling

shifts as small as possible. Variations in T ′2 due to temperature instability in the pump bulb

only cause a shift of < 30 nHz and so are not a factor. Variation in Qc is dominated by

changes in the resistive loss in the copper wire of the inductors and the thermal coefficient

of the resistivity of copper has a fractional value of 3.9 × 10 -3/◦C, meaning the inductors

temperature only needs to be stabilized to . 0.2 ◦C, which is always exceeded by more

than an order of magnitude in our experiment. The resonant frequency of the circuit,

however, needs to be stabilized to a fractional value of < 1 × 10 -6 to be equivalent to the

ultimate maser sensitivity level for one day modulations. The temperature coefficients of

the inductors and capacitors that make up the resonant circuit have a fractional value of

<3×10 -5/◦C requiring a temperature stability of <30 m◦C and preferably <10 m◦C, which

is challenging, but still exceeded by a factor of 3 in our experiment. However, stray and

parasitic capacitances, like coupling to metal shielding and distributed capacitance between

the wires of the inductors, tend to be much less stable with respect to temperature, by an

order of magnitude or more, or over the course of time and so these capacitances must be

minimized to ensure stability.
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The static and oscillating magnetic fields generated by the nuclei can shift the maser

frequency as shown in Sec. 2.2.1 giving a self field shift of,

δωself = − 4

30

ε2

T ′2qcη
(2.211)

for a uniformly magnetized ellipse with eccentricity ε. For our typical system values and

a large estimate for the eccentricity ε2 = 0.3, corresponding to a 20% elongation of the

magnetization along the transfer tube aixs, gives a shift of < 50 µHz. There is some

suppression of the overall value and fluctuation in the self field frequency shift due to

comagnetometry, but it depends on the particular values of ε, T ′2, and qc for each species,

so we will explore the worse case senario. Variation in the filling factor η is expected to be

very small as it is due to geometric factors of stable materials in a temperature stabilized

environment; hence it is likely to have fractional changes of < 1 × 10 -6 and be irrelevant.

We have already established that changes in qc and T ′2 are too small to generate significant

frequency fluctuations for shifts of this magnitude. Changes in the shape of the ensemble

as given by the eccentricity, ε, are more diffucult to estimate, but are probably similar to

T ′2 and hence are also irrelevant.

During collisions with polarized Rb atoms, noble gas nuclei experience a strong magnetic

field that leads to a frequency shift in the maser. This was derived for noble gas nuclei in

the maser bulb in Sec. 2.1.1 as,

δωRbc ≈ (kng − 1)
µ0~
3
γngγRbnRb

γse,Rb
Γsd

Pz,Xe (2.212)

where the enhancement factor, kng, is about two orders of magnitude larger for 129Xe than

3He, meaning that comagnetometry does little to suppress the shift on 129Xe. For our

typical system parameters the shift on 129Xe in the maser bulb is ∼ 2 µHz and even for

large changes in the maser bulb temperature of 10 mK this only changes nRb by 0.1% and

hence implies only a 2 nHz shift. Similarly, a 0.1 K change in pump bulb temperature only

leads to a 0.1% fractional change in the Xe longitudinal polarization (via T ′2) and a 0.1%
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change in γse,Rb/Γsd due to the change in gas density, and is another irrelevant shift.

As discussed in detail in Sec. 2.2.2, a mismatch in the overlap of the 3He and 129Xe

masing ensembles makes the comagnetometry signal susceptible to frequency shifts from

magnetic field gradients,

ωM,He − γR ωM,Xe = γHe〈δr〉 ·∇(Bex +BMz) + αrγR ωM,Xe (2.213)

where,

αr = 〈δr〉 · ∇ξs
ξs

. (2.214)

In our cell the separation between ensembles, 〈δr〉, is along the transfer tube axis (y-axis)

with a typical value, as measured by applied field gradients, of 20 µm. The inhomogeneity in

the center of our solenoid along the y-axis leads to a value of αr ≈ 2× 10 -8 and a frequency

shift of αrγR ωM,Xe ≈ 400 µHz. Fractional fluctuations in αr can be caused by changes in

the solenoid gradient which is estimated at 1×10 -5 based on the linear coefficient of thermal

expansion of 2 × 10 -5/◦C for the solenoid (copper on an aluminum form), a temperature

stability of ∼ 0.25 ◦C, the scaling of the solenoid field per unit current as 1/length, and

the scaling of the strength of gradients per unit current of order l as 1/(radius)l+1, which

leads to a negligible frequency fluctuation of ∼ 4 nHz. Shifts due to external magnetic

field gradients, ∇Bex, include the linear gradient shim coils that oppose the gradients in

B0 contained in the αr term, hence γHe〈δr〉 · ∇Bshim ≈ −400 µHz, and that provide

some common mode suppression of changes in the dimensions of the forms holding the

electromagnets. However, since the gradient coils are wound on a plastic form (Nylatron)

with a high coefficient of thermal expansion, this suppression is largely lost. Variation in

∇Bex due to the magnetic field gradient shim coils has an estimated fractional value of

3 × 10 -5 due to thermal expansion and a 1 × 10 -5 component due to drifts in the power

supply, which again leads to a negligible frequency fluctuation. Additional ∇Bex terms

could come from magnetic fields outside of the magnetic shields surrounding the maser and

from magnetization of the magnetic shields themselves. We do not have serious estimates for



Chapter 2: Theory of the 3He and 129Xe Zeeman Maser 95

either of these mechanisms (though we expect them to be small), but they can be reduced

if necessary by implementing a magnetic shield design with a higher shielding factor and a

solenoid design that includes an electromagnetic shield to reduce the amount of magnetic

flux through the shields and hence their level of magnetization. The final magnetic field

gradient term, ∇BMz , is dominated by the gradient from magnetization in the pump bulb,

which we approximate as a pure dipole term,

∇BMz =
dBz
dy

= −3µ0

8π

~γnPVPPP,eq
|y|4

(2.215)

where the separation between bulb centers, y, is approximately 5 cm. In our case this gra-

dient is dominated by the 129Xe magnetization, which generates a gradient of 0.05 µG/cm

leading to a shift of 300 nHz in the comagnetometry signal and a negligible frequency fluctu-

ation of 3 nHz due to magnetization fluctuations. Lastly, we need to consider fluctuations in

〈δr〉, but to do so we need to determine the size of the residual linear magnetic field gradient

after the linear gradient shim coils have been used to maximize T ′2 in order to calculate the

size of the frequency shift due to all field gradients, δω = γHe〈δr〉 ·∇B. We estimate the

size of residual linear gradients based on the size of the error, ∆T ′2, when maximizing T ′2,

|∇B0| ≈
1

γT2R2

√
175D∆T2

8
. (2.216)

In a typical cell ∆T ′2 ≈ 3 s per gradient axis for a 200 s T ′2 for 129Xe, giving |∇B0| ≈ 3 µG

/ cm per gradient axis and a shift of 20 µHz. The fluctuations in 〈δr〉 are probably similar

in size to those of T ′2 leading to frequency fluctuations of 2 nHz.

As discussed in Sec. 2.2.2, we wind a set of choke coils around the transfer tube to reduce

the coupling of noble gas atoms in the tube to the pick up coil B1 field, but this introduces a

frequency shift in the maser due to the phase shift in the reactive current in the choke coils

from their finite resistance. As was calculated in Sec. 2.2.2, we expect the maser frequency

shift from the choke coils to be <30 µHz and its stability will primarily be limited by the

temperature stability of its resistance. The fractional stability of the resistivity of copper
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in the coil’s temperature environment is ∼ 1 × 10 -4, which leads to a negligible frequency

fluctuation of ∼3 nHz.

Collisions of polarized 3He and 129Xe with other atoms and the walls generate chemical

shifts in their Larmor frequencies due to perturbations of the electronic structure of the

atoms, which changes the diamagnetic and paramagnetic shielding of the nuclear magnetic

moment by the electrons (see [59]). For 3He the fractional diamagnetic shielding is only

around 60 ppm (parts per million, 1 × 10 -6), but for 129Xe it is around 7000 ppm [60],

so we will only consider chemical shifts involving 129Xe. Collisions between 129Xe and Xe

and collisions between 129Xe and N2 at the 50 ◦C temperature of the maser bulb produce

changes in shielding of −0.514 ppm/amagat of Xe and −0.213 ppm/amagat of N2 ([61] and

[62] respectively); while we expect 129Xe and 3He collisions to have a negligible effect based

on theoretical work in [63] comparing the interaction of 129Xe with other noble gases. For

the gas densities in the maser bulb of our typical cells we have 0.06 amagats of 129Xe and 0.2

amagats of N2, which gives a total change in shielding of −0.07 ppm corresponding to a 1.5

mHz shift in the comagnetometer signal. Fluctuations in the pump bulb temperature will

change the fractional gas densities in the maser bulb by <1×10 -4 leading to maser frequency

fluctuations of<150 nHz. There is also a change in the shielding due to temperature changes

in the gas, but this is very small at our temperatures with a coefficient of 2× 10 -5 ppm/◦C,

which is 100 nHz/◦C for the maser frequency. Collisions with the wall also introduce

a chemical shift when the atom is adsorbed onto the wall with a change in shielding of

around 300 ppm [64], but each atom only spends a small fraction of its time stuck to the

wall, about 1 × 10 -6 [54] (for a coated cell with a similar surface area to volume ratio to

ours), so the maser frequency shift is <10 µHz. In the limit that only a small fraction of the

atoms are adsorbed onto the wall, the wall shift should be insensitive to gas density since

the collision rate onto the wall increases the same amount as the number of atoms in the

bulk, so the fraction on the wall stays constant. The wall shift is sensitive to temperature

changes; and using the sensitivity to temperature of the absorbed fraction given in [54] gives

<0.5 µHz/◦C and hence a negligible fluctuation of <5 nHz for our maximum temperature
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Shift Mechanism Mag. (µHz) Fluctuation Mech. Mag. (nHz)

Ramsey 0.01 Laser power & TP 0.1
Bloch Siegert 0.003 Laser power & TP 0.03
Inertial Earth Rotation <1 Room temperature 0.1
Cavity Pulling 300 Circuit temperature 20

TP (T ′2) 30
Self Field 50 TP (T ′2) 5
Rb Contact Shift 2 TM & TP 2
Ensemble Overlap:

Solenoid Gradient 400 Room temperature 4
Shim Coil Gradient 400 Room temperature 12
129Xe PP Gradient 0.3 Laser power & TP 3
Residual Gradient 20 TP (T ′2) 2

Choke Coil Field 30 TM 3
129Xe Wall Chemical Shift 10 TM 5
129Xe-Xe-N2 Chemical Shift 1500 TP (nM ) 150

TM 0.3

Table 2.12: Maser frequency shift mechanisms and their approximate magnitudes as well as
the system parameters that cause the largest frequency fluctuations and their approximate
peak to peak magnitudes at a one day modulation. The order is the same as presented in
the text.

fluctuation of 10 m◦C in the maser bulb.

None of the frequency shifts discussed above and summarized in Tab. 2.12 come close

to generating the frequency fluctuations observed in the experiment for modulation periods

of a day. In fact, all but one of the shifts are estimated to be at least an order of magnitude

lower than the masers ultimate frequency sensitivity and two orders of magnitude lower

than the observed fluctuations. Only chemical shifts from collisions of 129Xe with Xe and

N2 are of the same order of magnitude as the maser’s ultimate frequency sensitivity. We

can check to see if we have accounted for all the frequency shifts by using the values in

Tab. 2.7 for the 3He and 129Xe gyromagnetic ratios and maser frequencies, which gives

(ωM,He− γR ωM,Xe)/(2π) = −2.85± 0.51 mHz which is slightly higher than our estimate of

−1.8 mHz from the 129Xe chemical shift (this raises the 129Xe frequency and hence drops the

comagnetometer frequency) and cavity pulling (3He cavity resonance is below the Larmor

frequency), so there could be another mechanism on the order of 1 mHz. Additionally, one
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of our inputs could be much less stable than we have estimated, in particular other groups

[27] have observed that there is a significant temperature difference (based on measurements

of Rb density) when their pumping lasers are on versus off even though there is no observed

change in the temperature of the oven surrounding the cell (although we believe we have a

reasonable estimate and monitor of the size of the laser heating as explained in Sec. 3.3).

Such a mechanism could be the cause of our frequency instability as it would drive maser

shifts from the 129Xe chemical shifts, which are far larger than all others. In the case of

the cell we used as an example in Sec. 2.2.3, we believe the frequency fluctuations were

also influenced by the observed degradation of T ′2 of 129Xe between the start and end of the

data set and the associated change in the cavity pulling shift. Since there was no significant

change in the T ′2 of 3He we believe the change in 129Xe was due to slow degradation of the

anti-relaxation OTS wall coating. Other possible frequency shift mechanisms for which we

do not have good estimates include changes in diffusion coefficients, which affect diffusive

coupling of the maser bulb to less stable frequency environments as explained in Sec. 2.2.2.

2.4.1 Modulation to Reduce Drifts

For symmetry tests using the 3He and 129Xe maser, reducing the effect of drifts and random

walks in frequency shifts is possible by modulation of the 3He and 129Xe spin quantization

axis orientation. This can be achieved by either physically rotating the experiment or

reversing the B0 field in place. Modulation of B0 is advantageous for measuring new physics

due to background fields to the universe as it shortens the time scale of interaction with

the background field compared to waiting for the Earth to rotate over a sidereal day; but

for anomalous spin-spin interactions the spin source orientation can be modulated more

easily than the maser as shown in Ch. 5. Modulating the spins’ quantization axis works for

all frequency shifts that are constant regardless of the direction of B0, cavity pulling, self

field, collisional, Ramsey, etc.; but not for shifts due magnetic field gradients external to

the experiment or the rotating reference frame of the Earth, as these both change sign in

the same way as background fields due to new physics when the spins’ quantization axis is
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modulated.

In practice, changing the orientation of B0 in place can only be performed infrequently

as it introduces large transients in the maser signal, thus it is only really an option for

modulation on time scales longer than a day. This means that we are not affected by the

Earth’s rotation shift; however, modulations on time scales longer than a day only reduce

the component of the frequency drift that is coherent with the sidereal day, it has no effect

on random drifts, which are our primary concern.

The simplest way to modulate the spins’ quantization axis by physically rotating the

experiment is flipping the experiment back and forth between two positions, one with B0

pointing east and the other with B0 pointing west. It is impractical to try and orient

the experiment in an absolute direction to zero out the shift due to Earth’s rotation, even

determining the actual direction B0 is pointing would be challenging let alone aligning it

relative to the Earth’s axis at the level of 100 µrad. Thus, flipping the spins’ quantization

axis back and forth will generate a frequency shift due to Earth’s rotation at that modulation

frequency making it impossible to look for new physics background fields at that modulation

frequency. However, since Earth is also rotating through the background field it will produce

sidebands separated from the modulation frequency by the sidereal day frequency. In order

to make a sensitive measurement at these sideband frequencies we only need a stable and

repeatable alignment of the spins’ quantization axis in its east and west positions: the

positions do not have to be accurate or even exactly 180◦ opposite each other, they just

need to be consistent under repeated reversal. It should be reiterated though, that noise

generated by magnetic field gradients external to the experiment is not reduced by this

technique and will show up around the frequency that the experiment is modulated.

2.5 Sensitivity and Possible Improvements

As we established in Sec. 2.2.3, the fundamental limit to the frequency shift sensitivity of the

3He and 129Xe maser operated as a comagnetometer, ωM,He − γR ωM,Xe, is due to thermal
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Johnson noise in the resonant circuit; and the spectral density of the comagnetometer signal

is given by,

σν =

√
kBTM
π

√
1

(T ′2,He)
2 PHe

+
γ2
R

(T ′2,Xe)
2 PXe

. (2.217)

In this section we will discuss other noise terms, both technical and fundamental, that can

limit frequency sensitivity, as well as simple scaling laws of how to improve the maser’s

frequency sensitivity, and detection methods other than inductive pickup coils that could

improve sensitivity.

2.5.1 Noise Sources

In addition to thermal Johnson noise in the circuit there are other sources of broadband

noise that can reduce the maser frequency sensitivity in certain operating regimes: thermal

currents in the aluminum form of the solenoid generate fluctuating magnetic fields that

contribute to both B0 and couple directly to the pickup coil; thermal fluctuations in the

magnetization of the magnetic shields generate 1/f noise in B0; rotational vibrations of

the pickup coil generate noise as the coils axis is modulated relative to B0; input noise of

the amplifier connected to the resonant circuit; and shot noise. To put these noise sources

in perspective, we recall that for our typical maser the measured white frequency noise

spectral density of the comagnetometry signal is σν ≈ 15 µHz/
√

Hz.

Thermal Johnson noise currents generated in the aluminum form of the solenoid (and

in the magnetic shields, but the aluminum form is closer to the maser) generate magnetic

fields that add white noise to B0 with a spectral density of [65],

δBz,curr =

√
3

16

µ0

√
kBTσt

a
(2.218)

for the case of an infinite cylinder8 where a is the radius of the form (11.8 cm), σ is the

conductivity (2.7 × 107 Ohm -1m -1), and t is the thickness (1.5 mm), generating a field of

8The infinite cylinder is a good approximation for our solenoid form with a length to radius ratio of 10.
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0.6 nG/
√

Hz. If our maser had perfect comagnetometry, then it would be unaffected by

δBz,curr, but for small displacements between field measurement points the field fluctuations

are still correlated and so the field noise is suppressed by roughly, 〈δr〉/a ≈ 2× 10 -4 leading

to a frequency noise of 0.3 nHz/
√

Hz, which is clearly irrelevant compared to our typical

maser performance. It is not necessary to actually calculate the coupling of the thermal

magnetic field noise from the aluminum form to the pickup coil to know that it does not

significantly contribute to our existing thermal Johnson noise floor, as we know that there

is the same noise power in the form as the circuit, so at worst they exchange the same

amount of power back and forth (assuming both are at the same temperature) and some

of the maser power is dissipated in the form. However, it is still instructive to estimate the

noise level of the thermally generated magnetic field in the transverse direction to evaluate

the limits of methods other than a room temperature pickup coil. To calculate the magnetic

field generated in the aluminum form that couples to the pickup coil we approximate the

transverse orientation of the cylinder as an infinite plane. In this approximation with the

pickup coil a distance d above the plane, it is shown in [65] that the dominate magnetic field

contribution comes from current flowing in a washer in the plane centered on the pickup

coil with an average radius of d and a width of d,

δBy,curr(ω) =
µ0

4
√

2d

√
4kBTR(ω)√

R2(ω) + (ωL)2
(2.219)

where R(ω) is the frequency dependent resistance of the washer, and L is the washer in-

ductance given by,

R =
2π

σt(ω)
and L ≈ 1.6µ0d. (2.220)

Here σ is the washer conductivity and t(ω) is the frequency dependent washer thickness,

t(ω) =


t0 for ω � ωskin√

2
µ0σω

for ω � ωskin

where ωskin =
2

µ0σt20
(2.221)
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where t0 is the washer thickness at ω = 0 and ωskin/(2π) ≈ 4 kHz is the frequency at which

the skin depth becomes influential. For our system parameters we have δBy,curr(ωM,Xe) ≈ 5

pG/
√

Hz and δBy,curr(ωM,He) ≈ 2 pG/
√

Hz, which are much smaller than the corresponding

Johnson noise in the circuit, which generates fields of 8 and 4 nG/
√

Hz at the 129Xe and

3He maser frequencies.

In addition to thermal current fluctuations generating magnetic field noise, there are

thermal magnetization fluctuations in the high permeability magnetic shields [66, 65], which

generate 1/f magnetic field noise with a spectral density of,

δBz,magn =
0.26µ0

r
√
t

√
4kBTµ′′

ωµ′ 2
(2.222)

where r is the radius of the shields (19.1 cm), t is the thickness of the shields (1.5 mm), and µ′

and µ′′ are the real and imaginary parts of the shields’ permeability, respectively. Assuming

the material properties of our shields are similar to those in [66] we have µ′/µ0 ≈ 3 × 104

and µ′′/µ′ ≈ 3 × 10 -2; and with a comagnetometry suppression of 〈δr〉/r ≈ 1 × 10 -4 we

find δBz,magn ≈ 2/
√
ν pG/

√
Hz, which limits the sensitivity of any measurement over one

modulation period to ∼ 6 nHz. The δBz,magn noise is primarily an issue for day long

modulations, which have a sensitivity limit of ∼ 50 nHz with our typical maser, meaning

this is not currently a limitation, but it is a potential issue for the future.

The heated compressed air that we pass through the oven holding the maser cell to

heat it and stabilize its temperature also introduces mechanical vibration of the pickup coil,

which leads to a time varying magnetic flux and additional noise in the resonant circuit. In

particular, rotation of the pickup coil relative to B0 leads to a voltage of,

V = ApuNpuB0
dθpu
dt

(2.223)

where Apu is the loop area of the pickup coil, Npu is the number of turns in the pickup coil

(with ApuNpu ≈ 2 m2), and π/2− θpu is the angle between the pickup coil and B0. As seen

in Fig. 2.8 the vibration noise is limited to frequencies below the maser operation. To give
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Figure 2.8: Measured spectral density at the input to the amplifier of the resonant circuit
with and without the blown air (the masers are not active and 60 Hz harmonic spikes have
been removed). The circuit double resonances for 3He and 129Xe are clearly seen, as well
as air flow induced noise.

an idea of the size of the vibrations, we convert the voltage spectrum to angle and then

integrate giving a standard deviation of θpu of order 100 nrad, which, given the radius of

the coil ∼2 cm, means we are detecting vibrations on the order of 1 nm coil displacement.

The amplifier connected to the resonant circuit adds noise in the form of independent

voltage and current noise, which must be combined with the thermal Johnson noise to find

the total voltage noise floor. At each of the circuit resonances the total voltage noise power

spectral density is,

ST = 4kBTReff +
SV
q2
c

+ (qcReff)2SI (2.224)

where SV and SI are the amplifier voltage and current input noise power spectral densities

respectively. The amplifier we use is an instrumentation amplifier, an INA110, with rated

input noise spectral densities of
√
SV = 10 nV/

√
Hz and

√
SI = 1.8 fA/

√
Hz, which leads

to an increase of no more than 2% of
√
ST over the pure thermal Johnson noise value.

A more fundamental limit to the maser sensitivity than thermal noise is the shot noise
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of the magnetic field generated by the maser. This limits the frequency sensitivity to,

σν,shot ≈
1

πT ′2

√
~ωM
P

, (2.225)

which for our typical maser gives σν,shot ≈ 1 nHz/
√

Hz, which is 2 × 104 times smaller

than the sensitivity limit from Johnson noise in the resonant circuit. The shot noise SNR

is also about 10 times smaller than the SNR limit set by δBy,curr, so such thermal current

generated magnetic fields could be the limiting factor in the case that a shot noise limited

detector was used.

2.5.2 Scaling Laws for Sensitivity and Comparisons to Competing Tech-

nologies

By only scaling the current system there are two ways to improve the maser frequency

sensitivity, increase maser power,P, and increase coherence times, T ′2, as per the now familiar

frequency spectral density,

σν =
1

πT ′2

√
kBTM
P

(2.226)

where increasing coherence times has the greatest payoff. In addition to frequency sensitivity

we must also consider the scaling of frequency shifts and as we noted in Sec. 2.4, the

most sensitive frequency shift is the cavity pulling shift, which already requires a thermal

stability of the resonant circuit to < 10 mK to avoid limiting the detection of day long

modulations. Reaching a thermal stability of the resonant circuit of < 1 mK is possible,

but beginning to push the technical limit, which means that there will be little practical

benefit in increasing the maser power by more than a factor of 100. On the other hand,

increasing T ′2 decreases the sensitivity of the maser to cavity pulling in the same way as it

increases the maser sensitivity meaning no additional stabilization is required. However, if

the system is modulated via rotation as described in Sec. 2.4.1 then increasing T ′2 would

require increased time between rotations in order to reach the white frequency noise floor

and see any sensitivity improvement and requires stabilization of frequency shifts over longer
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time scales whereas increasing the maser power increases sensitivity at all time scales.

To determine the scaling of the maser power, recall from Sec. 2.2.1 that the power is

just the energy per polarized nucleus times the arrival rate of polarized nuclei in the maser

bulb,

P ≈ ~ωM
2

VMnMGMPPP,eq. (2.227)

In the usual case where the maser is well into saturation, τRD � T ′2, then PP,eq ≈ ST ′ and

invoking detailed balance from Sec. 2.1.2 for a lossless transfer tube and expanding T ′ and

S gives,

P =
~ωM

2
VPnPγsePRb

GPP

γse +GPP + 1
T

. (2.228)

In the case of 3He, the diffusive escape rate from the pump bulb is much more rapid than

either the spin exchange or depolarization rates, GPP,He � γse,He, 1/THe, so the power is

determined by,

P ≈
~ωM,He

2
nP,HePRbnRbkse,HeVP . (2.229)

To increase the 3He power we can increase the temperature of the pump bulb to increase the

Rb density or increase the size of the pump bulb (with the requisite increase in resonant laser

power to keep PRb close to unity) or increase the density of 3He atoms by increasing the 3He

fill pressure or increase B0 to increase ωM . Increasing temperature is not currently an option

as the Rb in the cell tends to react with and ruin the anti-relaxation coating (OTS) we use

to increase 129Xe lifetimes once the cell temperature is over ∼ 140 ◦C for a few days and

we are already running at ∼ 120 ◦C (see Sec. 3.1 for a further discussion of cell coatings).

Increasing the 3He density by a significant amount is not recommended as it makes the

system more susceptible to magnetic field gradients that cause both frequency shifts (see

Sec. 2.2.2, although this is not really well understood), and decoherence (see Sec. 2.3.2).

Increasing B0 means that we need higher fractional magnetic field homogeneity to reach

the same absolute field homogeneity necessary for long T ′2 times which will probably require

higher order magnetic field gradient trim coils. Increasing the volume of the pump bulb
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leads to an increase in the size of the system which makes thermal stabilization more difficult

as it is easier for thermal gradients to develop across the system, but this is probably not a

significant concern for at least a doubling of the pump bulb’s linear dimensions. However,

the requisite increase in laser power necessary to polarize the greater number of Rb atoms

in a larger pump bulb will require a better stabilized laser so that the absorbed laser power

thermal load on the cell does not lead to instability.

In the case of 129Xe, the spin exchange rate is faster than the other rates by an order

of magnitude. In this limit, γse,Xe � GPP,Xe, 1/TXe, the maser power is given by (for a

lossless transfer tube),

P ≈
~ωM,Xe

2
nP,XePRbDA

At
Lt
. (2.230)

If 129Xe was the only gas in the system, then the 129Xe maser power would not depend on

its gas density as DA ∝ 1/nXe and would only be a function of the geometry of the transfer

tube and ωM (as long as we stay in our usual regime that the diffusive bulb escape time

is much longer than the time to cross the bulb). However, since DA includes contributions

from all gases, increasing the gas density of other gases over 129Xe leads to a reduction in

129Xe maser power. In our typical cells the 129Xe diffusion coefficient is dominated by the

contribution from 3He, so for modest increases in the 129Xe density there would be a linear

increase in 129Xe maser power. Increasing the 129Xe maser power by increasing the diffusive

transfer rate between bulbs by modifying the transfer tube geometry, At and Lt, would lead

to a decrease in T ′2 due to the faster diffusive bulb escape rate and hence a likely decrease

in maser frequency sensitivity. Increasing the density of 129Xe requires an increase in laser

power as 129Xe is the dominant contributor to the Rb spin destruction rate (see Sec. 2.1.1).

Increasing B0 to increase ωM has the same caveats as in the case of 3He and also makes the

chemical shifts of 129Xe larger in absolute terms.

Increasing the length of T ′2 requires reducing each of the three dominant underlying
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effective decoherence mechanisms,

1

T ′2
= GMM + γ1,wall + γ2,∇B

=
3At
4πLt

DA

R3
M

+ α
3v̄

4

1

RM
+

∞∑
l=1

l∑
m=−l

Al|RlM Ω1z;lm|2
R2
M

DM
(2.231)

which have conflicting scaling with respect to RM and DM . The greatest unknown is the

size of higher order magnetic field gradients generated by the solenoid as their effects grow

very rapidly with cell radius, RM , constraining the advantages gained by increasing the cell

radius to reduce the size of GMM and γ1,wall. Keeping this in mind, an achievable scaling

goal would be to increase the bulb volumes by a factor of 4 and hence increase all linear

dimensions, except the transfer tube radius, by 1.6. In such a cell we would be able to

realize a T ′2 of ∼ 500 s for each species assuming we could reduce the linear gradients to

<2 µG/cm and similarly constrain the size of the Larmor frequency change due to higher

order gradients across the cell, i.e. Rl Ω1z;lm. The 129Xe T ′2 could be increased even further

if cells could be reliably made with walls with small α. With these changes 129Xe becomes

the limiting factor in the sensitivity, so an increase in the 129Xe density by a factor of

two would improve the overall sensitivity without increasing the diffusion coefficients. This

system would require 3 W of resonant laser power to polarize the Rb and give maser powers

of PHe ≈ 4 fW and PXe ≈ 10 fW. This leads to a white frequency noise level of < 1.5

µHz/
√

Hz which gives a sensitivity of ∼5 nHz for modulations with a one day period which

is the same size as the 1/f thermal magnetization noise floor of Sec. 2.5.1 (here we are

assuming that the magnetic field gradient susceptibility of the maser will remain the same,

as its origin and scaling are unclear). In order to utilize this lower noise floor it will be

necessary to rotate the experiment as described in Sec. 2.4.1 to avoid drifts in frequency

shifts and the 1/f thermal magnetization noise. The rotation period of the experiment

would have to be > 3 × 103 s in order to reach the white frequency noise limit, which

requires a reduction in the current random walk frequency noise by a factor 2 to 3 to ensure

the thermal white frequency noise floor is reached.
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How would such a maser compare to the competition? A white frequency noise floor of

1.5 µHz/
√

Hz translates into a sensitivity of 5 nHz/
√

day for a sidereal modulation measure-

ment or any other modulation frequency in the white frequency noise regime averaged over

a day. The Romalis group’s K-3He SERF comagnetometer used in [8] had a typical sensi-

tivity of 6 nHz/
√

day in their sidereal modulation measurement, but their ultimate noise

floor is actually 0.2 nHz/
√

day which they utilized in their anomalous spin-spin coupling

experiment [9]. The Heil group’s 3He and 129Xe free precession comagnetometer detected

by a SQUID in [10] does not have a white frequency noise regime, but Monte Carlo simu-

lations show that an optimal measurement can be obtained by measuring for 2T2 and then

refreshing the cell (although the decrease in sensitivity changes slowly so that 5T2 is only
√

2 times worse and 10T2 is 2 times worse) which gives a sensitivity of approximately,

1

23/2 T2 SNR
√
Td

(2.232)

per
√

day where SNR is their signal to noise ratio per
√

Hz when the FID starts and Td is

the length of the day. The Heil group’s system [10] has SNR ≈ 1000 and T2 ≈ 1.5 × 104 s

for 129Xe with much better numbers for 3He, so we have to scale the above sensitivity by

γR, which gives a sensitivity of 0.2 nHz/
√

day (very similar to the Romalis group’s K-3He

system). Competing against systems whose promise is ∼25 times better than the promise

of a substantial reworking of our 3He and 129Xe maser is probably not a wise investment.

2.5.3 Changing Detection Methods

An even more radical step for possible improved performance would be changing detection

methods of the maser frequency from a room temperature inductive coil to a cryogenic

system or a third, lower noise AC magnetometer. A cryogenic system would involve cooling

the resonant circuit to lower its thermal noise floor, with a 4 K temperature giving a factor

of 9 improvement in maser SNR. The resonant circuit does not have to have high Q, in

fact, a Q similar to the current system would be ideal to avoid excessive cavity pulling. The



Chapter 2: Theory of the 3He and 129Xe Zeeman Maser 109

cryogenic coils would also have to be shielded from inductive coupling to metal surfaces at

room temperature as this would increase the noise in the circuit.

Adding a more sensitive AC magnetometer to the system with a separate feedback coil

is more difficult to quantify as it depends on proximity of the magnetometer to the cell.

However, we can look at some of the scaling properties of introducing such a detector,

which is typically characterized by its detection noise floor for AC magnetic fields over a

frequency range: e.g. the SQUID used in [10], which has a white noise floor of ∼2 fT/rtHz

for modulations between 20 and 100 Hz. First, we determine the noise floor of our pickup

coil by calculating the RMS magnetic field that generates an SNR of 1 per
√

Hz as given

by the ratio of the RMS voltage generated in the pickup coil to the Johnson noise voltage,

δBc =

√
4kBTMReff

ApuNpuωM
= ξ0

√
4kBTM
ωMLpuqc

, (2.233)

which gives 10-15 fT/
√

Hz at our maser frequencies. We can now write our standard

ultimate thermal frequency noise floor in terms of the coil AC magnetic field detection

noise floor or more generally the noise floor of any detector,

σν =
1

πT ′2

√
qc
2η

ωM
1

2µ0
δB2VM

P
, (2.234)

where the filling factor, η, in this case includes both the field overlap of the feedback coil with

the cell and the field overlap of the magnetometer with the cell and qc is a measure of the

gain necessary to bring the maser well above threshold. The disappointing aspect is that,

all other parameters being the same, the SQUID only brings a factor of 7-5 improvement

in the noise floor, less than just a cryogenic pickup coil. However, the frequency noise floor

is now independent of the maser frequency (P ∝ ωM ) as we would expect when treating

the magnetic field detection limit as a constant since the magnetic field generated by the

maser does not change with ωM . This means that much lower B0 fields can be used making

it much easier to minimized field gradients for long T ′2s and reducing the chemical shifts of
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129Xe. Basically, in the quest for ultimate sensitivity, all the scaling possibilities point in the

direction already taken by [10] where they have gotten around our bottleneck of bulb escape

limiting T ′2 by having a single sealed bulb. Thus, our double bulb approach is unlikely to

be competitive with their ultimate sensitivity.



Chapter 3

Experimental Realization

In Chapter 2 we discussed all the required elements for a dual noble gas maser as well as

many of the particulars of our implementation including dimensions, temperatures, and gas

pressures of the double bulb glass cell that holds the noble gases, properties of the doubly

resonant feedback circuit, as well as the magnetic fields in the system. In this chapter we will

discuss the manufacture and/or characterization of the primary components of our system.

The experimental apparatus used for the work described in this thesis is only moderately

changed from the system described in the previous thesis regarding this experiment [25],

so we only give summaries of those areas previously described in detail and concentrate on

improvements to and improved understanding of the apparatus.

The experiment is made up of six main subsystems: a sealed glass double bulb cell

containing 3He, 129Xe, and N2 gases and Rb metal, an oven to hold the cell and heat the

pump bulb while keeping the maser bulb cool and all temperatures stable, a laser system

to optically pump the Rb vapor, a stable doubly resonant circuit tuned to both maser

frequencies, a stable and homogeneous magnetic field environment, and a detection system

to measure and record the maser frequencies. A schematic representation of all of these

subsystems is given in Fig. 3.1, which shows two components that we have not discussed

yet, the stabilization of the total laser power and the monitoring of the Rb magnetization,

which we will discuss in Sec. 3.4. In Fig. 3.1, LCVR is a liquid crystal variable retarder,

111



Chapter 3: Experimental Realization 112

PBC is a polarizing beam splitter cube, and ESR is electron spin resonance.

3.1 Double Bulb Maser Cells

Our double bulb maser cells are made by a scientific glass blower1 out of borosilicate glass

(e.g., Pyrex) attached to a glass manifold that allows us to clean the cells, apply the OTS

wall coating (the effects of which are discussed in Sec. 2.3.1), evacuate them, introduce Rb

metal, add noble gases and nitrogen, and then seal the cells. The cells and manifold are

shown in Fig. 3.2 where the two small open tubes opposite the cells allow access to the cells

with a long pipette to introduce and remove liquids, the vertical sidearm of the manifold

holds the Rb metal ampule, and the opening at the left is for attaching the manifold to

the vacuum and gas handling system. In brief, the cells are cleaned with an acid solution,

rinsed, dried, coated with a solution containing OTS, rinsed to wash off the excess OTS,

and then baked in an oven to drive off any excess solvent. At each stage, the liquids have to

be pipetted into and out of the cells due to the narrow pinch off just above the cell (which

aids in sealing the cell) and the narrow transfer tube. Next, an open ampoule of Rb metal is

added to the sidearm and all the access tubes are sealed except for the left hand one which

is attached to the vacuum and gas handling system via an ultra-Torr seal. The manifold is

then pumped on by the vacuum system which has a base pressure of ∼ 1 × 10 -9 Torr. A

temperature sensor is placed on the bottom of one of the maser bulbs (this is expected to

be the hottest point) and a makeshift oven is constructed around the manifold out of thick

aluminum foil which is then wrapped with heater tape, more aluminum foil, and fiberglass

insulation. The sidearm containing the Rb is not placed inside the oven and is kept cool

with a small fan to avoid evaporating the Rb. The oven temperature is then raised to ∼150

◦C and left for several days while the pressure of the vacuum system is monitored. Once the

vacuum system pressure has stopped going down, typically in the low 10 -8 Torr, the oven

is removed and a macroscopic quantity of Rb (∼100 mm3) is chased into the cells using a

1Most recently, Yankee Glassblower, Concord MA.
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heat gun by sequential evaporation and condensation on the manifold walls. Sufficient Rb

is chased into the tubes above the cells such that it will roll down the tube into the cell,

so that when the cell is operated as a maser the Rb is not quickly depleted, as Rb vapor is

effectively chased out of the pump bulb due to the large temperature gradient between it

and the maser bulb. After Rb has been introduced into the cells the pinched region near the

Rb sidearm is sealed with a torch and the sidearm is removed to avoid any contaminants

that might move from the sidearm (which was not baked out) into the maser cells once the

manifold is gated off from the vacuum system and gases are introduced. The cell manifold

is calibrated with respect to the gas handling system as described in [25] and filled with

129Xe, 3He, and N2; and then sealed at the pinched region above the pump bulb and pulled

off the manifold.2

Our cells have several potential longevity problems: loss of Rb from the pump bulb due

to condensation in the cooler regions of the cell; diffusion of 3He out of the cell through

the glass (especially when the pump bulb is heated); and damage to the OTS coating due

to reactions with Rb. The loss of Rb has been solved by simply adding enough Rb to the

pump bulb that the supply cannot be exhausted over any reasonable time span (this is

enough Rb that it can be rolled around the cell, on the order of 100 mm3). Helium will

diffuse through borosilicate glass, and much more rapidly at higher temperatures, such that

we observe a decrease in 3He maser power by about half after the cells have been kept at

120 ◦C for 6 months (see older work on He diffusion with multiple glasses in [67] and more

recent numbers in [51]). This could be solved by use of aluminosilicate glasses (e.g., GE180),

which are more dense and have much lower effective 3He diffusion coefficients, especially at

raised temperatures. Thicker walls in the pump bulb region is another possibility, but the

escape rate only decreases linearly with thickness.

In all recently manufactured cells in our lab the wall coating has been damaged when

2The one deviation from the procedure described in [25] is that the 3He should be added after the 129Xe
and the filling region in the gas handling system only needs to be filled with 3He at the pressure needed just
before the cells are pulled off. This takes several rounds of moving gas through the valve system of the gas
handling system, but maximizes the use of 3He, which is fantastically expensive (currently $1,000 per liter
atmosphere).
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(2 x 1/16'' windows)

Figure 3.2: Double bulb cell and manifold schematic.

operated in the maser, as observed by a slow decrease in the 129Xe T ′2, T ′1, and maser power,

while 3He parameters have remained unaffected. This wall coating degradation has occurred

over the time scale of days to a few weeks after the cell has been placed into the oven and

brought to temperature. The cause for this decay is unknown, but the Heil group, in [10],

have produced bare (uncoated) glass cells out of GE180 that exhibit 129Xe polarization

relaxation per wall collision 30 times smaller than one of our typical successfully coated

cells, so moving to such an aluminosilicate glass could solve both the 129Xe wall relaxation

and 3He leak problems. Our inability to coat cells successfully that will operate at 120 ◦C

with Rb, and even those which are successfully coated fail after a day at temperatures above

∼140 ◦C, is confusing as the Romalis group, in [68], has coated Pyrex cells with OTS that

exhibited no problems up to 160 ◦C in the presence of Rb using a procedure adapted from

ours [69]. In [69] they also showed that our procedure did not lead to a monolayer of OTS

on the silicon wafers they used, but rather was twice as thick as a single layer coating, and

that coatings produced with our procedure changed over time and with temperature more



Chapter 3: Experimental Realization 116

than the monolayer coatings they produced, but were also more effective in suppressing

relaxation (at least of the electronic spins in K they were testing).

Resolving the coating degradation issue is critical to moving forward with the maser.

Almost a year was spent making cells after completely replacing all the chemicals involved

in the coating and cleaning process, increasing the temperature and/or time that the cell

manifold is baked out on the vacuum system to remove contaminants, and testing all the

input gases and monitoring for any unusual contaminants during the manifold bake out

with a mass spectrometer that was attached to the vacuum system. Ultimately all these

attempts were unsuccessful and the impending advancements in tests of new spin physics

made by the Romalis group, [9] and [8], made the immediate resolution of our cell coating

problem moot.

3.2 Magnetic Field Control

There are three main elements to controlling the magnetic fields experienced by the maser,

the high permeability magnetic shields, the solenoid which generates B0, and the first and

second order magnetic field gradient coils to improve the field homogeneity. The magnetic

shields and solenoid dimensions are shown in Fig. 3.3. The magnetic shields were measured

to have a longitudinal shielding of ∼300 and a transverse shielding of 2× 104, with the low

longitudinal shielding attributed to the large access holes at either end of the shield [25].

However, the maser is only sensitive to field gradients, and we did not characterize the effi-

cacy of the magnetic shields in reducing external field gradients. The solenoid (constructed

from 5 mm copper wound on an aluminum cylindrical form) produces a field of a few gauss

(typically 6 G for the maser results described here) when driven by a homemade current

supply that delivers ∼ 50 V and ∼ 0.25 A to the solenoid, with a fractional stability of

< 1× 10 -5 for typical room thermal stability of 0.2 ◦C. The three first order magnetic field

gradient coils are single turn coils wound along machined groves in a cylindrical Nylatron

form that slides inside the solenoid form. The five second order coils are single turn coils
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Magnetic Shields and

Main Solenoid

Materials

Shields: Co-Netic AA, 15.7 mm thick

Solenoid: Aluminum form (15.2 mm thick)

with copper wire (5.08 mm diameter)

12

Solenoid

13 13 13

38.1

40.6

43.2

114

140

165

24.0

Ø 12.7

Ø 43.2

3 Shields

Outer End Cap

All dimensions in centimeters

Figure 3.3: Magnetic shields and solenoid schematic.

epoxied directly onto the solenoid. All the gradient coils are driven by home made current

supplies with currents in the range of 10 mA and a fractional stability of < 1× 10 -5 in our

room. The designs for both the first order and second order coils can be found in [70]. The

strength of the gradients generated by the coils can be expressed in several ways, but here

we have chosen the spherical harmonic basis set, Yl,m, (assuming each coil’s geometry ex-

actly conforms to its design specification) in order to match the theory for the decoherence

rate due to field gradients from Sec. 2.3.2.3 The usual spherical harmonics are complex

functions, but we can only have real fields, so we generate a new basis of functions, Tl,m, in

3The basis used to describe the gradient coils is not the same basis as used in [25], so there is a difference
in reported gradient strength, but the linear gradient coils are exactly the same.
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Tl,m (l, m) Cartesian Coordinates Gradient Strength Units

(1, 0) 1
2

√
3
π z 12 µG/cm/mA

(1, ±1) 1
2

√
3
π x, 1

2

√
3
π y 14 µG/cm/mA

(2, 0) 1
2

√
5
π

(
z2 − (x2+y2)

2

)
1.8 µG/cm2/mA

(2, ±1) 1
2

√
15
π zx, 1

2

√
15
π zy 0.59 µG/cm2/mA

(2, ±2) 1
2

√
15
π xy, 1

4

√
15
π (x2 − y2) 1.0 µG/cm2/mA

Table 3.1: Magnetic field gradient coil strengths.

the following way,

Tl,m =



−1m(Yl,m+Y ∗l,m)
√

2
for m > 0

Yl,m for m = 0

i(Yl,m−Y ∗l,m)
√

2
for m < 0

(3.1)

which gives an orthonormal basis of real functions that has the same Al coefficients given

in Eq. 2.194 for calculating the decoherence rate due to field gradients. The strength of

our gradients coils in terms of the Tl,m functions is given in Tab. 3.1. We optimize the

field homogeneity by disengaging the pickup coil from the rest of the resonant circuit and

then applying short, resonant rf pulses to the 3He and 129Xe and measuring their T ′2 decay

time, typically referred to as a free induction decay or FID (this is discussed in more detail

in Sec. 3.5 and Sec. 3.7). We then systematically change the current going through each

gradient coil until we have maximized T ′2. Unfortunately, the first and second order gradients

do not overlap perfectly, so the second order gradients produce some first order component

and the first order gradients must be re-optimized after the second order gradients. The

measured FID decoherence rate (1/T ′2) follows the expected quadratic behavior with respect

to the magnetic field gradient magnitude for both the first and second order gradients, but

we find that for both 3He and 129Xe the coefficients are consistently twice as large as we

would expect from Eq. 2.194 for the first order gradients and ten times as large for the
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second order gradients. Some of the error for the second order gradients is probably due to

the fact that they have a linear component as well, but these discrepancies have not been

characterized in detail.

In practice, for our typical cells there is an increase of ∼25% in T ′2 when trimming the

fields with the second order gradients in addition to the first order gradients leading to T ′2

times of ∼ 90 s for 3He and ∼ 200 s for 129Xe for the experimental parameters in Tab. 2.1

and Tab. 2.6. The repeatability of T ′2 when replacing the cell in the oven or otherwise

disassembling and reassembling the experiment is also improved when the second order

gradients have been optimized. We were able to better observe improvments in T ′2 using

the second order gradients by making a cell that was the same as our typical cells, but had

a much narrower transfer tube and hence a much slower diffusive bulb escape rate (this cell

was produced during the period we were trying to diagonose our cell coating degredation

problems, see Sec. 3.1, so it did not have a long 129Xe T ′2 and its maser performance could

not be tested). In this cell we achieved 3He T ′2 times of ∼ 170 s with just the first order

gradients and ∼ 280 s with both first and second order gradients, which was not bulb

escape limited as the diffusive escape time for the 3He longitudinal polarization, 1/GMM ,

was measured to be ∼ 430 s (see Sec. 3.7 for the details of how this is measured). This

suggests that for our typical cells and gas pressures, the magnetic field gradient component

of the effective decoherence rate, 1/T ′2, due to gradients above second order is ∼ 6 × 10 -4

s -1 for 129Xe and ∼1× 10 -3 s -1 for 3He.

The final level of magnetic field control is a small solenoid that we wind directly on the

pump bulb. It is used to generate a field of ∼100 µG to shift the 3He Larmor frequency in

the pump bulb far away from the maser frequency relative to 1/T ′2 to avoid the frequency

shifting effects described in Sec. 2.2.2. The pump bulb solenoid is driven by the same

type of current supply as the gradient coils. The pump bulb solenoid generates a small field

gradient at the maser bulb, so it is energized before any careful field trimming is attempted.
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3.3 Maser Oven and Thermal Control

There are three regions that require high temperature stability: the pump bulb, the maser

bulb, and the doubly resonant circuit. The double bulb cell with its pump and maser

bulbs is housed inside an oven, shown schematically in Fig. 3.4, which is placed inside

the gradient coil form and solenoid such that the maser bulb is centered vertically and

the pump bulb can be accessed optically through the hole in the magnetic shields. The

oven is made out of Ultem, a plastic that can be continuously operated at up to 170 ◦C,

with each bulb surrounded by a boron nitride ceramic block whose large thermal mass

and conductivity provide a stable and uniform temperature. The boron nitride blocks are

heated by blown air flowing through manifolds in the oven surrounding each block. The

pickup coil was wet wound with epoxy (Stycast 1266) and placed around the ceramic block

surrounding the maser bulb4; and a set of quasi-Helmholtz coils, referred to as the Rb drive

coil, were wound in grooves on the block surrounding the pump bulb to enable detection of

the Rb magnetization as well and the 3He and 129Xe polarizations (see Sec. 3.4 and Sec. 3.7

respectively).

The feedback scheme to stabilize the temperature of each boron nitride block is shown

in Fig. 3.5. The temperature of the air in the manifolds surrounding the boron nitride

blocks as well as the blocks themselves are measured with platinum RTDs (Omega series

PT100KN) connected by twisted three wire cables to resistive Wheatstone bridges that are

driven and sensed with lock-in amplifiers. The temperature of each block is stabilized using

analog PID controllers in a cascade lock configuration where the feedback from the block is

used to offset the error signal from the air temperature, which then determines the feedback

to the heater. Thus, at short time scales the air temperature is stabilized to the bridge set

point combined with the effectively fixed offset from the block feedback and over long time

scales the air temperature set point is shifted to stabilize the block temperature. With this

4The initial attempt to directly wind the pickup coil on the ceramic block form broke off the thinner side
of the form, so the coil had to be wet wound on a separate form and then placed on the ceramic block form
which was then epoxied back together.
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Figure 3.5: Feedback system to stabilize the oven temperature using a cascade locking
scheme.

locking scheme we are able to achieve temperature stabilities of ∼ 1 mK over the course

of a day inside the pump and maser bulbs based on a dummy cell fitted with temperature

sensors. However, with the optical pumping laser on we believe this stability is significantly

reduced, due to the instability in the laser spectrum, which changes the amount of absorbed

resonant laser power, and the small thermal conductivity between the pump bulb and its

block due to the air gap, which leads to a significant temperature gradient. This instability

can be observed on the temperature of the air in the manifold around the pump bulb block

as there is a similar temperature gradient between the air and the block as between the

block and the bulb, so the change in temperature of the bulb is similar to the change in

temperature of the air (assuming the ambient temperature outside of the oven remains

relatively stable). This is easiest to observe when the laser is first turned on and the air
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temperature reduces by ∼ 5 ◦C to compensate and keep the block stable. By turning the

laser on and off when the pump bulb is a relatively cold 80 ◦C and the Rb density is low and

hence absorbs little laser power, compared to when it is at the full operating temperature,

we find that about a third of the heating is due to resonant light while the rest is due to

light being scattered by the cell. In particular, it is difficult to fill the cell with light and

not impinge somewhat on the pump bulb solenoid. Using data from the air manifold RTD

indicates the pump bulb is only stable to ∼50 mK over the course of a typical day.

The resonant circuit, other than the pickup coil, is suspended in the center of a sealed

PVC cylinder surrounded by fiberglass insulation and bolted to a Nylatron cylindrical shell

which fits inside a second, smaller, set of 3 nested cylindrical magnetic shields.5 Blown air

passes through the PVC cylinder impinging directly on the circuit with an RTD placed in

the air flow behind the inductor and connected to a similar type of temperature control

setup as the maser oven: a Wheatstone bridge driven by a lock-in with PID feedback to a

heater, but without the cascade lock. We have verified, using a four wire thermistor driven

by a homemade precision current source and placed ∼10 cm away from the RTD, that the

air temperature in the PVC cylinder is stable to ∼1 mK over the course of a day.

3.4 Optical Pumping

Our optical pumping laser is a Coherent Fiber Array Integrated Package (FAP-I) which

consists of an array of fiber coupled free running laser diodes that are temperature stabilized

and driven by a stable current source. The laser has an output of ∼ 30 W of unpolarized

light covering a bandwidth of ∼ 2 nm centered roughly on the the Rb D1 line at 795 nm.

To both stabilize the total power and polarize the light we use two polarizing beam splitter

cubes (PBC) in series, with their transmission polarization axes orthogonal to each other,

together with a liquid crystal variable retarder (LCVR) placed in between them as shown

5Magnetic shields are not particularly necessary to shield the rest of the resonant circuit as we are
primarily concerned with reducing coupling to external noise sources at the maser frequencies, but the low
magnetic field inside the shields does avoid noise generated by vibration of the inductor, see Sec. 2.5.1.
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in Fig. 3.1. The LCVR is a voltage controlled variable birefringence plate set to nearly λ/2

to rotate the polarization, so that almost all the light is transmitted through the second

PBC with some leeway to either decrease or increase the total transmitted power. (Only

half the total laser light makes it through the first PBC due to the unpolarized output

of the laser.) We measure the total transmitted laser power by picking off a few percent

with a microscope slide and passing it through a diffuser plate, to ensure we are detecting

the average power of the full beam profile; and then through an optical chopper wheel

and finally a lens focused onto a temperature stabilized amplified photo detector, which is

connected to a lock-in and PID feedback as shown in Fig. 3.1. After the laser light passes

through the total power stabilization optics it goes through a zero-order λ/4 waveplate to

generate circularly polarized light to optical pump the Rb atoms in the pump bulb. All

of these optics are contained inside a two inch thick Styrofoam box, which filters out the

rapid temperature oscillations of the room’s on-off temperature control, leaving only the

< 0.2 ◦C long term drift of the room (assuming no dramatic changes in the local weather,

as adjacent rooms do not have as stable temperature control).

In addition to stabilizing the total laser power, we also monitor the Rb magnetization

by applying an amplitude modulated weak rf field resonant with the 85Rb Zeeman splitting

(or electron spin resonance, ESR) through the Rb drive coils around the pump bulb. The

application of the weak ESR rf field mixes the spin states of the Rb and hence adds an

additional spin destruction mechanism, which increases the amount of light absorbed. Thus,

the amplitude modulation of the ESR rf leads to an amplitude modulation of the transmitted

laser power whose modulation amplitude is roughly proportional to the strength of the ESR

field, the density of Rb, and the fractional amount of resonant light (assuming the total

power is stabilized) and hence the Rb magnetization. This Rb magnetization monitor

setup is shown in Fig. 3.1 with exaggerated modulation of the laser amplitude indicated by

apparent changes in the transmitted laser beam diameter. We have not determined a good

way to stabilize the resonant power from the laser diode array. The best solution is to use

a laser diode array or broad area laser diode that incorporates a diffraction grating to both
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narrow and stabilize the laser spectrum, so there is less off resonant light to scatter and

heat the oven. Increased resonant laser power would also allow the Rb to be driven close to

saturation, so that changes in resonant power lead to smaller changes in absorbed power. An

attempt over more than six months to use a different type of laser system with a low power

grating stabilized diode laser (∼ 50 mW) amplified by a tapered amplifier diode (output

of ∼ 500 mW) was ultimately unsuccessful as the tapered amplifiers steadily decreased in

gain such that after ∼ 1000 hours of operation the total output power was halved and a

subsequent attempt with a second tapered amplifier showed the same behavior. However,

the narrow band light did dramatically improve the thermal stability of the pump bulb

which was evident in the improved stability of the fractional maser amplitudes.

3.5 Doubly Resonant Circuit

Critical to the effective operation of the maser is the careful tuning of the doubly resonant

circuit to match the ratio of the maser frequencies, to avoid large cavity pulling shifts,

and measurement of the circuit’s Qc and qc values, to be able to predict the size of the

cavity pulling shift and measure the maser’s power (see Eq. 2.116). To aid us in this task

we have made an accurate model of the circuit accounting for all significant inductances,

capacitances, and resistances, which we use to verify that the response curves measured by

the amplifier are equivalent to those seen by the atoms to within the level of tuning we are

able to achieve in practice. We also use our circuit model to verify that the broadband noise

measured by our amplifier agrees with the expected Johnson noise and there are no other

noise components degrading our SNR.

In its ideal form, the doubly resonant circuit consists of an inductor and capacitor in

series connected to a second inductor and capacitor in parallel, as shown in Fig. 3.1. In

reality, the layers of adjacent wires in the inductor coil act as a capacitor and the wire

is resistive and the resistance at the maser frequencies is much higher than the coil’s DC

resistance and scales with the square of the frequency. This AC resistance is due to eddy
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current losses in the wires from magnetic fields generated by adjacent wires, frequently re-

ferred to as the proximity effect.6 We incorporate these effects into a lumped element model

of the inductor coil, which consists of an ideal inductor in series with a frequency dependent

resistor that are both in parallel with a capacitor. There are also hidden capacitances in

the semi-rigid coaxial cable that connects the pickup coil to the rest of the resonant circuit

via a junction box containing the output amplifier. The semi-rigid cable has a capacitance

per unit length of 95 pF/m, giving a total capacitance of ∼150 pF; and the amplifier has a

differential input capacitance of 6 pF, which is small enough to ignore. All of these elements

are shown in Fig. 3.6 with the approximate values for each component as well as the equiv-

alent circuit we use to calculate the voltage measured by the amplifier for a voltage source

generated from inductive coupling to the pickup coil. The amplifier consists of two stages,

an instrumentation amplifier (INA110) whose voltage gain is set to 100 and a low noise

op-amp (OPA227) configured as a non-inverting amplifier with a voltage gain of 11, giving

an overall voltage gain of 1100 with a bandwidth of 470 kHz and input voltage and current

noises of 10 nV/
√

Hz and 1.8 fA/
√

Hz. In addition, Fig. 3.6 shows the switch, S1, and out-

put connector, S2, which allow us to disengage the pickup coil from the resonant circuit and

inductively couple the remaining pickup coil circuit to a function generator so that we can

pulse the atoms and measure their FIDs in order to optimize T ′2 (as discussed in Sec. 3.2)

and measure T ′1 and GMM (as we will see in Sec. 3.7). The values of the lumped elements

that make up the inductor coils, Lpu, Cpu, and Rpu(ω) for the pickup coil, are determined

by measuring the resonance frequency, ωc, and Qc of each coil connected to a set of fixed

capacitors, Cf , whose values are checked with an impedance meter. We can then determine

the coil parameters from the standard results of LRC circuits ω2
c = 1/[Lpu(Cr + Cf )] and

Rr(ωc) = ωcLpu/Qc.

To measure the full circuit’s resonance frequencies, qc, and Qc values, we use a small

coil affixed to the top of the maser oven and aligned with the pickup coil to inductively

6Details of the proximity effect and how it and the coil’s capacitance scales can be found in [71] and
references therein, in particular [72].
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generate the Vsource term in Fig. 3.6. We drive this small coil with a function generator

with a 10 kΩ resistor in series to generate a constant drive current across our frequency

range, which ensures Vsource is directly proportional to the drive frequency. We short the

10 kΩ resistor in the second stage of our amplifier in Fig. 3.6 to increase the measurements’

dynamic range and detect the amplitude of the amplifier voltage with a lock-in detector

phase-locked to the function generator driving the small coil. To convert the lock-in data

into the response measured by the amplifier, that is qc,amp(ω) = |ZAB(ω)/ZT (ω)| where

ZAB is the impedance across the amplifier inputs and ZT is the total impedance seen by

Vsource, we scale the voltage measured by the lock-in by its inverse drive frequency to account

for the frequency dependence of Vsource and then normalize the result to its low frequency

values, 100-200 Hz, where qc,amp = 1. The amplifier response qc,amp is clearly not the same

in general as the atoms response qc,atoms(ω) = |ωLpu/ZT (ω)|, which gives the usual value

for qc on resonance when ω = ωc; but it is almost exactly correct on resonance where the

reactive components of ZAB(ω) cancel the ωLpu component of the pickup coil reactance in

order to generate the resonance condition. We can see this agreement on and near to the

circuit resonances in Fig. 3.7, which shows the calculated curves for both qc,atoms and qc,amp

from our model as well as the measured values of qc,amp. We can also use the amplifier

response curve to determine Qc and the resonance frequencies by taking the square of the

response curve and then fitting each resonance peak over a domain twice its FWHM with a

skew Lorentzian curve whose peak position and inverse fractional width give the resonance

frequency and Qc. Using our model we have checked that this fitting procedure matches

the true resonance frequency Im(ZT (ω)) = 0, which corresponds to zero cavity pulling, to

within a fractional value of 1× 10 -4; and that this is no better than finding the stationary

points of |ZT (ω)| by measuring the current in the circuit, since the parallel LC pair in

the circuit introduces a difference of about 1/Q2
c between the zero phase points and the

stationary points of the magnitude (this is always true for a parallel LC circuit).

Using our model we can analytically determine the tuning capacitor values needed for

Cput and Crt by solving ZT (ω) = 0 with Rr = Rpu = 0, an approximation that has
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Figure 3.7: Measured qc with circuit models for the response seen by the atoms and the
amplifier. The measured values lie directly underneath the calculated values for the amplifier
qc.

much smaller errors than our knowledge of any of the parameters involved (see [25] for

equations). After adding these initial capacitors we measure the resonant frequencies using

the method described above and then series expand the analytic forms of the resonance

frequencies around the current capacitor values of Cput and Crt and invert the expansion to

find the change in capacitance necessary to fine tune the resonant frequencies to avoid 60

Hz harmonics and match their ratio to γR ≈ 2.7541. This process is then repeated (usually

only once, at most) until the fractional difference in the resonant frequency ratio and γR is

less than 1× 10 -3. When tuning, it is important to have all the circuit components at their

operating temperatures before measuring their resonant frequencies to ensure an accurate

measurement.

Our circuit model also allows us to confirm that the broadband noise at the input to the

amplifier is consistent with the thermal Johnson noise of the circuit and the input voltage

and current noise of the amplifier coupled to the circuit. As we see in Fig. 3.8, on resonance

the noise is dominated by thermal noise, but off resonance the noise is dominated by the
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amplifier input voltage noise and at low frequencies there is additional noise due to vibration

of the pickup coil in B0 as discussed in Sec. 2.5.1.

Lastly, we discuss the measured stability of both resonant frequencies and their antici-

pated cavity pulling. One point of concern for stability is that there is a relatively significant

fraction of the total capacitance in the coaxial cables, which are not temperature stabilized

beyond the room temperature stability. Measurements of the double resonant frequencies

with local changes in the coax temperature lead to an anticipated cavity pulling of ∼ 250

nHz/◦C of change in the room temperature, so we expect a typical influence of 50 nHz in

peak to peak fluctuation of the maser frequency, which is smaller than the 200 nHz thermal

noise limit. To conclusively show that the circuit stability is acceptable, we simultaneously

swept both resonances for three days and calculated their cavity pulling effects on the co-

magnetometer frequency. We found that the 3He resonance exhibited a steady linear drift

with a slight curvature over the three days, but the drift was linear enough that removing
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only the linear component (linear drift removal is part of our standard analysis, see Sec. 4.2)

leads to a cavity pulling frequency shift spectral density that is below the maser’s thermal

noise limit for modulation frequencies as low as a day, as shown in Fig. 3.9. Thus, we

conclude that our resonant circuit is presently stable enough not to limit our current maser

sensitivity level for detecting sidereal modulations.

3.6 Measuring Maser Frequency/Phase

Our 3He and 129Xe maser phase and frequency measurements require a frequency reference

stable enough to avoid cavity pulling shifts when phase locking the magnetic field,7 which

means a fractional stability of at least 1×10 -7. Additionally, the frequency reference cannot

7Since cavity pulling is the difference between the circuit resonance and the Larmor frequency, a change
in B0 due to a change in the reference frequency used to phase lock the field is just as detrimental as a
change in the circuit resonance.
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as the masers. Each spectrum is the component due to the respective species to the overall
maser comagnetometry signal (see Sec. 2.2.3). In the actual maser the 3He and 129Xe signals
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have first order sensitivity to magnetic fields, so that it does not couple to the new spin

physics we are trying to detect. These conditions are met by all typical frequency standards,

but we use a hydrogen maser, which operates on a magnetic field insensitive transition

(∆mz = 0) and has a fractional frequency stability of 1 × 10 -14 over the course of a day.

The phases of the 3He and 129Xe masers relative to the hydrogen maser are calculated by

Stanford Research Systems (SRS) SR830 and SR850 digital lock-in detectors phase locked to

SRS DS345 function generators, which are in turn phase locked to the hydrogen maser signal.

The analog output of the SR830 lock-in measuring the 129Xe maser phase is connected to an

analog PID controller whose output modifies the set point of our homemade current supply

that drives the B0 solenoid. The 129Xe maser function generator signal frequency is set to

match the 129Xe circuit resonance; and the signal generator frequency for the 3He maser is

set to be ∼60 mHz below the 3He maser frequency. The SR830 lock-in used to phase lock B0
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is set to have a relatively large bandwidth filter of 5–10 Hz to enable a high bandwidth lock

to stabilize B0. Two SR850s then measure both quadratures of the mixed down and low

pass filtered maser signals and store them in the lock-ins’ internal circular buffers. In order

to ensure that the measurements are stored at regular intervals, the lock-ins are triggered at

1 Hz by another signal derived from the hydrogen maser and the SR850 filters are set such

that their equivalent noise bandwidth is less than or equal to the Nyquist frequency of the

sampling (i.e. ≤ 0.5 Hz). The latest data in the SR850 internal memory circular buffers are

periodically downloaded onto a computer such that there is an overlap of at least 20 data

points with the previously downloaded data to unambiguously identify the new data and

avoid any data loss. To test this system we drove the small coil used to measure the double

resonant circuit (see Sec. 3.5) at both maser frequencies (this requires another function

generator to enable the offset measurement of the 3He frequency) with their amplitudes

matched to the typical maser signals. The results of a four day measurement are shown in

Fig. 3.10 which shows that we are not limited by our detection system.

3.7 Measuring Polarization Relaxation and Other Rates

There are several transient experiments we run, with the system configured such that it

is below maser oscillation threshold, in order to measure the rate constants essential to

predicting maser behavior, T ′2, T ′1, GMM , τRD, and γse. In almost all cases we use the

system with the resonant circuit disengaged, so that the amplifier only measures across

the pickup coil, and we send in short pulses, < 0.1 s, resonant with the maser frequencies

from a function generator connected to the pulse box as shown in Fig. 3.6. The resulting

FID signals are recorded by lock-ins sampled at 2 Hz with filter bandwidths to match.

We then either measure the transient behavior of the transverse polarization in the maser

bulb or, after turning off the optical pumping laser, we apply repeated pulses to probe the

transient behavior of the longitudinal polarization. In either case, we have to solve the

general equations for polarization in a double bulb system with no source terms other than
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the initial conditions,

Ṗp = −Pp
T ′p

+GpmPm (3.2a)

Ṗm = GmpPp −
Pm
T ′m

(3.2b)

where p and m denote the pump and maser bulbs respectively and the effective lifetimes T ′

include diffusive and Rb spin exchange losses as usual (see Eq. 2.100). We should note that in

this model we are neglecting the transient diffusion modes, the homogeneous solutions, but

these are very short lived with time constants for the first order mode of τM ≈ R2
M/(20D)

for the maser bulb and τt ≈ L2
t /(10D) for the transfer tube which are < 1 s for 3He and

< 5 s for 129Xe in our typical cell and hence can be ignored. The solution for our general

system of equations give us two exponentials for each noble gas species with rates of,

Γ± = −1

2

[
1

T ′m
+

1

T ′p
±

√(
1

T ′p
− 1

T ′m

)2

+ 4GmpGpm

]
, (3.3)

which have two particular limits of interest. First, for the 3He depolarization rates, Γ±,1,He,

there is a clear hierarchy of rates with the diffusive exchange rates much faster than the

underlying relaxation rate (which is dominated by wall relaxation, see Sec. 2.3.1), which is

faster than Rb spin exchange, GMM , GPP � 1/THe, 1/T1 � γse. Additionally, the transfer

tube is roughly lossless so GMPGPM ≈ GMMGPP , which gives us,

Γ+,1,He ≈ −(GMM +GPP ) (3.4a)

Γ−,1,He ≈ −
1

2

(
1

T1
+

1

T

)
, (3.4b)

so we have both a very short, less than a minute, and a very long, several hours, time

constant. This hierarchy of timescales allows a clear measurement of the average wall

relaxation rate for 3He; also initial conditions are irrelevant for measuring this rate as

diffusion rapidly mixes the two bulbs. The second limit is relevant for 129Xe depolarization
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rates as well as decoherence rates for either 3He or 129Xe where the effective decay rate in

the pump bulb, 1/T ′p, is faster than any of the other rates, either due to Rb spin exchange in

the case of 129Xe depolarization or from magnetic field gradients in the case of decoherence

of either species. In this limit, we have characteristic rates of,

Γ+ ≈ −
(

1

T ′p
+GmpGpmT

′
p

)
(3.5a)

Γ− ≈ −
(

1

T ′m
−GmpGpmT ′p

)
(3.5b)

which consists of a relatively fast initial equalization between the bulbs as the pump bulb

rapidly reaches equilibrium at rate, Γ+, with a slower decay rate in the maser bulb, Γ−,

where the time constant is biased to slightly longer times since the polarization is not

instantly destroyed in the pump bulb. Measuring the decoherence versus depolarization

rates each have their own complications, so we will begin with the method to measure

decoherence and then move on to depolarization and the other rates.

When measuring decoherence from the FID lifetime we assume that there is no trans-

verse polarization in the double bulb before we pulse the atoms and that we only generate

coherence in the maser bulb, so the fractional amplitudes associated with each exponential

rate are,

A+ ≈ GMP,⊥GPM,⊥T
′2
2,P (3.6a)

A− ≈ 1−A+. (3.6b)

For 3He we have 1/T ′2 ≈ GMP,⊥ ≈ GPM,⊥ when the gradients are minimized and so, even

for a relatively long pump bulb coherence time of T ′2,P ≈ 0.3T ′2, there is little evidence of it

in the FID, since A−/A+ ≈ 0.1, but it does have a relatively large effect on the measured

decoherence time 1/Γ− ≈ 1.5T ′2. This effect is highly suppressed by the pump bulb solenoid

and would not be seen in 129Xe due to its strong interactions with Rb in the pump bulb,

but there is the question of whether our measured coherence times could be biased to be
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longer than the coherence time that matters for calculating the thermal noise floor, normally

assumed to be T ′2. We can calculate the new thermal noise floor by extending the model

used in Sec. 2.2.3 by adding a coherence term in the pump bulb to our maser model,

Ṗ⊥,P = GPM,⊥P⊥ −
P⊥,P
T ′2,P

(3.7a)

Ṗ⊥ = γ
B1

2
Pz −

P⊥
T ′2

+GMP,⊥P⊥,P . (3.7b)

Then, for transient phase fluctuations around the equilibrium phase value we have, from

Sec. 2.2.3,

δψ̇ = · · ·+ γ
B1,eq

2

Pz,eq
P⊥,eq

(δφ− δψ), (3.8)

where the coefficient in front of the phase terms is the relevant one for the thermal noise

limit (see Sec. 2.2.3) and is given by the steady state solution to Eq. 3.7,

γ
B1,eq

2

Pz,eq
P⊥,eq

=
1

T ′2
−GMP,⊥GPM,⊥T

′
2,P . (3.9)

Thus, the measured value of the decoherence rate in the limit of rapid decoherence in the

pump bulb, Γ− in Eq. 3.5, is the relevant value for the thermal noise limit, not just 1/T ′2.

In addition to concerns about transverse polarization in the pump bulb when measuring

FID decay rates, we also have to be concerned about feedback from the pickup coil, even

though it is off resonance. We can calculate the effect of the pickup coil by repeating

our analysis from Sec. 2.1.3 for coupling between the atoms and the circuit. The circuit

impedance for the off resonant pickup coil is given by,

Z(ω) ≈ ωcLpu
iωQc

(iω + ωcQc) for

(
ω

ωc

)2

� 1 (3.10)
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which leads to equations for the pickup coil field and phase

Ḃ1 = −QcωcB1 +QcK0P⊥ sin(θ) (3.11)

φ̇ = −ωM +QcK0
ω2
M

ωc

P⊥
B1

cos(θ) (3.12)

where K0 = µ0ηγn~/2, and which, similarly to the standard maser equations, can be

approximated as always being in steady state relative to the polarizations (see Sec. 2.2),

B1,eq =

(
ωM
ωc

)
K0P⊥ sin(θ) and tan(θeq) ≈

ωc
ωM

Qc � 1. (3.13)

Thus, we can make the approximations sin(θ) ≈ 1 and cos(θ) ≈ ωM/(ωcQc), giving us an

equation for the transverse polarization of,

Ṗ⊥ =
γ

2
B1 cos(θ)Pz −

P⊥
T ′2

= −P⊥

(
1

T ′2
− γ

2

(
ωM
ωc

)3 K0

Qc
Pz

)
. (3.14)

For our off resonant pickup coil we have Qc ≈ 40 and ωc/(2π) ≈ 40 kHz. For 3He in

a fully polarized, typical cell, where only a small fraction of the longitudinal polarization

is transferred into the transverse plane for the FID so that Pz ≈ Pz,0, we find that the

decoherence rate is reduced by ∼ 1 × 10 -3 s -1. This is negligible for our typical cells with

T ′2 < 100 s for 3He, but was quite noticeable in the cell with a narrow transfer tube (see

Sec. 3.2), which we used to test the second order magnetic field gradient coils, where the

FID lifetime was 280 s for the cell at low polarization, but 400 s once the cell was fully

polarized.

The final complication in measuring the decoherence rate in the maser bulb is bias

in estimation of the decoherence rate using least squares fits of low SNR signals. Due

to drifts in the power supply it is difficult to fit directly to the mixed down signal from

the lock-in since it is both decaying in time and changing oscillation frequency. Instead,

we combine both quadratures of the lock-in output, X and Y , to generate an R trace

of the FID where R =
√
X2 + Y 2, which gives just the amplitude without the beat note.
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Figure 3.11: Fit of a low SNR 129Xe FID to extract T ′2 with both a least squares exponential
and a Monte Carlo procedure. Note the change in the distribution of residuals as the
exponential approaches zero around 300 s, which leads to bias in the measurement of the
exponential time constant if the Monte Carlo procedure is not followed.

Unfortunately, this means the residuals are no longer normally distributed, especially as the

signal approaches zero, so a Monte Carlo procedure is required to obtain accurate results

for low SNR measurements as shown in Fig. 3.11, where we see there is a 10% bias error

in the least squares exponential fit. The Monte Carlo procedure consists of generating X

and Y decaying oscillations with normally distributed errors based on the residuals of the

measured R trace and then adjusting the input time constant for the generated X and Y

traces until a least squares fit of the generated R trace to an exponential gives the same

time constant as the data. This process is repeated 20 times giving an average and standard

deviation for the real time constant that are reported in Fig. 3.11 along with the residuals

of the exponential fit to the Monte Carlo R trace. The fitting bias in the time constant

becomes negligible, < 1%, once the SNR increases by a factor of ∼5 from the data shown

here. In our measurements we have not seen the double exponential behavior that would

suggest significant transverse polarization in the pump bulb, but this is not surprising as
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even a small frequency difference between the pump and maser bulbs will suppress any

coherence between them as we saw in Sec. 2.2.2. Double exponential behavior is far easier

to observe in depolarization measurements, as we will see shortly.

To measure depolarization rates we wait for longitudinal polarization to build up either

to equilibrium, in the case of 129Xe, since that only takes about half an hour, or to a

level that gives acceptable SNR, in the case of 3He. Then we turn off the optical pumping

laser and periodically pulse the noble gas spins in the maser bulb and record the change

in the amplitude of their FIDs over time. The first complication of this scheme is that

every time we pulse the noble gas atoms we reduce their longitudinal polarization by a

factor of 1 − cos(θtip), where the tip angle is the pulse length times the Rabi frequency,

θtip = ΩR τpulse. In the limit that the tip angle is small, θ2
tip � 1, and there are many

tips over the characteristic depolarization time, the losses due to tipping the spins can be

approximated as a continuum relaxation with a rate of,

Γtip ≈
θ2

tip

2Trep
(3.15)

where Trep is the time between pulses.8 We would like to have Γtip � 1/T ′1, 1/T1, as

appropriate, which means that for six FIDs per depolarization time our tip angle should be

no larger than 10◦ in order to limit the increase in the depolarization rate to < 10%. There

is also a problem in measuring depolarization rates for 129Xe as T ′2 ≈ T ′1, so we cannot

generate multiple FIDs over the course of T ′1 without them interfering with each other.

To avoid this problem, we temporarily ramp up one of our magnetic field gradient coils

to decohere the spins before initiating the next FID: a techniqure refered to as a crusher

gradient, which is useful for measuring any rate comparable to T ′2.9 Analysis of the results

of a depolarization measurement are straightforward for 3He due to its well seperated time

scales, as shown in Eq. 3.4 at the beginning of this section; but for 129Xe we have to use

8Note that Γtip is exactly the same as the rate we derived in Sec. 2.1.1 for collisional interactions.

9The use of rapid small tip angle pulses with a crusher gradient inbetween them is one way to calibrate
θtip by making Γtip larger than all other rates.
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129
Xe T1 Measurement

 FID amplitude data (3 runs)
 T1 & diffusion model fit

 Late time exponential fit (>100 s)
 T1 & diffusion residuals

T'1 = 176 ± 6 s,  T' = 32 ± 5 s

1/GMP = 1/GPM = 430 s (fixed)

Figure 3.12: Fit of 129Xe FID amplitude data using the T1 and diffusion model described
in the text.

the mixed rates of Eq. 3.5, where the relative amplitudes of the associated exponentials for

a system begun in equilibrium are,

A+,1,Xe ≈ −
T ′

T ′1

(
1 +

T ′

T ′1

)
+GMPGPMT

′2 ≈ −T
′

T ′1
(3.16a)

A−,1,Xe ≈ 1−A+,1,Xe. (3.16b)

Fig. 3.12 shows an example measurement of the 129Xe depolarization rate in a typical

cell filled with 600/30/80 Torr of 3He/129Xe/N2, using all the techniques described above.

Double exponential behavior at early times is clearly seen, which fulfills our expectation of a

system starting in equilibrium with an initial time derivative of zero. The fit estimate of T ′ =

32±5 s is close to the expected value of ∼20 s given that the rate is dominated by γse, there

could be up to a factor of 2 uncertainty in the pump bulb Rb density, and there is significant

disagreement over the strength of van der Waals interactions (see Sec. 2.1.1). Combining
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the fit estimate of T ′1 = 176 ± 6 s with an estimated bulb escape time of 1/GMM ≈ 260 s

from our diffusion model (see Sec. 2.1.2), we find that the wall relaxation time is T1 ≈ 540

s.

There are two other key rates we can measure, the radiation damping rate, 1/τRD, and

the diffusive maser bulb escape rate, GMM . To measure the radiation damping rate, we

reverse the circularity of the optical pumping laser so that the spins are pumped into the low

energy state and wait until the noble gas polarization has reached equilibrium, Pz = Pz,0.

Then we apply a small tip angle pulse so that the longitudinal polarization is barely depleted

and engage the resonant circuit (see Sec. 3.5). This leads to an FID with a significantly

shortened time constant,

Ṗ⊥ = −γB1

2
Pz,0 −

P⊥
T ′2

= −P⊥
(

1

τRD
+

1

T ′2

)
, (3.17)

where we can extract τRD from the measured FID since we have already measured T ′2. While

measuring τRD for each species is an important check to ensure that the masers operate

well above threshold, it can be a very lengthy measurement given the long 3He T1; and

so we typically combine a τRD measurement with a measurement of the 3He longitudinal

polarization while the spins are being polarized, since the time constant is the same as

for depolarization, T1. Our measured values for τRD are consistent with those given in

Tab. 2.10.

To measure GMM for 3He, wall relaxation is too rapid to make the measurement con-

clusive for 129Xe, we turn off the optical pumping laser and apply ∼ 90◦ tip angle pulses

to the pump bulb every 10 s using the Rb drive coils (see Fig. 3.4) to keep the pump bulb

longitudinal polarization near zero and then probe the maser bulb longitudinal polarization

in the usual way using crusher gradients between FIDs. In order to avoid the large tip

angle pulses in the pump bulb tipping any 3He polarization in the maser bulb, we use the

pump bulb solenoid to detune the 3He Larmor frequency in the pump bulb by 12 Hz and

use pulses with a cos4 envelope and a pulse length of 0.25 s, so that the first zero of its
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Fourier transform lines up with the maser bulb 3He Larmor frequency and the smooth pulse

envelope leads to less power around the zero than with a square pulse. The relatively large

magnetic field generated by the pump bulb solenoid also generates large enough magnetic

field gradients that the pump bulb decoherence rate is much faster than the time between

pulses, so there is no possibility of returning any transverse 3He polarization to longitudinal

polarization with subsequent pulses. In order to accurately tune the pump bulb solenoid,

we measure FIDs in the pump bulb by making the Rb drive coil resonant at the 3He Larmor

frequency (Q ≈ 23), connecting a function generator to the circuit through a 1 MΩ resistor

to keep it isolated, and measure the result with a lock-in after a low noise amplifier. We

measured bulb escape rates for cells with our typical transfer tube; and for a cell with a

narrow transfer tube and in each case the rates for GMM were within 20% of the theoret-

ical values calculated from Sec. 2.1.2, which is within the manufacturer’s tolerence for the

tubing’s inner diameter.

Using the Rb drive coil we can also measure the Rb spin exchange rate with 129Xe in

the pump bulb, since it is so rapid compared to all other rates that 1/T ′ ≈ γse. The setup

for the Rb drive coil is the same as when measuring 3He in the pump bulb except that the

coil is tuned to the 129Xe Larmor frequency (Q ≈ 8) and the pump bulb solenoid is not

turned on. We calibrate the tip angle for 129Xe by measuring the change in FID amplitude

as we increase the pulse length, which is easy for 129Xe as the recovery time is very rapid

and the results can be applied to 3He with the appropriate scaling. We used a cell with

more 129Xe than usual, 1000/200/150 Torr of 3He/129Xe/N2, which gave higher SNR, but

should have a comparable spin exchange rate to our usual cells based on Sec. 2.1.1. We

used a tip angle of ∼ 13◦ followed by a crusher gradient with a time between tips of 11 s,

giving 1/Γtip ≈ 430 s, which has a negligible influence on the results. We measured the spin

exchange rate both after the laser was turned off, as shown in Fig. 3.13, and after the laser

was turned back on, as shown in Fig. 3.14, which have different spin exchange rates due to

the different Rb polarization levels in each case as parameterized by ζ in Eq. 2.11. The ratio

of the low versus high Rb polarization spin exchange rates is ∼1.4, which compared to the
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129
Xe T' measurement with low PRb

 FID amplitude data (3 runs)
 Exponential with offset fit
 Residuals of fit

T' = 24.9 ± 0.5 s

Figure 3.13: Fit of measured 129Xe FID amplitude in the pump bulb, showing the effect of
spin exchange with low Rb polarization.
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Xe T' measurement with high PRb
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T' = 33 ± 2 s

Figure 3.14: Fit of measured 129Xe FID amplitude in the pump bulb, showing the effect of
spin exchange with high Rb polarization.
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expected ratio of ∼ 1.9 for completely unpolarized versus fully polarized Rb suggests that

we have a Rb polarization ≈ 50%. Rb polarization of this level is roughly what we expect

from the model described in Sec. 2.1.1 and from the magnitude of the 129Xe pump bulb

FIDs, since the 129Xe polarization level in the pump bulb is similar to Rb. The measured

spin exchange time constants are also in good agreement with the expected value ≈ 30 s.

Note that in order to obtain accurate time constants the exponential fit must include an

offset, as the FIDs are so short that we measured their amplitude by taking the maximum

value of the first few points in the FID, which naturally leads to a baseline offset due to the

additive noise from the amplifier.



Chapter 4

Lorentz Symmetry Tests

In this chapter we discuss the techniques we use to analyze the 3He and 129Xe maser

frequencies to place limits on the coupling of neutron spins to Lorentz and CPT violating

background fields to the universe, which can be interpreted using the Standard Model

Extension (SME) developed by Kostelecký and coworkers. We give a brief overview of

the SME as it pertains to our experiment as well as the limits set on SME parameters

by the previous version of the 3He and 129Xe maser (a more extensive discussion can be

found in [1]). Of particular interest is how to determine if our data has been corrupted by

systematic effects and no longer can be well described by our model, especially since the

observed fluctuations in the maser frequency do not have a flat power spectrum. Monte

Carlo simulations will be shown, which largely verify our data analysis procedures, but also

indicate some remaining shortcomings. Finally, we present preliminary results of our tests

of Lorentz and CPT symmetry using the upgraded 3He and 129Xe maser; and compare

these results to the previous version of the experiment. We find that the current system

provides more than a factor of four better sensitivity per root sidereal day, through practical

technical limitations limited the current Lorentz symmetry test to 19 days.

145
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4.1 SME Theory

The Standard Model Extension (SME) posits a minimal set of background fields to the

universe that lead to Lorentz violation, as particles coupled to these fields would experience

energy shifts as they change inertial frames. Such effects are referred to as violations of

particle Lorentz invariance; but all the fields transform normally under local Lorentz trans-

formations, so observers in different inertial frames will agree on the effects on a particle,

or, in the language of the SME, the fields are observer Lorentz invariant.

It is particle Lorentz violation we take advantage of, since our laboratory on the surface

of the Earth is in a non-inertial frame that is both rotating and boosted, leading to time

varying modulations of the masers’ frequencies due (primarily) to coupling of the 3He and

129Xe neutron spins with the SME fields. The set of Lorentz-violating fields which we are

ultimately trying to observe or limit is given by the minimal SME Lagrangian for neutrons

and other spin-1/2 fermions [1]:

L =
1

2
iψ̄Γν

←→
∂ νψ − ψ̄Mψ, (4.1)

where

M = m+ aµγ
µ + bµγ5γ

µ +
1

2
Hµνσ

µν (4.2)

and

Γν = γν + cµνγ
µ + dµνγ5γ

µ + eν + ifνγ5 +
1

2
gλµνσ

λµ (4.3)

and the terms containing aµ, bµ, eµ, fµ, and gλµν are odd under CPT . This Lagrangian

formulation is then converted to a perturbative Hamiltonian and transformed from an in-

ertial Sun centered frame to the rotating and boosted laboratory frame of the noble gas

atoms, generating a modulated shift in the comagnetometry frequency [6],

δνM,He − γR δνM,Xe = δνX sin(ω⊕T ) + δνY cos(ω⊕T ) (4.4)
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where ω⊕/(2π) ≈ 11.606 µHz is the sidereal rotation frequency of the Earth. The amplitudes

of the two quadratures of the modulated shift are given by,

δνX = k
[
λs + β⊕

(
Λss sin(Ω⊕T ) + Λsc cos(Ω⊕T )

)]
(4.5)

δνY = k
[
λc + β⊕

(
Λcs sin(Ω⊕T ) + Λcc cos(Ω⊕T )

)]
(4.6)

where Ω⊕ is the frequency of Earth’s orbit around the Sun, β⊕ ≈ 9.9 × 10 -5 is the speed

of the Earth in its orbit as a fraction of the speed of light, and k is the difference in the

coupling of 3He and 129Xe to magnetic fields versus SME fields,

k =
2
(
αHe − αXe γHeγXe

)
2π~

= −5.77× 1032 nHz/GeV (4.7)

where αXe ≈ 0.75 [3] and αHe ≈ 0.87 [4] are the fraction of the noble gases’ nuclear spin due

to the neutron.1 The SME λ coefficients determine the amplitude of the spatial components

of possible Lorentz violation and the Λ coefficients determine the boost components [6],

λc = b̃Y − 0.0034d̃Y + 0.0034g̃DY (4.8a)

λs = −b̃X + 0.0034d̃X − 0.0034g̃DX (4.8b)

Λcc = − cos(η)
[
(1

2 b̃T + 1
2 d̃− − g̃c −

1
2 g̃T ) + (g̃T − 2d̃+ + 1

2 d̃Q)
]

+ sin(η)(d̃Y Z − H̃XT ) (4.8c)

Λcs = −H̃ZT (4.8d)

Λss = (1
2 b̃T + 1

2 d̃− − g̃c −
1
2 g̃T )− (g̃T − 2d̃+ + 1

2 d̃Q) (4.8e)

Λsc = cos(η)(H̃ZT − d̃XY )− sin(η)H̃Y T (4.8f)

where η = 23.4◦ is the tilt of the Earth’s axis relative to its orbital plane around the Sun.

The limits for the λ and Λ parameters using the previous version of the 3He and 129Xe maser

1In previous papers with bounds for SME parameters using the 3He and 129Xe masers, [5] and [6], it was
assumed that αXe = αHe = 1, so k = −8.46 × 1032 nHz/GeV.
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SME coefficients Fit result (GeV)

λc (1.2± 1.4)× 10 -31

λs (0.3± 1.2)× 10 -31

Λcc (−1.6± 1.5)× 10 -27

Λcs (0.3± 2.6)× 10 -27

Λss (−2.6± 2.8)× 10 -27

Λsc (−1.6± 1.2)× 10 -27

Table 4.1: Limits on SME parameters as determined by the previous version of the 3He and
129Xe maser in [6] and corrected for the lower k value reported here in Eq. 4.7.

are given in Tab. 4.1 where the boost parameters sensitivity is reduced by approximately

β⊕ compared to the spacial parameters, as expected. Note that the tilde accented SME

parameters above are made up of linear combinations of the fundamental SME fields [73],

b̃J = bJ − 1
2εJKLHKL −m(dJT − 1

2εJKLgKLT (4.9a)

b̃T = bT +mgXY Z (4.9b)

g̃T = bT −m(gXY Z − gY ZX − gZXY ) (4.9c)

g̃DJ = −bJ +mεJKL(gKTL + 1
2gKLT ) (4.9d)

g̃c = m(gXY Z − gZXY ) (4.9e)

d̃J = m(dTJ + 1
2dJT )− 1

4εJKLHKL (4.9f)

d̃± = m(dXX ± dY Y ) (4.9g)

d̃Q = m(dXX + dY Y − 2dZZ − gY ZX − gZXY + 2gXY Z) (4.9h)

d̃Y Z = m(dY Z + dZY − gXY Y + gXZZ) (4.9i)

d̃XY = m(dXY + dY X − gZXX + gZY Y ) (4.9j)

H̃XT = HXT +m(dZY − gXTT − gXY Y ) (4.9k)

H̃Y T = HY T +m(dXZ − gY TT − gY ZZ) (4.9l)

H̃ZT = HZT +m(dY X − gZTT − gZXX). (4.9m)

While all these transformations are critical to determine what fraction of the SME param-
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eter space we have covered, the bottom line for experimentally detecting any background

Lorentz-violating field coupling to the neutron spin is described through the sidereal mod-

ulation of the comagnetometry signal,

δνM,He − γR δνM,Xe = δνX sin(ω⊕T ) + δνY cos(ω⊕T ) (4.10)

and the ability of our upgraded 3He and 129Xe maser to bound the standard deviation of

the quadrature amplitudes δνX and δνY . In the following sections we will try and optimize

the extraction of a set of δνX and δνY values from maser data by introducing additional

terms to the model to account for non-SME related frequency shifts in the maser and reject

any instances where our corrections do not work.

4.2 Data Analysis Methods

We have three basic criteria for the analysis methodology used to determine sidereal mod-

ulations in our data: (i) our methods must be able to differentiate between data segments

with frequency shifts that can be explained by our model and those that do not; (ii) since

we will be rejecting segments of our data our methods must be robust with respect to the

parameters used in the rejection criteria; and, (iii) since each data point takes a full day

to collect, we need to use the data as efficiently as possible. We begin with a linear fit

model whose basis set consists of both quadratures of sidereal modulation, the amplitudes

of the masers (which are correlated to changes in the pump bulb and hence most of the

frequency shift mechanisms), a linear frequency drift, and a constant frequency offset. In

order to differentiate between data whose fluctuations can and cannot be accounted for

by the model, we need the sum of the squares of our residuals to follow a χ2 probabil-

ity distribution, which is a problem as the maser frequency does not have a white noise

spectrum for frequencies above 1/(2πT ′2) (the white phase noise part of the spectrum, see

Sec. 2.2.3), and hence our residuals are serially correlated and the sum of their squares will
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not follow a χ2 distribution.2 One solution to this is to low pass filter the frequency data

to remove the white phase noise portion of the spectrum, but to do this effectively leaves

us with relatively few degrees of freedom, which is not always desirable and would become

increasingly problematic if we moved to a system with longer T ′2. Instead, we correct for the

serial correlation by calculating the full covariance matrix for the residuals to weight the

least squares optimization correctly, as described in Sec. 4.2.1. Additionally, we apply our

least squares basis set, properly corrected, to the phase evolution of the maser, rather than

the frequency, which is how the maser signal is measured by the lock-in. Note, however,

that the techniques described in Sec. 4.2.1 could also be applied to the frequency data.

Using the corrected χ2 distribution to differentiate good data from bad data in terms of

explainable frequency shifts, we fit the data in segments of one sidereal day to help ensure

linearity of the maser amplitude and frequency correlations and that other drifts will be

primarily linear in nature. We stagger the start of each segment we fit over by ∼1 hour and

then run a 5 point moving average over the resulting χ2 values for each fit and reject all start

times that have a probability of less than 5% based on the χ2 distribution. This ensures

that only data which robustly matches the model is used, while also trying to use as much

of the data as possible by finding good segments that might last for only a day and avoiding

measurement disruptions that could be very short. Once we have collected sufficient data,

we calculate the standard deviation of the full set of sidereal modulation terms and compare

it to the standard deviation of the same terms in a simplified fit model, which does not

include the linear drift or maser amplitude terms, to gauge the efficacy of our drift removal.

We generalize this further by performing a set of fits over each data segment with the full

and simplified models where the sidereal frequency is replaced each time with a higher

frequency, up to the Nyquist frequency. The set of standard deviations of the sinusoidal

terms scaled by the inverse square root of the bandwidth of each frequency bin, 1/
√
νsidereal

for a one sidereal day data segment, generate, what we call, a least squares periodogram

2We could use Monte Carlo methods to generate the probability distribution in this case, but that is very
computationally intensive.
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(LSP), which is an estimation of the noise spectral density of the maser frequency with (and

without) frequency shift corrections. In Sec. 4.2.2, we use LSPs with Monte Carlo tests to

evaluate the efficacy of our analysis methodology.

4.2.1 Generalized Least Squares

In order that the sum of the squares of the residuals of our least squares fit model follow

a χ2 distribution we use the generalized least squares transformation of the fit model (see

[74]),

Ax = b =⇒ V−1/2Ax = V−1/2b (4.11)

where A is the set of basis functions, x are the basis function coefficients, b are the measured

values, and V is the covariance matrix whose inverse square root can be calculated by eigen

decomposition of V and taking the inverse square root of the diagonal matrix. In order

to calculate the covariance matrix for the 3He maser phase we begin with a Johnson noise

limited phase power spectral density,

σ2
φ,Jp =

(
2

T ′2

)2 kBTM
P

(
T ′2

2 +
1

ω2

)
= σ2

φ,w +

(
2πσν,w
ω

)2

(4.12)

where σν,w and σφ,w are the white frequency and phase noise spectral densities, respectively,

which we determine via the power spectrum of the data. The phase noise spectrum consists

of a white noise and random walk noise component, which can be represented in the time

domain with a discretely sampled set of phase measurements, φn, each taken at time tn =

n∆t as,

φn = ∆φn + 2π
n−1∑
i=0

∆νi∆t (4.13)

where ∆φn and ∆νn are independent random variables with expectation values E(∆φi) =

E(∆νi) = E(∆φi∆νj) = 0 and variances,

Var(∆φi) =
σ2
φ

2∆t
and Var(∆νi) =

σ2
ν

2∆t
. (4.14)
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The variance and covariance of φn, which represent the diagonal and off diagonal terms of

the covariance matrix, can now be calculated:

Var(φn) =
σ2
φ

2∆t
+

(2πσν)2

2
tn and Cov(φn, φm) =

(2πσν)2

2
tn where n < m. (4.15)

For our typical raw data set, sampled once per second over one sidereal day, ∼9× 104 data

points, the covariance matrix is too large for practical work; so instead we average together

phase measurements in blocks of 2k + 1 data points,

φ̄n =
1

2k + 1

n+k∑
i=n−k

φi (4.16)

which means the spacing between measurements is now ∆T = (2k + 1)∆t. The new phase

data points, φ̄n, have the same covariance Cov(φ̄n, φ̄m) = Cov(φn, φm), but a slightly dif-

ferent variance,

Var(φ̄n) =
σ2
φ

2∆T
+

(2πσν)2

2
∆t

(
n− 2k(k + 1)

3(2k + 1)

)
(4.17)

and we typically reduce the size of a sidereal data set to ∼ 300 data points, which gives a

more reasonably sized covariance matrix. The maser amplitudes used in the fit model are

averaged in the same manner. In Sec. 4.2.2 we will validate these calculations using Monte

Carlo tests.

4.2.2 Least Squares Periodograms and Monte Carlo Tests

We use least squares periodograms (LSP, see Sec. 4.2) and discrete Fourier transforms

(DFT) of Monte Carlo generated data sets that match the measured maser power spectrum

to test the efficacy of our data analysis methods. The DFT and the simple model LSP,

which does not contain the correlation and drift terms, should have the same values since

each quadrature contains only half the power, which implies a factor of 1/
√

2 reduction.

However, we are measuring the amplitude, not the RMS value, so the resultant increase by
√

2 cancels the quadrature effect and we should have identical values for DFT and LSP.
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Figure 4.1: Monte Carlo synthetic data for 3He maser frequency spectral density with
random walk correlations.

In our first test we generate Monte Carlo data that has the same power spectrum as the

data shown in Sec. 2.2.3. We use two random walk variables to generate the low frequency

noise and then included them in our full model LSP; but we do not include a specific

linear frequency drift in the Monte Carlo data. As expected, the simple fit model LSP and

the DFT spectral density follow very closely, as shown in Fig. 4.1, but we find that the

full model LSP does not maintain the expected white noise floor all the way down to the

sidereal modulation frequency; and at the critical sidereal modulation frequency is a full

factor of two above the expected white noise floor. This is due to a loss of independence

between elements in the basis set of the model between the sinusoids, the linear term, and

the random walk terms once the frequency of the sinusoids becomes low enough that there

is only one full period in the data set. From the spectrum we see that we need to use data

sets with approximately three full periods in order to restore full independence; however,

we still obtain a reduced χ2 = 1 for the full fit model regardless of the frequency, confirming

the correctness of our covariance matrix. To confirm the loss of independence between basis
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Figure 4.2: Monte Carlo synthetic data for 3He maser frequency spectral density without
random walk correlations.

sets we generate Monte Carlo data with no correlated random walk frequency noise and

employ the full fit model, yielding the same power spectrum, although it still has a reduced

χ2 = 1, as shown in Fig. 4.2. By trying all combinations of correlation and linear drift terms

on this Monte Carlo data set we determined that each of these terms, linear or correlation,

adds ∼30% above the noise floor and extends the number of periods that must be included

to ensure independence between the terms.

To determine the impact of these limitations on our analysis methodology of using data

segments of one sidereal day in length, we run our full analysis procedure on the four weeks

of data used in Sec. 2.2.3, which yielded 21 sidereal day data segments that passed our fit

criteria. The spectrum for this data is shown in Fig. 4.3, where we see that our frequency

shift corrections have reduced the frequency random walk by a factor of two, but this is still

a factor of two greater than the limiting sensitivity found from our Monte Carlo tests. We

can also confirm that the remaining fluctuations at the sidereal frequency are incoherent

noise as the average values of δνX and δνY are consistent with their standard errors. There
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Figure 4.3: Measured spectrum with different fit models.

also appears to be greater disagreement between the simple LSP and DFT spectral densities

than in the Monte Carlo data of Fig. 4.1. Note, however, that the periodic dips in the simple

LSP compared to the DFT in the random walk regime are due to the combination of the

effective rectangular window of the fit; the linear drift in the actual data, which is not

present in the simulation used for Fig. 4.1; and the sampling of frequencies beyond the

resolution of the data in the simple LSP, which are not present in the DFT spectra.

Despite the incomplete correction of frequency random walk in our data, all 21 sidereal

data segments passed our χ2 distribution cutoff. So to determine how likely that is, we

generated a Monte Carlo data set that included correlated and uncorrelated frequency

random walk components, but no linear drift term. We generated the usual spectral densities

as well as a LSP without the correlation terms, but with a linear frequency drift term, as

shown in Fig. 4.4, which matches the trends of the data spectrum in Fig. 4.3. From a plot of

the probability distributions of the sum of the squares of the residuals of each fit model, with

the sinusoidal frequency equal to the sidereal frequency shown in Fig. 4.5, we see that even

though we only had a partial frequency correlation, the full fit model agrees very well with
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Figure 4.4: Monte Carlo synthetic data that matches the measured spectra for the 3He
maser frequency.

the theoretical χ2 distribution and even the linear drift corrected model and uncorrected

models have significant overlap. Additionally, the spectral densities of the portions of the

simple and linear fit models that cross the 95% χ2 line at the sidereal modulation frequency

in Fig. 4.5 are only ∼15% less than the values shown in Fig. 4.4, so there could be significant

corruption of the real data due to the extensive overlap of the distributions.

Although the agreement between the sum of squares of residuals and the χ2 distribution

is initially surprising as we are a factor of four or more from the noise floor, recall that the

sum of squares is the integral of the power spectrum and our random walk frequency noise,

while very detrimental to our sensitivity, only occurs over a relatively small fraction of the

spectrum. There are several ways to reduce the possibility of contamination of the data by

segments that are uncorrelated with the model. Decreasing the χ2 cutoff point shown in

Fig. 4.5 would eliminate more of the uncorrelated data sets, but at the cost of correlated

data sets, which ultimately does not improve our sensitivity. Averaging the data down to

fewer points before fitting decreases the overall bandwidth and increases the fraction of the
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phase fit models of the matched Monte Carlo synthetic data looking for one sidereal day
modulations. For 300 degrees of freedom, the bandwidth of the fit goes up to a Nyquist
frequency of 1.8 mHz and thus the residuals are dominated by white frequency noise and
not the low frequency random walk component that starts around 150 µHz, see Fig. 4.4.

40

30

20

10

0

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y
 (

x
1
0

-3
 )

300250200150100500

Sum of Squares of Residuals

All with 50 degrees of freedom

 c
2
 PDF (  95% cut off)

 No drift correction
 Linear drift correction
 Linear and random walk drift correction

(Note: 1 marker every 10 points for clarity)

Figure 4.6: Fit model residual distributions for the same data set as above, reduced to 50
degrees of freedom. The bandwidth of the fit goes up to a Nyquist frequency of 330 µHz
and thus the residuals contain a considerable amount of the low frequency random walk
component that starts around 150 µHz leading to less overlap between χ2 and the linear
and uncorrected distributions.
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total noise power due to the random walk, which improves rejection of uncorrelated data

sets as shown in Fig. 4.6; but this has diminishing returns for our data once the Nyquist

frequency reaches the corner frequency of the random walk. Fitting longer data segments

would also increase the fraction of the total noise power due to the frequency random walk

and improve our rejection of data which does not fit our model; but while it does lead to

a data set with a smaller standard deviation, we have to throw out so much data, since we

are unable to use short data segments, that there is no improvement in the standard error

and hence no real improvement in our sensitivity. Reducing the bandwidth by increasing

the averaging does help improve sensitivity (see the improvement in Fig. 4.7), but the

only real improvements would be to fix the source of the random walk drifts (which we

believe to be due to the optical pumping laser, see Sec. 3.4) or to rotate the experiment

at a frequency higher than the corner of the random walk noise (without inducing other

systematic technical problems) as discussed in Sec. 2.4.1.

4.3 Preliminary Results Compared to Previous Maser

In this section we show the improvements to the maser frequency spectral density compared

to the previous maser system used in [43]. Our current maser data set is the same as in

Sec. 4.2.2, but we use a reduced bandwidth to improve sensitivity when determining good

matches to our fit model, as described in Sec. 4.2.2, and a wider bandwidth to calculate the

LSPs for the chosen data segments. From four weeks of data from the current system we

choose 19 one sidereal day segments using our methodology, compared to ∼90 days of data

using the previous system. Note, we where we have used the data segments they picked

and calculated the spectra from those segments as shown in Fig. 4.7.

The primary realized differences between the previous and current systems, based on the

spectra shown in 4.7, are the improved SNR of the current system, the reduced coupling of

maser amplitude fluctuations into frequency of the current system, and the closer approach

of the current system to the theoretical thermal noise limit. This overall improvement in
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Figure 4.7: Previous and current system spectral densities for the 3He maser.

the thermal noise limit of the current system is due entirely to the increased maser power,

and hence SNR, of the current system as can be seen by the factor of >3 improvement in

the measured white phase noise of the current system (the improvement in the measured

white frequency noise is more complicated, as we will discuss shortly). Most of the increase

in maser power for both 3He and 129Xe is due to an increase of B0 by a factor of four.

The remainder of the increase in the 3He maser power due to a slightly higher pump bulb

temperature and hence nRb, with the increase in the pump bulb volume mostly offset by the

decrease in 3He gas density and the remainder of the increase in the 129Xe maser power due

to an increase in the transfer tube diameter and shortening of the transfer tube length, which

is partially offset by the decrease in the fraction of 129Xe that makes up the total gas pressure

(see Sec. 2.5.2 for the scaling of maser power with system parameters). There is significant

coupling of the maser amplitude fluctuations into the maser frequency in the previous system

from both 3He at 400 µHz and 129Xe at 1.5 mHz, which is due to both the much larger
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Figure 4.8: Previous and current system maser fractional amplitude spectral densities.
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fractional fluctuations in the maser amplitudes compared the the current system, as can be

seen in Fig. 4.8, as well as larger amplitude to frequency coupling coefficients in the previous

system, since the maser bulb was not a sphere and hence had larger self field interactions

(see Sec. 2.1.3 and Sec. 2.2.3 for self field and transient interactions). Additionally, the

larger low frequency fractional fluctuations in the previous system point to a more unstable

pump bulb environment, which drives many of the frequency shift mechanisms listed in

Sec. 2.4, leading to the larger random walk noise observed in the previous system compared

to the current one in Fig. 4.7.

The current system is much closer to its thermal noise limit than the previous system,

especially for the white frequency noise regime where the previous system is a factor of >3

above the thermal limit. To calculate the thermal noise limit for the previous system we

used the longest T ′2 times reported in [43], 330 s for 129Xe and 170 s for 3He, for all the data

sets and calculated the power for each data set based on the maser amplitude and the values

for ωM , Lpu, qc, and Gamp reported in [43]. However, it is possible that there was a bias in

the measured 3He T ′2 making them appear longer than they actually were due to feedback

from the pickup coil as described in Sec. 3.7, as the procedure for trimming the magnetic

field gradients to optimize T ′2 in the previous system called for waiting for the noble gases

to fully polarize and reach steady state. The increased white phase noise of the previous

system compared to its theoretical limit, on the other hand, is due to vibrations of the

pickup coil in the magnetic field (as discussed for the current system in Sec. 2.5.1), which

generated noise above the thermal limit in the resonant circuit and affected both white

phase and frequency noise. The increase in white phase noise shown in Fig. 4.7 agrees well

with the ∼40% increase measured for the previous system in [43]; and this 40% should also

be taken into account with the white frequency noise limit.

In addition to the explanations mentioned above, the previous system’s increased fre-

quency noise was caused by amplitude to frequency noise coupling. If we divide the data

into two groups based on the frequency noise in the flat region around 150 µHz into a large

and small amplitude frequency noise (31 data sets are large and 61 are small), as shown in
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Figure 4.9: 3He maser spectra from the previous system grouped into small and large
frequency noise sets.

Fig. 4.9, we find that the small amplitude noise group shows significantly reduced resonance

peaks from the amplitude noise in addition to having a lower flat noise region. Additionally,

the large amplitude noise group shows excellent reduction of its low frequency noise when

the full fit model is used, to the point that it matches the small amplitude limit, again

emphasizing the amplitude to frequency coupling. The current system has reduced all of

these shortcomings by using a spherical maser bulb, which reduces amplitude to frequency

couplings; and a lower 129Xe pressure, which reduces the amount of light absorbed to po-

larize the same amount of Rb as in the previous system and hence reduces the thermal load

and fluctuations the laser places on the pump bulb and the frequency shifts caused by those

fluctuations.



Chapter 5

Anomalous Spin-Spin Coupling

Measurements

Searches for new spin-spin forces can be interpreted using a variety of theoretical frameworks

and different spin-spin coupling potentials within those frameworks, not all of which can even

be tested simultaneously. However, they all require the same basic experimental ingredients:

a sensitive detector with spin, in our case the 3He and 129Xe masers; and a source of spins,

for which we use a large glass cell filled with high pressure, high polarization 3He, which

should be located as close to the detector as possible. In order for a complete search for new

spin-spin forces we also have to consider the particles carrying the spin and test all possible

pairs of electron, proton, and neutron spins. However, before our measurement there had

not been a search for anomalous neutron-neutron spin coupling.

Practically speaking, tests of anomalous spin-spin couplings have one primary advantage

over searches for Lorentz symmetry breaking background fields to the universe: the ability

to choose the modulation frequency of the interaction mediating possible new physics. Thus,

unlike in Ch. 4, the analysis of the sensitivity level achieved by the 3He and 129Xe maser

is fairly straightforward and agrees well with our white frequency noise floor. However, the

limits placed on the new physics are not just determined by the sensitivity of the detector,

but also the proximity and size of the source, which adds additional complications and

163
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further optimization.

5.1 Limits on Anomalous Spin-Spin Couplings Between Neu-

trons

Below we reproduce the paper we published on searches for new spin dependent forces [7].

Note that the results given here have since been surpassed by an experiment performed by

the Romalis group [9] by approximately three orders of magnitude for all relevant interac-

tions. The experimental techniques and physics for our experiment are no different than

those we have discussed in the previous chapters with one exception: we use the adiabatic

fast passage technique from NMR to change the orientation of the 3He spins in the spin

source. However, we made no attempt to optimize this procedure as the first set of param-

eters we used enabled rotation of the spins with a low enough loss rate for our purposes.

Subsequently, a far lower loss rate (three orders of magnitude improvement) was obtained

for a similar 3He spin source in [9].
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Limits on Anomalous Spin-Spin Couplings

Between Neutrons

Alexander G. Glenday,1,2 Claire E. Cramer,1 David F. Phillips,1 Ronald L. Walsworth1,2

1Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138.

2Department of Physics, Harvard University, Cambridge, Massachusetts 02138.

Abstract

We report experimental limits on new spin-dependent macroscopic forces between neu-

trons. We measured the nuclear Zeeman frequencies of a 3He / 129Xe maser while

modulating the nuclear spin polarization of a nearby 3He ensemble in a separate glass

cell. We place limits on the coupling strength of neutron spin-spin interactions medi-

ated by light pseudoscalar particles like the axion (gpgp/(4π~c)) at the 3 × 10−7 level

for interaction ranges longer than about 40 cm. This limit is about 10−5 the size of the

magnetic dipole-dipole interaction between neutrons.

Searches for new spin-dependent macroscopic forces explore possible physics beyond the

Standard Model, such as Lorentz symmetry violation and the existence of new particles like

the axion. Searches for anomalous couplings between spins have typically been interpreted

in terms of forces mediated by the axion, which is of interest as a solution to the strong CP

problem and a dark matter candidate [2]. In more recent theoretical work, Arkani-Hamed

and coworkers have considered the dynamical effects of broken Lorentz symmetry added to

the Standard Model, which include new spin-dependent forces [75]. A phenomenological

theory developed by Dobrescu and Mocioiu enumerates all possible spin dependent forces

that satisfy rotational invariance and standard assumptions of quantum field theory [76].

This theory includes axion-mediated forces as well as the more complex Lorentz symmetry

violation considered by Arkani-Hamed and coworkers. In all cases, the strength of the

coupling between spins is dependent on the particle species e.g., electron, neutron, proton;
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and so a complete experimental survey should cover all particle combinations. There are

existing experimental limits on coupling of electron spins to all other species [77, 78, 79], as

well as a limit on proton-proton coupling [80]; but there is no published limit on neutron-

neutron spin coupling.

To measure new couplings between neutron spins we monitored the nuclear Zeeman fre-

quencies of a 3He/129Xe maser, our detector for new spin dependent forces, while modulating

the nuclear spin polarization of an ensemble of 3He atoms in a separate cell, our spin source.

Anomalous dipole-dipole couplings between the longitudinally polarized source and maser

spins will lead to an additional torque on the precessing maser spins and thus a frequency

shift. The two-species 3He/129Xe maser has been described previously [81, 82, 83, 5, 6];

here we provide a brief review of its design and operation (see schematic in Fig. 5.1). Co-

located ensembles of 129Xe and 3He atoms at pressures of hundreds of Torr are held in a

double-chamber glass cell placed in a homogeneous magnetic field of 6 G. Both species have

spin-1/2 nuclei and the same sign nuclear magnetic dipole moment, but no higher-order

electric or magnetic nuclear multipole moments. In one chamber of the glass cell, the pump

bulb (maintained ≈ 135 ◦C), the noble gas atoms are pumped into a nuclear Zeeman pop-

ulation inversion by contact interactions with optically-pumped Rb vapor [12]. The noble

gas atoms diffuse into the second chamber, the maser bulb (maintained ≈ 45 ◦C), which is

surrounded by an inductive coil connected to a circuit resonant at both the 3He and 129Xe

nuclear Zeeman frequencies (19.6 kHz and 7.1 kHz, respectively). For a sufficiently high

flux of population-inverted nuclear magnetization, active maser oscillation of both species

can be maintained indefinitely. The maser is protected from external magnetic fields by

three layers of magnetic shielding. By comparing one of the noble-gas masers to a stable

frequency reference (a hydrogen maser), we can stabilize the magnetic field and then use

the other noble gas maser as a sensor for new spin dependent forces. This application relies

on the fact that the gyromagnetic ratios of 3He and 129Xe differ by a factor of ∼ 2.75,

whereas the coupling to new spin-dependent forces should be very similar for the two noble

gas species since the neutron is the primary contributor to the nuclear spin for both 3He
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acquisition system.
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and 129Xe (approximately 87% [4] and 75% [3], respectively and with uncertainties less than

or equivalent to experimental errors). For all the measurements reported in this paper the

magnetic field was locked using the 129Xe maser frequency referenced to a hydrogen maser.

Thus the difference between the 3He maser frequency and the reference is given by,

νHe −
γHe
γXe

νXe ≈ (0.87− 0.75
γHe
γXe

)νSF ≈ −1.2νSF ,

where νHe and νXe are the respective 3He/129Xe maser frequencies, γHe and γXe are the re-

spective 3He/129Xe gyromagnetic ratios, and νSF is the frequency shift due to an anomalous

spin dependent force between neutrons.

Recent upgrades to the 3He/129Xe maser have yielded an order of magnitude improve-

ment in frequency stability on timescales of hours, relative to earlier versions of the device

[83, 5, 6]. These upgrades include optimization of the noble gas pressures, double bulb cell

geometry, and the temperature control and optical pumping systems to maximize maser

amplitudes and coherence times; as well as an increase in main magnetic field and hence

Zeeman frequency to increase maser power.

For the neutron spin source we used a valved Pyrex glass cell filled with 6.5 amg of

3He, 0.2 amg of N2, and 100 mg of Rb (see schematic in Fig. 5.1). The cell is a cylinder

with total volume of 88 cc (12 cm long, 3 cm diameter) and is housed inside an insulated

glass oven heated to 160 ◦C with blown air. The oven is surrounded by a pair of RF coils

designed to efficiently invert the 3He spin polarization via adiabatic fast passage (AFP).

The RF coil field homogeneity (few percent across the cell) ensures accurate determination

of the 3He polarization by measuring the amplitude of spin precession induced by resonant

NMR pulses. The cell is centered inside a solenoid, which provides a static magnetic field of

1 G and serves as the spins’ quantization axis (parallel to the maser’s magnetic field). The

solenoid has separate end-coils to optimize the magnetic field homogeneity, which is achieved

by maximizing the 3He spin coherence time in the spin source. The high homogeneity of

the static magnetic field is necessary to minimize polarization loss due to diffusion through
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Figure 5.2: Noise spectrum of the 3He Zeeman maser frequency averaged from three weeks
of data. The modulation period of the spin orientation of the spin source was chosen to lie
in the white frequency noise dominated part of the spectrum to avoid phase noise at high
frequencies and drift at low frequencies.

transverse field gradients. Also, the relatively long 3He spin coherence time (∼ 2 sec)

improves polarization measurement accuracy by avoiding dead-time errors between inducing

and measuring the spin precession. A cylindrical magnetic shield (38 cm diameter) with

endcaps surrounds the spin source. A laser diode array (LDA) shines 25 W of Rb D1

resonant (∼ 795 nm), circularly polarized light onto the cell, spin-polarizing the 3He to

12 ± 1% by spin-exchange collisions with the optically pumped Rb. Given this level of

polarization the spin source contains 1.8× 1021 polarized 3He spins located 41 cm from the

maser bulb of the 3He/129Xe maser (determined relative to the center of the spin source

cell and maser bulb).

To modulate the orientation of the 3He spins in the source, we adiabatically transfered

the spins between states by sending a drive signal through the RF coils and scanning

this RF signal through the Zeeman resonance on a timescale of ∼100 msec. The adiabatic

transfer was very efficient with only 0.1% fractional loss of total polarization per transfer, as
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measured by the change in amplitude of induced 3He spin precession after multiple transfers.

In order to maintain a high 3He polarization level, the angular momentum delivered by the

laser must always be in the same direction as the 3He spins; so we inverted the quarter

wave plates using a stepping motor each time we adiabatically reversed the 3He spin state

(Fig. 5.1). The spins and quarter wave plates were typically reversed once every 20 minutes

to maximize the 3He/129Xe maser sensitivity given white phase noise at short times and

long term drifts (see Fig. 5.2) and to avoid room temperature and other system parameter

oscillations which have shorter periods.

We collected 3He maser frequency data for approximately 85 days, resulting in a data

set of 3054 modulation periods of the spin source. We analyzed the data in blocks of

one spin source modulation period using a least squares fit of the phase of the 3He maser

to the time integrated state of the ensemble 3He spin in the source (a triangle wave).

To eliminate the effects of linear frequency drift, fits were calculated starting every half

period giving a total of 6107 fits. We performed fits on the time variation of maser phase
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(rather than frequency) to retain a χ2 distribution of the sum of squares of residuals since

the (approximately square wave) spin modulation has significant harmonic components in

the white phase noise spectrum of the data (Fig. 5.2). Phase noise was estimated using

the modified Allan deviation of the 3He maser frequency. We rejected fits whose sum of

squares of residuals had less than 5% probability given the χ2 distribution (final results

are insensitive to the choice of cutoff), leaving a data set of 4966 fits. Fig. 5.3 shows the

distribution of these fit amplitudes converted from phase to frequency. The weighted mean

of fit amplitudes that passed the χ2 test gives a shift of the 3He Zeeman frequency of 1.9

±6.1 nHz (one σ uncertainty). The standard error of this weighted mean was determined

using the number of independent modulation periods included in determining the mean

(2483). We verified our fitting procedure using a Monte Carlo simulation of the data.

The leading systematic error was the limitation of the magnetic shields and maser co-

magnetometry to reject magnetic coupling to the spin source. To test this limitation we

performed separate experiments in which we modulated the 1 G quantizing magnetic field

of the spin source with the same period that we modulated the spins in the spin source. At

the location of the maser bulb this applied magnetic field is 5.5× 104 larger than the field

from the magnetization of the 3He spins in the spin source. We set a limit of 50 nHz on

variation of the 3He maser frequency induced by the modulated magnetic field; which, after

rescaling to the field generated by the spin source, means that this systematic effect is < 1

pHz, far below our statistical sensitivity to anomalous spin-spin couplings.

To interpret the significance for theoretical models of the experiment presented here, we

simplify the theoretically proposed new spin-spin interactions to only include parallel spin

cases. For example, the potential between two parallel neutron spins mediated by the axion

and axion-like pseudoscalar particles is (in SI units):

V (r) =
gnp g

n
p

4π~c
~3

4m2
nc

(
1

λr2
+

1

r3

)
e−r/λ, (5.1)
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Figure 5.4: One σ excluded region from the present experiment for the dimensionless cou-
pling constant gnp g

n
p /(4π~c) as a function of interaction range for a neutron-neutron spin

interaction mediated by the axion or an axion-like pseudoscalar particle (see Eq. 5.1).

where gnp g
n
p /(4π~c) is the dimensionless coupling constant, mn is the neutron mass, r is

the separation between spins, and λ is the Compton wavelength of the axion-like particle

that determines the range of the interaction [2]. While constraints on the axion interaction

from astrophysical observations correspond to λ ∼ 20 cm to 200 µm [84], other axion-like

pseudoscalars are not constrained in this way [85]. Our measurement, when interpreted

in terms of an axion-like mediated force between neutrons and including finite-sample-size

effects, leads to a one σ limit of gnp g
n
p /(4π~c) < 3× 10−7 for distances longer than about 41

cm, with the full exclusion region shown in Fig. 5.4. The theoretical estimate for the size of

gnp g
n
p /(4π~c) for axions that would solve the strong CP problem is 5 × 10−30m2/λ2 which

is far below our limit or any that could be set with a similar experiment [86].

Next we consider the broken symmetry proposed by Arkani-Hamed and coworkers, which

gives rise to Goldstone bosons whose exchange between fermions leads to a long range 1/r

spin dependent potential [75]. The potential also depends on where the spins being measured

are located relative to the spin source that generates the potential and its motion relative
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to the background field of Goldstone bosons. The form of the Goldstone boson mediated

potential between two parallel spins is (in SI units, except where noted):

V (r) = −
(
M

F

)2 ~c
8π

1

r
A(α, γ, θv), (5.2)

α = M
rv

~c2
, γ = M

Rv

~c2
, cos θv = r̂ · v̂,

where M (given in eV) is the spontaneous symmetry breaking scale, F (given in eV) is the

mass scale determining the strength of the coupling to Dirac fermions (MF is the dimension-

less coupling), r is the separation between spins, and R is the radius of the spin source.

The final term, A(α, γ, θv), gives a parabolic shadow in the wake and shockwaves in front

of the spin source as it moves at velocity v with respect to the rest frame of the background

field, which is taken to be the rest frame of the CMB (see Fig. 5.5). The velocity of the spin

source relative to the CMB rest frame is assumed to be given by the dipole moment of the

CMB, which has been measured as 1.23× 10−3 c [87]. This gives a vector that sweeps out

a cone (inner angle of 166◦) in the local lab frame over the course of a sidereal day. As a

further simplification to the potential we only consider interactions in the parabolic shadow

region of A(α, γ, θv), whose boundary with the shockwave region is well approximated by

x = 3.15 − 0.0796y2, where y = α sin θv and x = α cos θv, for γ < 1. For larger γ the

parabola is still an excellent approximation for α > 5γ where errors only develop in the

offset of the parabola (∼ 20% for γ = 10). The value of A(α, γ, θv) in the shadow region

is approximated as being uniformly 0.7 (the average value of A for most transits across

the shadow region) and the shockwave region is set to zero. Errors introduced by these

approximations and finite-sample-size effects were all on the same scale, or smaller, than

experimental uncertainties.

The sensitivity of our experiment to the potential derived by Arkani-Hamed and cowork-

ers (Eq. 5.2) depends on M , as this determines the width of the parabolic wake generated

by the spin source and hence the fraction of the sidereal day for which there is any potential

to measure. For example, for values of M < 1 meV, at which point there is a non-zero
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approximation for the boundary between the shadow and shockwave regions.

potential between the spins for the whole day, we find a one σ limit of M
F < 4 × 10−19.

The exclusion region due to the spin-spin potential is shown in the center of Fig. 5.6, where

the fractional averages of the full data set used to calculate each point are all consistent

with zero. The left hand side of the figure shows the regime where the effective field theory

breaks down and is no longer predictive. The right hand side of the figure includes the

bounds previously set by the 3He/129Xe maser for a Lorentz violating background field as

the Earth, and hence the experiment, rotated over a sidereal day [75, 5]. While there is no

theoretical estimate for the size of M or F , the Goldstone bosons that mediate the spin

force have particular cosmological significance for two values of M . If M ∼ 1 meV then

the bosons could be dark energy and if M ∼ 1 eV then the bosons could be a dark matter

candidate.

Finally, we consider the phenomenological theory developed by Dobrescu and Mocioiu,

which contains nine new spin dependent potentials. Six of these depend on the relative

velocity between the spins (zero in our experiment). Of the remaining three potentials, one
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Figure 5.6: One σ excluded region from the present experiment for neutron-neutron spin
coupling as described by Eq. 5.2 (see text).

is the same as the axion potential and one requires perpendicular rather than the parallel

spin orientation in our experiment. This leaves the following potential between two parallel

spins (in SI units)

V (r) = −
gnAg

n
A

~c
~c
4π

1

r
e−r/λ, (5.3)

where gnAg
n
A/(~c) is the dimensionless coupling constant, r is the separation between spins,

and λ is the interaction range [76]. From our experimental data we find a one σ bound on

this potential of gnAg
n
A/(~c) < 2×10−37 for distances greater than about 41 cm. There is no

theoretical expectation for the size of this coupling; but we note that a limit on analogous

electron-electron interactions geAg
e
A/(~c) < 4× 10−35 has been set [76].

In conclusion, we have used a 3He / 129Xe maser and a separate ensemble of spin-

polarized 3He to perform an experimental search for new spin dependent forces between

neutrons. This experiment sets bounds on several theoretical frameworks for physics be-

yond the Standard Model that include Lorentz symmetry violation and particles that are

candidates for dark matter. Further improvement in these results could come from higher
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density spin sources and improved co-magnetometers [88].
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[25] F. Canè. Progress Towards an Optimized 129Xe/3He Zeeman Maser and a Test of Boost
Symmetry. PhD thesis, Harvard University, 2006.

[26] W. Shao, G. Wang, and E. W. Hughes. Measurement of spin-exchange rate constants
between 129Xe and alkali metals. Physical Review A, 72(2):22713, 2005.

[27] I. A. Nelson. Physics of Practical Spin-Exchange Optical Pumping. PhD thesis, Uni-
versity of Wisconsin-Madison, 2001.

[28] Y. Y. Jau, N. N. Kuzma, and W. Happer. High-field measurement of the 129Xe-Rb
spin-exchange rate due to binary collisions. Physical Review A, 66(5):52710, 2002.

[29] Y.Y. Jau, N.N. Kuzma, and W. Happer. Magnetic decoupling of 129Xe-Rb and 129Xe-
Cs binary spin exchange. Physical Review A, 67(2):22720, 2003.

[30] B. Chann, E. Babcock, L. W. Anderson, and T. G. Walker. Measurements of 3He
spin-exchange rates. Physical Review A, 66(3):32703, 2002.

[31] M. V. Romalis and G. D. Cates. Accurate 3He polarimetry using the Rb Zeeman fre-
quency shift due to the Rb-3He spin-exchange collisions. Physical Review A, 58(4):3004–
3011, 1998.

[32] S. R. Schaefer, G. D. Cates, T. R. Chien, D. Gonatas, W. Happer, and T. G. Walker.
Frequency shifts of the magnetic-resonance spectrum of mixtures of nuclear spin-
polarized noble gases and vapors of spin-polarized alkali-metal atoms. Physical Review
A, 39(11):5613–5623, 1989.

[33] J. Kestin, K. Knierim, E. A. Mason, B. Najafi, S. T. Ro, and M. Waldman. Equilibrium
and transport properties of the noble gases and their mixtures at low density. Journal
of Physical and Chemical Reference Data, 13(1):229–303, 1984.

[34] J. Bzowski, J. Kestin, E. A. Mason, and F. J. Uribe. Equilibrium and transport
properties of gas mixtures at low density: Eleven polyatomic gases and five noble
gases. Journal of Physical and Chemical Reference Data, 19:1179, 1990.

[35] M. Pfeffer and O. Lutz. 129Xe gas NMR spectroscopy and imaging with a whole-body
imager. Journal of Magnetic Resonance. Series A, 108(1):106–109, 1994.

[36] P. J. Mohr, B. N. Taylor, and D. B. Newell. CODATA recommended values of the
fundamental physical constants: 2006. Reviews of Modern Physics, 80(2):633–730,
2008.

[37] R. P. Feynman, F. L. Vernon Jr, and R. W. Hellwarth. Geometrical representation
of the Schrödinger equation for solving maser problems. Journal of Applied Physics,
28:49, 1957.

[38] L. D. Landau, E. M. Lifshits, and L. P. Pitaevskĭı. Electrodynamics of Continuous
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