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Abstract

In recent years, the nitrogen-vacancy (NV) color center in diamond, electronic spin
defects embedded in a solid-state system, has emerged as a promising platform for
quantum sensing and quantum information science in ambient temperature. Its ca-
pability of robust but high-precision spin control allows the NV center to be not only
a useful atomic-scale magnetic field sensor but also an attractive building block for
quantum processors.

In this dissertation, I present novel schemes to dynamically and geometrically
control NV spins for improved magnetic field sensing and studies of spin dynamics.
First, dynamic NV phase control is synchronized with an external oscillating mag-
netic field, enabling single and ensemble NV AC magnetometry spectral resolution
approaching sub-mHz. This protocol allows NV spins to sense an AC field spectral
resolution beyond the inverse of NV spin lifetime. Also, dynamic control via dressed
states of the NV spin is shown to provide effective tuning of the dipolar coupling
between spins. In strongly interacting NV spin ensembles, this robust tool can be
used to change the interaction dynamics. Second, geometric phase control is used
to sense an external static magnetic field, improving detection sensitivity and field
range. Especially, geometric phase magnetometry provides a 100-fold improvement
of field range compared to conventional Ramsey magnetometry. Moreover, geometric
phase control is used to observe the change of a topological state via measuring the
Chern number, showing that an NV spin can serve as a tool for simple quantum sim-
ulations. Finally, I discuss the possibilities of combining the presented schemes with
other quantum techniques to realize further interesting applications in future work.

Thesis Supervisor: Ronald Walsworth
Title: Senior Lecturer, Harvard University
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Chapter 1

Introduction

Coherent quantum control to initialize, manipulate, and read out the quantum state

of single or multiple interacting atom systems have been studied in different types of

physical systems, including ultracold atoms in optical lattices [1, 2], trapped ions [3, 4],

superconducting circuits [5, 6], quantum dots [7, 8], electron donors in semiconduc-

tors [9], and spin defects in solid-state materials [10, 11]. In particular, recent stud-

ies [12, 13, 14] have shown that spin defects in solid-state materials are promising

platform for quantum sensing and quantum information applications. Among differ-

ent types of spin defects, the Nitrogen-Vacancy (NV) color center in diamond has

many advantages in the field of quantum science due to its (i) easy optical initial-

ization with green laser light (ii) easy control of spin states via applying resonant

microwave signals and (iii) operation under ambient conditions. There has been sig-

nificant contributions from NV centers to the quantum science field, ranging from

quantum sensing [15, 16, 17, 18], quantum metrology [19, 20, 21] to quantum infor-

mation processing [22, 23, 24].

This thesis explores novel experimental schemes to manipulate single or multiple

NV center spins via dynamic and geometric phase control to achieve high-performance

magnetic field sensing and important demonstrations for quantum information appli-

cations.
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1.1 NV Center Basics

The NV center is one of many diamond defects [25, 26, 27] consisting of a nearest-

neighbor pair of a substitutional nitrogen atom and a lattice vacancy. Depending on

the relative positions of the nitrogen atom with respect to the vacancy, there are four

possible crystallographic orientations within the diamond lattice. This is called the

quantization axis of the spin states. The NV center exists in either of the neutral

(NV0) or negatively-charged (NV−) states. Three nearest-neighbor carbon atoms and

the nitrogen host atom provide a total of five electrons to form the NV0 state. If the

NV center captures one more electron, a total of six electrons, from another defect in

the lattice, it becomes NV− charge state, which has the useful properties discussed

in this thesis.

Spin State Initialization and Readout

Under optical illumination of 532 nm, the NV center undergoes spin-state-preserving

transitions between the electronic ground (3A2) and excited states (3E), and emits

fluorescence in 640 to 800 nm band with a life time of ∼ 13 ns. There also exists

a non-radiative decay path from the |±1〉 excited states to the |0〉 ground state via

metastable singlet states (1A1 and 1E) with lifetime of ∼ 300 ns [28, 29]. The splitting

between the two metastable states is about 1043 nm (Zero Phonon Line). When a

green laser continuously illuminates the diamond, the NV spin state is polarized into

the |0〉 state with a probability of ∼ 80% or better [30]. When the NV spin is in the

|±1〉 ground state, we measure diminished fluorescence, and this is how we readout

the spin state of the NV spin. For more detailed discussion on this topic, please

see [31, 32].

Spin State Control

We find the single NV− ground state Hamiltonian from the 3A2 manifold to be

HNV = HZFS +HZeeman +HHF +HN, (1.1)

20



Figure 1-1: NV spin basics. a, The structure of diamond crystal with an NV center.
NV center consists of a substitutional nitrogen atom (N) adjacent to a vacancy (V)
in the diamond lattice. The direction along the nitrogen atom and the vacancy (red
arrow) defines the quantization axis of the NV center. Blue rod indicates four possible
orientations for different class of NV centers. b, NV center energy level diagram.
Under optical illumination of 532 nm (green arrows), the NV center undergoes spin-
state-preserving transitions between the electronic ground (3A2) and excited states
(3E), emitting fluorescence in the 640-800 nm band (red arrows) with a life time of ∼
13 ns. There is also a non-radiative decay pathway (yellow arrows) from the |0〉 and
|±〉 excited states to the |0〉 ground state via metastable singlet states (1E and 1A1)
with a lifetime of ∼ 300 ns [28, 29]. Under continuous illumination of green laser, NV
spin is eventually initialized to the |0〉 state with probability of ∼ 80 %. When NV
spin is in |±1〉 ground state, we measure diminished fluorescence, and this is how we
readout the spin state of NV spin.

21



where HZFS is the zero-field splitting (ZFS), HZeeman is the Zeeman splitting, HHF is

the hyperfine interaction, and HN is the quadrupole interaction. Recall that since the

NV− consists of two unpaired electrons, the electronic interaction splits the energy

levels into the singlet and triplet states.

Now, let us look at the each terms in above Hamiltonian. The zero-field split-

ting exists even in the presence of zero external magnetic field, and this comes from

spin-spin interaction of NV−. The negatively charged NV− state possesses six elec-

trons, of which two unpaired electrons form a ground state spin-triplet. Due to each

electron’s magnetic moment, the dipole-dipole interaction causes a splitting in this

triplet state [33].

HZFS = ~D
(
S2
z −

1

3
S(S + 1)

)
+ E(S2

x − S2
y)) (1.2)

where S = (Sx, Sy, Sz) are the Pauli spin−1 operators, D = 2π × 2.87 GHz is the

zero-field splitting, and E ≤ 10 MHz is the strain splitting.

The Zeeman splitting comes spin subject to an external bias magnetic field, B =

(Bx, By, Bz), and is written as

HZeeman = ~γeB · S− ~γNB · I (1.3)

where γe = 2π × 2.8 MHz/G is the gyromagnetic ratio of electron, γN is the gyro-

magnetic ratio of host nitrogen nuclear spin and I = (Ix, Iy, Iz) is nuclear spin vector.

The hyperfine interaction of NV− electron spin and the host nitrogen nuclear spin is

given as

HHF = ~A||SzIz + ~A⊥(SxIx + SyIy) (1.4)

where A|| (A⊥) is the axially symmetric (non-axial) hyperfine coupling parameter.

For 14N nuclear spin, A|| = 2π × 2.3 MHz and A⊥ = 2π × 2.1 MHz [34, 35]. Finally,
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Figure 1-2: NV spin ground state energy level. a, |ms = 0〉 and |ms = +1〉 states
chosen as qubit two level system, and transition of qubit state can be controlled by
applying microwave with resonant frequency of ω1. We call this Single Quantum (SQ)
basis. b, Spin state can also be manipulated by inducing both transitions and with
the basis of |B〉 = (|+1〉 + |−1〉)/

√
2 and |D〉 = (|+1〉 − |−1〉)/

√
2 states. We call

this Double Quantum (DQ) basis.

the quadrupole interaction is given by

HN = ~P
1

2

(
3I2
z − I(I + 1)

)
(1.5)

where P = 2π×−5.04 MHz is nuclear quadrupole coupling with I = 1 for 14N nuclear

spin [35]. As described in the Prawer and Aharonovich et.al. [36], since we align our

magnetic field along the quantization axis of NV spin, we can drop some small terms

and get the simplified Hamiltonian through secular approximations.

HNV/~ ≈ DS2
z + E(S2

x − S2
y) + γeBzSz + A||SzIz +

3

2
PI2

z (1.6)

Just to focus on the dynamics of electronic spins only, let us ignore the hyperfine and

quadrupole interactions for now.

When the bias field Bz is large and NV triplet sub-levels ms = 0 and ms = ±1 are

split far enough, we can choose two level, transitions between |ms = 0〉 and |ms = +1〉

or between |ms = 0〉 and |ms = −1〉 as a qubit two level. With large Bz field, popula-

tion leakage into unwanted state is highly suppressed. We can induce Rabi nutation

between two levels by applying oscillating magnetic fields (with microwaves) with
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resonant frequency. From now on, let us assume ~ = 1.

H = DS2
z + γeBzSz + Ω1 cos(ω1t)Sx + Ω2 cos(ω2t)Sx (1.7)

where we neglected strain and hyperfine terms. ω1(ω2) refers to the frequency of

oscillating field and Ω1(Ω2) refers to the Rabi frequency. When we operate spin

manipulation between two levels (either Ω1 = 0 or Ω2 = 0), we are in Single Quantum

(SQ) basis (Figure 1-1 a). We can also operate the spin control between bright state,

|B〉 = (|+1〉 + |−1〉)/
√

2, and dark state, |D〉 = (|+1〉 − |−1〉)/
√

2 by applying

microwaves with two different resonant frequencies of ω1 and ω2. We call this control

scheme as Double Quantum (DQ) basis (Figure 1-1 b).

1.2 Dynamic and Geometric Phase Control Pro-

tocols

In this thesis, we introduce two different types of spin control schemes; dynamic and

geometric phase control. In the rotating frame of the single quantum basis, the total

Hamiltonian can be rewritten as

H = (γeBz − ω1)Sz + Ω1Sx (1.8)

where (γeBz−ω1) is the detuning, ∆, from the resonance between |0〉 and |+1〉 states,

and Ω1 is the Rabi frequency. The dynamic phase control protocol is to apply the

time-independent Hamiltonian to allow the NV spin to acquire dynamic phase on the

Bloch sphere, precessing around the fixed Larmor vector R = (Ω1, 0,∆) (Figure 1-3

a, b). Geometric phase control employs a time varying Hamiltonian, and now the

Larmor vector R(t) = (∆,Ω1 cosφ(t),Ω1 sinφ(t)) geometrically travels around the

Hamiltonian parameter space (Figure 1-3 c).

H = ∆Sz + Ω1 cosφ(t)Sx + Ω1 sinφ(t)Sy (1.9)
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On the Bloch sphere, the NV spin will precess around the moving Larmor vector,

and thus it acquires both dynamic and geometric phases. More details on geometric

phase control is discussed in Chapter 4 and Chapter 5.
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Figure 1-3: Dynamic and geometric phase control of NV spin. a, In Hamilto-
nian parameter space, which consists of detuning in z-axis, and Rabi frequencies on x
and y axis, dynamic phase control refers to the control with fixed Larmor vector (red
arrow) R in rotating frame. b, On the Bloch sphere, for fixed Larmor vector (dahsed
red arrow), spin (blue arrow) will precess around the Larmor vector and acquire a
dynamic phase. c, Geometric phase control refers to manipulation with a time vary-
ing Larmor vector (red arrow) R(t) in the rotating frame. d, On the Bloch sphere,
for a moving Larmor vector (dahsed red arrow), the spin (blue arrow) will acquire
both dynamic and geometric phase.
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1.3 Thesis Outline

This thesis is divided into two parts. First, Chapter 2 and Chapter 3 use Dynamic phase

control of NV spins to address the problem of poor spectral resolution in NV AC mag-

netometry and to introduce a novel scheme to control the dipolar coupling between

spins. Second, Chapter 4 and Chapter 5 use Geometric phase control of NV spins to

address the problem of poor sensitivity and detectable magnetic field range in NV DC

magnetometry, and to introduce simple quantum simulation of topological transition

using a single qubit.

Chapter 2 introduces the Synchronized Readout method [37], which is a new

approach to to coherently or incoherently sense external oscillating magnetic signals

for an arbitrary duration, not limited by the finite coherence time of an NV spin, and

to demonstrate single NV and ensemble NV detection of a coil-produced artificial AC

signal with high spectral resolution (millihertz).

Chapter 3 presents a novel scheme to control the effective dipolar coupling strength

between spins. As a proof-of-principle demonstration, we use two strongly coupled

NV spins with different quantization axes as a test bed of this scheme. We use Ramsey

spectroscopy to observe the change of coupling dynamics by dressing one of the spins

into a different types of basis.

Chapter 4 introduces a new way to do DC magnetometry through the measure-

ment of geometric phase evolution. Unlike conventional NV Ramsey magnetometry,

where the detectable field range is inversely proportional to the sensitivity, geomet-

ric phase magnetometry shows that we can decouple sensitivity and field range, and

achieve arbitrarily large field range with high sensitivity. We also measure the NV

geometric phase coherence time, which turns out to depend on how fast we con-

trol the Larmor vector. Finally, in the non-adiabatic control regime, we observe NV

magnetometry sensitivity surpassing the sensitivity of typical Ramsey magnetometry.

Chapter 5 presents a simple quantum simulation using a single NV qubit to mea-

sure a topological transition. A topologically invariant number, the Chern number, is

measured by varying the topology of the system. Taking advantage of a lifted degen-
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eracy due to hyperfine interactions, we show that with a single qubit, measurement

of topological phase dynamics of three interacting qubit system becomes possible.

Finally, Chapter 6 discusses further directions of measurements, which can be

made to achieve better quantum sensing and quantum information applications.
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Chapter 2

High-Resolution Magnetic

Resonance Spectroscopy

2.1 Introduction

In recent years, nano-scale nuclear magnetic resonance (NMR) sensing using a single

NV center [38, 39, 40] has been successfully demonstrated. These results have opened

up a possibility of a single molecule NMR for its chemical structural studies or multi-

nuclear spin spectroscopy for quantum information science [41]. However, to date,

there is a key challenge, which limited the spectral resolution of NMR detection

using NV centers; the interrogation duration for NV-NMR detection technique has

been limited by the spin state lifetime of the NV (T1 ∼ 3 ms), which is orders of

magnitude shorter than the coherence times of nuclear spins in bulk liquid samples

(T2 ∼ 1 s) or intrinsic to diamond such as 13C nuclear spins. Recent studies have shown

that quantum memory techniques can significantly extend the NV spin lifetime [42,

43]. However, such techniques have unfavorable sensitivity (η) scaling with spectral

resolution (δf), η ∼ (δf)−1/2, because the NV probe must be in a non-interacting state

while the memory is active [44]. In this chapter, we present a new scheme called

Synchronized Readout (SR) protocol to Coherently or Incoherently sense external

oscillating magnetic signal.

Using quantum lock-in detection, this scheme allows quantum sensing with ar-
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Figure 2-1: Principle of Synchronized Readout (SR) protocol. (a), Numerical
simulation of SR detection of a free induction decay (FID) signal, B(t) (blue), which
oscillates at frequency f and has finite decay lifetime τ . The SR sequence consists
of interspersed blocks of identical NV magnetometry sub-sequences (gray boxes) and
optical NV spin state readouts (green boxes). Using magnetometry sub-sequences
with maximum response at frequency f0, the duration τSR of each SR iteration is
chosen to be τSR = k/f0, for integer k. The NV fluorescence time series over successive
SR readouts oscillates at frequency δf = f−f0, because the FID signal phase advances
incrementally relative to the magnetometry sub-sequence. (b), Detail of calculated
magnetic signal and magnetometry subsequence at the third SR iteration (denoted
SR-3). The signal (blue line) is nearly in phase with a sinusoid at f0 (gray dashed
line). The magnetometry subsequence (here implemented as an CPMG8-2 dynamical
decoupling sequence) consists of a series of π-pulses timed to coincide with the zero-
crossings of the sinusoid at f0, resulting in a detected fluoresce maximum because the
FID is in phase. (c), Detail of magnetic signal and magnetometry subsequence at
SR-15. The signal (blue line) has advanced and is now ∼180 degree out of phase with
the sinusoid at the central frequency (gray dashed line). This gives rise to a detected
fluorescence minimum at SR-15
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bitrary duration beyond the lifetime of qubit probe, and gives single NV-detected

artificial signal with spectral resolution approaching ∼ 3 mHz. Furthermore, by in-

creasing the sensor spin volume size, which gives higher magnetic field sensitivity with

improved signal-to-noise ratio, we measure ensemble NV detected water NMR signal

with spectral resolution approaching to ∼ 1 Hz.

2.2 Synchronized Readout Measurement

2.2.1 Concept of Synchronized Readout Protocol

The idea of the synchronized readout (SR) NMR signal detection protocol is based

on signal mixing between an external oscillating magnetic field - nuclear Larmor

oscillation signal or other AC magnetic signal - and periodic readout of sensor spin

magnetometry response, all synchronized to an external clock. Each block of sensor

spin response readout consists of an NV AC magnetometry pulse sequence and optical

readout/initialization pulses. This block of identical pulse sequence is equidistantly

positioned with the frequency of f0. (Here, f0 is the center frequency of the AC

magnetometry spectral response function see below for details.) Given that the

external oscillating magnetic field has frequency of fac, if fac = f0, then the NV

fluorescence readout from each block will have the same signal amplitude. However,

if fac 6= f0, then the NV fluorescence signal will oscillate at ∆f = |fac − f0| (Figure

2-1). For the maximum contrast in SR NV fluorescence signal oscillation, NV AC

magnetometry pulse is tuned with the external oscillating magnetic field frequency

fac.

2.2.2 AC Sine Magnetometry for Synchronized Readout

NV AC-magnetometry is performed by using a dynamical decoupling pulse sequence

such as CPMG (Carr-Purcell-Meiboom-Gill) pulse sequence or XY pulse sequence

(Figure 2-2). These dynamical decoupling sequences consist of equally spaced con-

secutive pulses, providing an AC signal filter, which makes spin only to accumulate
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Figure 2-2: Pulse diagrams of different types of dynamical decoupling se-
quences. (a) n-pulse XY, (b) n-pulse CPMG with same phase for initial π/2 and
final π/2 pulses, which is called cosine magnetometry pulse sequence and (c) n-
pulse CPMG with 90 degree phase shift on a final π/2 pulse, compared to an ini-
tial π/2 pulse, which is called sine magnetometry pulse sequence. (d) For the dy-
namical decoupling schemes with periodic pulse spacing, the optimal time spacing
τ = (2n + 1)Tac/2 to sense AC magnetic field of frequency fac = 1/(2Tac) (green) is
shown.

net phase at a specific AC signal frequency. In this work, for demonstrating SR mea-

surement on a single NV center, we used CPMG-n pulse sequence as a basic building

block for the SR pulse train. n-pulse CPMG sequence is widely used in the field

of NMR [45, 46], and it is just an extension of Hahn-echo sequence where there are

n-repeated, equally spaced refocusing π pulses between two Hadamard gate rotation,

π/2 pulses, which prepares NV spin into superposition state between |ms = 0〉 and

|ms = −1〉 or |ms = +1〉. Moreover, by modulating the phase of the MW signal, the

spin rotation axis of π pulse train is chosen to be 90 degree rotated from the first π/2
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pulse. (Figure 2-1 c) shows CPMG pulse sequence where the π/2 pulse is around the

x-axis and the π pulses are around the y-axis. Switching rotation axis by 90 degree

and having an even number of π pulses can compensate possible pulses errors, which

could accumulate along one spin rotation axis. This makes CPMG pulse sequence

one of the most robust AC-magnetometry pulse sequences. Depending on the phase

of the last π/2 pulse, there are two types of AC-magnetometry protocols; when the

last π/2 pulse has the same phase as the initial π/2 pulse, it is called AC cosine mag-

netometry and when the last π/2 pulse has 90 degree out of phase from the initial π/2

pulse, it is called AC sine magnetometry. Each magnetometry protocol has different

response to an external AC magnetic field. When the nuclear Larmor frequency, or

an external AC signal matches the center frequency of the AC-magnetometry pulse

sequence, fac = f0, the coherent component of the signal is constant in time over

periodic NV readouts, while the noise component is slowly time-varying on timescale

τc, the correlation time of the nuclear spin bath. In Synchronized Readout mea-

surements, AC sine magnetometry protocol is chosen, such that the final NV spin

population is linearly dependent on the amplitude of the total oscillating magnetic

field signal. This is a key difference from previous NV-detected NMR protocols, where

AC cosine magnetometry pulse sequences have a quadratic dependence of the final

NV spin population on the magnetic field signal in order to rectify the zero-mean

noise component and sense its variance. Because we do not carry out this rectifica-

tion step, the mean amplitude of the noise component in our fluorescence signal is

zero, and its standard deviation increases only as the square root of the number of

NV fluorescence readouts. Moreover, the amplitude of the coherent component in

the fluorescence signal increases linearly with the number of NV readouts. Therefore,

over many synchronized readout cycles, the measurement is sensitive primarily to the

coherent component of the signal, and insensitive to the noise component.
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Figure 2-3: AC Sine magnetometry using a CPMG-8 sequence. When an
external oscillating signal of fac = 1 MHz (Tac = 1 µs) is applied. τ , the spacing
between π pulses, is swept from 100 ns to 2 µs with steps of 40 ns. We can observe that
when τ = (2n+ 1)Tac/2, the NV loses its fluorescence due to the phase accumulation
caused by a coherent external AC signal.

NV Diamond Sample

For all single NV measurements, we used low NV density diamond chip. The diamond

was a 4mm×4mm×0.5mm high-purity CVD diamond chip, with 99.99% 12C isotopic

purity near the surface, which contained preferentially oriented NV centers with ni-

trogen concentration [14N] ≈ 1×1015cm−3 and NV concentration [NV] ≈ 3×1012cm−3.

The approximate coherence times for the single NV center used in our experiments

were T1 ≈ 1 ms, T2 ≈ 500 µs, and T ∗2 ≈ 50 µs.
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AC Sine Magnetometry Measurement

First, AC sine magnetometry was performed using a simple block of CPMG-8 pulse

sequences. All π and π/2 pulse durations are determined by using 10 MHz Rabi

nutation. While an oscillating coherent magnetic field, b(t) = bac sin(2πfac + φ),

with frequency fac (period Tac = 1/fac) is applied using a coil antenna, the free

precession time between π pulses in CPMG pulse sequence, τ , is varied to detect that

oscillating magnetic field. Once τ matches to Tac/2, in which π pulses are placed

at every zeros of b(t) field, at each τ duration, NV spin gains phase due to external

b(t) field. This phase is accumulated throughout whole CPMG pulse sequence as NV

spin is flipped by π pulses whenever b(t) field flips its sign. This appears as dips in

spin coherence plots (Figure 2-3). Furthermore, phase accumulation happens in the

following harmonics,

τ =
(2n+ 1)

2
Tac (2.1)

where n = 0 yields the first phase accumulation time and n = 2 yields the second.
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2.3 Synchronized Readout with Single NV spin

2.3.1 Coherently Averaged Synchronized Readout (CASR)

Synchronized readout consists of concatenated NV magnetometry pulse sequences,

interspersed with projective NV spin state readouts and initialization pulses, all syn-

chronized to an external clock. This makes SR protocol to be a quantum lock-in

measurement, where the qubit probe is periodically active on sensing an external

field. When the oscillating external magnetic fields initial phase is locked to SR se-

quence, we can coherently average the signal, which we call Coherently Averaged

Synchronized Readout (CASR).

As a proof-of-principle demonstration of CASR, we used CPMG-8 magnetometry

sub-sequences with τ = 0.5 µs, which set the center frequency of SR measurement,

f0 = 1/(2τ) = 1 MHz; single cycle period was τSR = 15 µs and the total experiment

duration was T = NτSR = 0.03 s, for N = 2000, where N is a number of readouts.

The coil antenna-generated external AC signal frequency was set to fac = 999 kHz,

and phase of an external AC signal was locked to the first CPMG-8 sub-sequence so

that the SR signal can be coherently time averaged over the repeated measurements.

To achieve reasonably good signal-to-noise ratio (SNR > 3), we coherently averaged

over 5×105 times. From the CASR measurement result (Figure 2-4), we can observe

coherent oscillations, and the discrete Fourier transform of the CASR signal (inset

Figure 2-4) reveals harmonics of beating signal, which appears at

∆fh = (2n+ 1)∆f = (2n+ 1)|f0 − fac| (2.2)

,where ∆f is the first order beating. Higher harmonics are due to a strong AC signal

amplitude, by which NV spin accumulates more than π/2 phase during each CPMG

subsequence. More details on calculating phase accumulation are presented in a later

section. Importantly, we observed the full width half maximum (FWHM) linewidth of

33 ± 2 Hz (uncertainty from the fit) from the FFT signal, which will further improved

by extending the total length of SR sequence.
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Figure 2-4: Coherently Averaged Synchronized Readout (CASR) time-
series signal of a single NV sensor. Here, we used CPMG-8 as a magnetometry
subsequence with τ = 0.5 µs, which is a frequency of f0 = 1 MHz. Total length of
single block measurement was set to τSR = 15 µs, and a single CASR consisted of
2000 blocks of measurements with duration of T = 0.03 s. External AC signal of
fac = 999 kHz was applied, and for each CASR measurement, initial phase of AC
signal was locked to 0. The time series data was measured by averaging over 5× 105

times. Inset figure indicates FFT of the time series signal, which shows peaks at
expected positions where ∆f = |fac − f0|. Higher harmonics are due to strong AC
signal amplitude.
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Figure 2-5: Incoherently Averaged Synchronized Readout (IASR) time-
series signal of a single NV sensor. Again, we used CPMG-8 as a magnetometry
subsequence with τ = 0.5 µs, which is a frequency of f0 = 1 MHz. Length of a single
block measurement was set to τSR = 15 µs, and a single IASR consisted of 1.25× 106

blocks of measurements with duration of T = 18.75 s. External AC signal of fac =
990 kHz was applied, and for each IASR measurement, initial phase of AC signal
was set to random. The time series data was only measured once. Inset figure indi-
cates FFT of this time series signal, which shows peaks at expected positions where
∆f = |fac − f0| = 10 kHz.

2.3.2 Incoherently Averaged Synchronized Readout (IASR)

Synchronized readout (SR) protocol is applicable to sensors of any size, and does

not require coherent averaging. In particular, synchronized readout may be applied

to signals with random phase, providing spectral resolution proportional to the in-

verse correlation time of the signal τ−1
c , by incoherent averaging using periodogram

techniques [47], which we call Incoherently Averaged Synchronized Readout (IASR)

scheme. As a proof-of-principle demonstration of IASR, we used CPMG-8 magne-

tometry sub-sequences with τ = 0.5 µs, which set the central frequency of SR mea-
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surement, f0 = 1/(2τ) = 1 MHz; single cycle period was τSR = 15 µs and the total

experiment duration was T = NτSR = 18.75 s, for N = 1250000, where N is a number

of readouts. Large number for N was chosen to have single measurement SNR to be

larger than 1. In IASR measurement, coil antenna was excited continuously (without

gating or triggering of the sources) to produce a magnetic signal of fac = 990 kHz

and initial phase was set to be random.

Figure 2-4 shows typical time series data for a single set of IASR measurement

(with no averaging). Because of finite optical collection efficiency for a single NV

spin, each fluorescence readout detected only a mean of 0.03 photon, which degrades

the SNR of each IASR measurement. Despite its randomly dispersed time series data,

discrete Fourier transform reveals clear peak at around ∆f = |fac − f0| = 10 kHz,

where fac is frequency of oscillating magnetic field and f0 is SR protocol readout

frequency (inset Figure 2-4). FWHM linewidth of observed FFT signal is 53 mHz,

which is sufficient to resolve an oscillating field frequency within the precision of sub

100 mHz.

To confirm that IASR spectral resolution can be improved further down to∼1 mHz

level, we extended total length of IASR sequence and measured the signal response.

Detecting an external AC signal via IASR, spectral resolution should only be limited

by the total length of entire pulse block, or the stability of an external clock. Change

of spectral resolution by varying total time of SR sequence, T is shown in Figure 2-6.

As T is increased, improved spectral resolution of the IASR signal is clearly observed.

For T = 225 s, measured spectral resolution is reaching the Fourier limit ∼ 3.7 mHz

(FWHM).

Finally, to mimic NMR signal with chemical shifts, the coil antenna was excited

continuously to produce a magnetic signal consisting of three closely-spaced frequen-

cies around 3.7325 MHz. We tuned the antenna-generated signal strength such that

magnetic field amplitude at the NV sensor was ∼ 3 µT, corresponding to maximum

fluorescence contrast for a single CPMG-32 sequence. Cycle period was chosen as

τSR = 75.04 µs with SR protocol central frequency f0 = 3.7313 MHz; and the total

SR sequence duration was T = NτSR = 112.5 s, for N = 1.5 × 106. To overcome
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Figure 2-6: IASR signal by increasing T . Improved spectral resolution of an
external AC signal measured via IASR by increasing total length of SR measurement
T . At T = 225.1 s, we measure FWHM of 3.7 mHz.
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Figure 2-7: SR spectral resolution measured using signals from a coil an-
tenna. (a) Power spectrum of IASR signal obtained with a single-NV magnetic sen-
sor in a confocal microscope. The SR protocol used iteration time τSR = 75 µs, and
the total experiment duration was T = NτSR = 112.5 s, for N = 1.5× 106 iterations.
Data shown are the average of 100 experiments. The observed spectral width was
5.2 mHz (FWHM). Independent, spectrally narrow signal sources were used to drive
each of the three detected frequencies. (b) Power spectrum of SR signal obtained
with an NV ensemble magnetic sensor. The SR protocol used iteration time τSR =
75 µs, and the total experiment duration was T = NτSR = 112.5 s, for N = 1.5× 106

iterations. The spectrum shown is for a single average. The observed spectral width
was again 5.2 mHz (FWHM). (c) Power spectrum of SR signal obtained with an NV
ensemble magnetic sensor. The SR protocol used iteration time τSR = 1.2 ms, and
the total experiment duration was T = NτSR = 3000 s, for N = 2.5× 106 iterations.
The observed spectral width was 0.4 mHz (FWHM), substantially broader than the
Fourier limit. The measured linewidths for the three signals were consistent to within
10%, suggesting that the spectral resolution in this measurement was limited by the
stability of the timing source used to control the SR protocol.
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poor single measurement SNR due to finite optical collection efficiency, SR protocol

was repeated 100 times, and a Bartlett periodogram (converting time domain into

frequency domain, and averaged frequency power spectrum over multiple sets of mea-

surements) from the full data set was constructed. In the resulting power spectrum

(Figure 2-7 a), the three signal peaks were clearly distinguishable, with spectral res-

olution of 5.2 mHz (FWHM). The averages in this experiment were incoherent, in

that the phase of the detected signal relative to the start of the first magnetometry

sub-sequence was randomized every average. Such an incoherent averaging procedure

could, in principle, be used for noise spectroscopy of a statistically-polarized nuclear

spin ensemble, with the synchronized readout measurement duration matched to the

noise correlation time nτSR ≈ τc.

2.3.3 Sensitivity Estimation using IASR

To measure the sensitivity of a single NV magnetometer using the IASR protocol,

we performed a calibration in two steps: (i) We first determined the amplitude of an

oscillating magnetic field, applied with a nearby coil antenna, using known physical

properties of the NV sensor. (ii) We then used that calibration to apply a weak

oscillating field of known amplitude, detected it using the SR protocol, and observed

the signal-to-noise ratio (SNR) as a function of averaging time. First, the magnitude

of an applied oscillating magnetic field is varied by,

b(t) = bac sin(2πfac + φR) (2.3)

,where bac is field amplitude which requires to be calibrated; fac = 3.7325 MHz is the

drive frequency on the coil antenna, which is within a few kHz away from the central

magnetometry frequency f0; φR is a fixed random phase with respect to the first NV

AC-magnetometry sub-sequence. SR time series signal is recorded by varying the

AC current supplied to the coil antenna. Instead of current, here it is parameterized

with control voltage Vc to set the output of the current supply, where bac is linearly

proportional to Vc.
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Figure 2-8: Sensitivity of a single NV sensor. (a) Incoherently averaged syn-
chronized readout amplitude spectrum of a 3.28 µT test signal (fcoil = 3.7325 MHz),
recorded in 7.5 s. The calibrated signal amplitude defines the vertical axis of the
plot. The noise amplitude is determined by comparison with the calibrated test sig-
nal. (b) Synchronized readout FFT amplitude data (blue points) as a function of
control voltage Vc. Red line is a sine-function fit to the data, from which we obtain
the control voltage, Vc = 0.48 V that produces a π/2 NV phase accumulation in a
single magnetometry sub-sequence. This provides a calibration for the amplitude of
the applied test signal.

The value of bac can be calculated directly from the FFT of SR time series data, us-

ing the NV magnetic moment and timing properties of magnetometry sub-sequences.

For an oscillating magnetic field of frequency fac, SR signal will be oscillating with

beating frequency ∆f = |fac−f0|, and its oscillation amplitude appears as amplitude

of FFT with linear dependence. Therefore, FFT amplitude of SR signal depends

on bac, which determines the phase accumulation by the NV during a single mag-

netometry sub-sequence. When this phase accumulation is π/2, signal amplitude is

maximized and higher harmonics of ∆f in FFT can be highly suppressed. The oscil-

lating magnetic signal amplitude that produces π/2 phase accumulation is given by

below formula

bac,(π/2) =
~π2f0

2gµBn
=
π2f0

2nγe
=

π2

4τnγe
(2.4)

where g = 2 is the Lande g-factor, νB the Bohr magneton, γe gyromagnetic ratio of

NV, τ free precession time between each π pulses, and n the number of π-pulses in
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Figure 2-9: SNR scaling of IASR measurement. (a) Square root of total length
of SR sequence vs. Normalized signal-to-noise ratio per single measurement. Blue
dots are measurements, and red solid line is a linear fit to the measurement with
normalized SNR ≥ 1. Gray shaded area indicates region where normalized SNR <
1. For SNR per measurement approaching to 1 or larger, SNR increases linearly as a
function square root of total SR time T . From the slope, sensitivity is calculated as
ηB = 3.72 ± 1.51 µT Hz−1/2. However, for normalized SNR < 1, SNR scales much
slower than the square root of number of averages. (b) SR SNR measurements as a
function of total averaging time for acquisitions of T = 7.5 s (blue circles) and T =
18.75 s (red boxes) duration. A power law fit to the 7.5 s data (red line) indicates
square root scaling with time. Sensitivity does not depend on the SR measurement
time T .

the magnetometry subsequence at central frequency f0. For CPMG-32 sub-sequences

at f0 = 3.7325 MHz, the oscillating field amplitude required to produce a π/2 phase

accumulation on the NV is bac,(π/2) = 3.28 µT. The FFT amplitude of the SR signal

against the current-supply control voltage Vc is plotted in Figure 2-8 b. The maxi-

mum FFT SR amplitude, S(π/2) occurs for Vc = 0.48 Vpp, giving a magnetic signal

calibration of bac/Vc = 6.83 µT/V.

Next, by applying Vc = 0.48 V to generate an oscillating magnetic field of 3.28

µT, we measured a single NV magnetometer SR signal with the duration of T = 7.5

s (Figure 2-8 a). Observed signal-to-noise ratio in the FFT spectrum was SNR =

2.51 ± 1.02 (Uncertainly is a standard deviation of the signal peak height over 50

measurements). This yields, a single NV magnetic field sensitivity of ηB = 3.57 ±

1.11 µT Hz−1/2.

Moreover, normalized single IASR measurement signal-to-noise ratio (total accu-
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mulated SNR divided by square root of the number of averages) by varying the square

root of total SR sequence time T is presented in Figure 2-9 a. Multiple data points

overlapping at the same square root number of samples are for different number of

averages with fixed time T . As shown in Figure 2-9 a, there is a linear dependence

between normalized SNR and square root of T , where a single SR measurement SNR

is equal or larger than 1. However, when single average SR SNR is less than 1, ac-

cumulated SNR no longer scales as square root of number of averages, but scales

much slower than the square root scaling. This means that unlike coherent NV SR

measurement, for an efficient incoherent SR measurement, it is important to achieve

a single average SNR ∼ 1, so that the accumulated SNR is proportional to square

root of total measurement time. This means that unlike coherent NV SR measure-

ment, for an efficient incoherent SR measurement, it is important to achieve a single

average SNR ∼ 1, so that the accumulated SNR is proportional to square root of

total measurement time. From the linear fit in Figure 2-9, sensitivity of a single NV

magnetometer is calculated by

SNR√
Navg

=
Bsig

ηB

√
T (2.5)

,where the slope is expressed as Bsig/ηB. Calculated sensitivity is ηB = 3.72 ± 1.51

µT Hz−1/2, which is consistent with previously estimated sensitivity.

Finally, cumulated signal-to-noise ratio of the IASR FFT signal as a function of

total averaging time for fixed T = 7.5 s is plotted in Figure 2-9 b and shows that

sensitivity improves with the square root of time for t ≤ 1 × 103 s. We repeated

this measurement using a SR measurement duration T = 18.75 s and found almost

the same sensitivity, demonstrating that SR magnetic field sensitivity is independent

of spectral resolution. This is in contrast to NV-NMR detection using correlation

spectroscopy techniques, for which magnetic field sensitivity varies as the inverse

square root of spectral resolution [44]. Observed sensitivity depends on details of

fluorescence collection and spin coherence properties of a specific NV.
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2.4 CASR NMR measurement using Ensemble of

NV spins

For nano-NMR applications to resolve chemical shifts using a single-NV synchronized

readout scheme, the requirement of weak sample-sensor coupling, the presence of

fast spin diffusion in nanometer-scale, and the imperfect spin state readout of single-

NV experiments [48], all combine to impose a significant technical challenge. To

overcome these challenges, here we used a large ensemble of NV spins and achieved

NV-detected NMR signal spectral resolution ∼ 1 Hz. An ensemble NV sensor enables:

(i) probing micrometre-scale measurement volumes to obtain a signal dominated by

the thermal spin polarization, which is not limited by diffusion; and (ii) employing a

coherently averaged synchronized readout protocol to coherently sense NMR signals

for an arbitrary duration (up to ∼ 103 s), which gives better SNR.

Our NV ensemble instrument designed to detect NMR signals has a sensor volume

that consists of the overlap region between a 13 µm NV-doped layer (NV concentration

[NV]≈ 3×1017 cm−3) at the diamond surface, and a 20 µm diameter optical excitation

beam. Number of NV spins involved in sensing was ∼ 1.2 × 109, and measured

ensemble sensor magnetic field sensitivity was ηB = 30 pT Hz−1/2.

Interrogation of the NV ensemble sensor using a CASR scheme provides the spec-

tral selectivity needed for molecular NMR spectroscopy. In the limit of weak coupling

between NV centers and the signal source, the NV measurement back action is small

and does not lead to direct dephasing of the sample spins. The detector linewidth

is then limited only by technical effects (e.g., gradients in B0), or the stability of

the clock. Crucially, because our sensor is optimized to detect the thermal spin po-

larization, the phase of the NMR signal can be made identical over repeated NV

measurements by the application of an initial π/2-pulse to the nuclear spins at t = 0,

in order to enable coherent signal averaging. To characterize the spectral resolution

limit of synchronized readout pulse sequences due to our timing source, we applied

an oscillating magnetic signal consisting of three closely-spaced frequencies using a

nearby coil antenna, and measured it with CASR. We observed linewidths of 0.4 mHz

46



Figure 2-10: Ensemble NV NMR detection using CASR. (a) CASR time-series
signal (gray trace) produced by NMR free nuclear precession (FNP) of glycerol proton
spins above the diamond, with decay time T ∗2 = 10 ± 1 ms (dashed line). Calibrated
(80 pT amplitude) magnetic field from a coil antenna is turned on at t = 950 ms.
Comparison of FNP (blue box, blue trace inset) and antenna (red box, red trace inset)
signals in the frequency domain (second inset) yields an initial FNP amplitude of 95
± 8 pT. Total signal averaging time was 7.2 × 104 s. (b) Power spectra of proton
NMR signals obtained from glycerol CASR-FNP data (blue circles) for varying B0, fit
to Lorentzian lineshapes (solid red lines). Linear fit of NMR resonance frequency vs.
B0 (inset) gives correct proton gyromagnetic ratio, γp = (42.574 ± 0.002) MHz/T.
Signal averaging time was 2.8×103 s per trace. (c) Power spectra of measured CASR-
FNP from protons in glycerol (blue circles) and pure water (gray circles), as well as
CASR-spin-echo from pure water (black circles). Spectral resolution obtained with
CASR-FNP of glycerol is 30 ± 2 Hz (FWHM), determined by least-squares fitting to
a Lorentzian line shape (red line). Spectral resolution obtained from pure water is 9
± 1 Hz (FWHM) with CASR-FNP, and 2.8 ± 0.3 Hz (FWHM) with CASR-spin-echo.
Signal averaging times were 7.2× 104 s (glycerol FNP), 3.1× 104 s (water FNP), and
3.9× 104 s (water spin echo).

(Figure 2-7 c), which is several orders of magnitude better resolution than needed for

identification of molecular NMR signatures such as J-couplings and chemical shifts.

We performed CASR NMR measurements using a sample of glycerol (C3H8O3)

molecules (Figure 2-10 a). The NV-diamond sensor was placed in a cuvette filled with

glycerol, and aligned in the bias field (B0 = 88 mT) of a feedback-stabilized electro-

magnet. A resonant π/2 pulse was applied to tip the samples thermally-polarized

proton spins into the transverse plane of the Bloch sphere. The proton free-nuclear-

precession signal (FNP, equivalent to free-induction-decay in conventional NMR) was

then measured with a CASR sequence. Near the end of this measurement, after the

47



sample spins were fully dephased, we used a coil antenna to apply a calibrated oscil-

lating magnetic field pulse. Comparison of integrated peak intensities of the glycerol

NMR and coil pulse signals in the CASR amplitude spectrum (Figure 2-10 a, inset)

yielded an initial glycerol proton FNP amplitude of 95 ± 8 pT (1σ, for n = 3 mea-

surements), approximately consistent with calculations. To exclude the possibility of

spurious detection associated with room noise or sensor imperfections, we swept B0

over 0.02 mT and repeated the CASR-FNP experiment at each value. A linear fit

to the resulting NMR frequencies gave the correct value for the proton gyromagnetic

ratio (Figure 2-10 b).

To assess the spectral resolution limits of NMR detection using CASR spec-

troscopy, we measured a sample of pure water (T2, T1 > 2 s [49]). The resulting NMR

signal linewidth was 9 ± 1 Hz FWHM (Figure 9 c), which we attribute to micron-

scale magnetic gradients from susceptibility differences between sensor components.

Gradient-induced spectral broadening is commonly observed in sub-µL volume NMR

spectroscopy with microcoils [50, 51], and can be mitigated by improved susceptibil-

ity matching in the sensor design [52]. Applying π-pulses to the protons to refocus

gradient-induced dephasing (CASR-spin-echo) narrowed the NMR signal linewidth

to 2.8 Hz FWHM (Figure 2-10 c), in agreement with the distribution of temporal

fluctuations in B0 recorded during the experiment.

2.5 Summary and Outlook

We demonstrated that NV spin sensor with any size could achieve a frequency resolu-

tion beyond its limit of spin lifetime, only limited by the stability of an external syn-

chronized clock or the sample spin coherence time. Single-NV synchronized readout

can be useful for spectrally addressing a large-scale quantum registers in solid-state

quantum simulators [53], investigating two dimensional nuclear magnetic resonance

spectroscopy of intrinsic defect molecules inside a diamond [54, 55], or, combined

with external magnetic field gradient [56, 57], measuring spatial information on nu-

clear spin quantum registers. Unfortunately, for nano-scale NMR applications using
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single-NV synchronized readout, the requirement of weak sample-sensor coupling,

combined with imperfect spin state readout of single-NV experiments, presents a sig-

nificant technical challenge. Furthermore, the challenge of short signal correlation

times from nanoscale liquid-state NMR samples due to molecular diffusion is not

yet solved, limiting the advantages of a spectrally-selective nanoscale sensor. Until

translational diffusion can be reliably restricted at these length scales (e.g., by gel

media [58] or nanofabricated encapsulation chambers [59]) without increased dipolar

broadening, NV ensemble SR NMR techniques will likely be of greatest utility.

49



50



Chapter 3

Control of Effective Dipolar

Coupling via Manipulation of

Dressed-States

3.1 Introduction

Understanding the dynamics of macroscopic quantum systems with strong interac-

tion is a challenging topic. In recent years, several studies have reported using an

ensemble of interacting NV spins to study such dynamics; from the observation of

critical thermalization in a three dimensional ensemble [60] to Discrete Time Crystal

(DTC) state subject to a periodic drive in a disordered spin ensemble [61]. However,

unlike cold atom systems, where a Feshbach resonance [62, 63] is used as a tool to

control the interaction between atoms, solid state atomic defect system faces intrinsic

challenge of controlling the interactions, since defect atoms are spatially fixed inside

the host lattice. In this chapter, we present a novel scheme to effectively control

the dipolar coupling between strongly coupled spins through manipulation of dressed

states through microwaves and test this with two strongly coupled NV spins. Induc-

ing dressing terms into the system Hamiltonian via spin Rabi driving, we could turn

on/off or tune the effective dipolar coupling between two spins. Through Ramsey
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spectroscopy, we observed the change of coupling dynamics under the presence of

different dressing terms in our control Hamiltonian.

3.2 Strongly Coupled Two Spin-1 System

3.2.1 System Hamiltonian with No Dressing

The system of two off-axis NV center spins is described by the given Hamiltonian

H = HA +HB +Hint (3.1)

where HA and HB are individual Hamiltonians for NVA and NVB respectively, and

Hint is the interaction Hamiltonian term between two NV spins. Individual Hamilto-

nians can be expanded as

HA = D(SzA)2 + γ ~B · ~SA

HB = D(SzB)2 + γ ~B · ~SB (3.2)

where D = 2.87 GHz, zero-field splitting due to NV electronic spin-spin interaction,

γ, NV electronic gyromagnetic ratio, ~B external bias magnetic field and ~SA and ~SB

NV spin-1 vectors. Strain term and hyperfine interaction between NV electronic spins

and nitrogen nuclear spin term are excluded. Let us assume that the external bias

magnetic field, B is aligned with NVA. Then the magnetic quantum number mA
s

is a good quantum number, and the Hamiltonian can be expressed in the basis of

|mA
s = 0〉 and |mA

s = ±1〉. For the off-axis NVB, misaligned magnetic field causes

state mixing, however, for the small magnetic field strength (B ∼ 40 G� D/γ), this

effect is small [23], therefore, we can still use the |mB
s = 0〉 and |mB

s = ±1〉 as set of

basis. Interaction Hamiltonian is given as dipole-dipole interaction between two NV

spins

Hint = −J0

r3

(
3(~SA · r̂)(~SB · r̂)− ~SA · ~SB

)
(3.3)
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where J0 = (2π) 52MHz·nm3 and ~r is a relative displacement vector between two

spins. Since we are interested in the interaction in the basis of each NV spin’s own

quantization axis, we can in terms of ~SA,B in terms of (SxA,B,SyA,B,SzA,B) coordinate

system where zA,B is a quantization axis for each NV spins. For two off axis NV

spins, flip-flop terms (SxAS
x
B + SyAS

y
B), (SxAS

y
B − S

y
AS

x
B) enter as fast oscillating terms,

which average out, therefore only the Ising interaction SzAS
z
B remains [21].

Hint ≈ −
J0qA,B
r3

SzAS
z
B = νSzAS

z
B (3.4)

where qA,B = −(1 − 3 cos2 θ) with cos θ = ẑ · r̂ and let the effective dipolar coupling

term to be expressed as ν, which is the real observable that we measure as a coupling

strength. Note that other mixing terms (e.g. SxAS
z
B) can be neglected due to the strong

magnetic field alignment to NVA along its z-axis and the zero field splitting [23].

3.2.2 System Hamiltonian with Dressing

Introducing dressing Hamiltonian in spin−1/2 system to decouple dipolar interac-

tions (also refer as motional narrowing) has already been extensively studied in NMR

community [64, 65], or observed in super conducting qubit system [66]. However,

in spin−1 system, due to increased number of sub-levels to control, more compli-

cated dynamics arise. Detailed discussion on dressed spin−1/2 system is presented

in Appendix D. Here we work on three-level, two NV spins and discuss how driving

Hamiltonian effectively changes spin coupling dynamics. Let us label a sensing NV

spin as NVA and driving NV spin as NVB. Total Hamiltonian of the system is

H(t) = D(SzA)2 + γBAS
z
A +

(
ΩA

1 cos(ωA1 t) + ΩA
2 cos(ωA2 t)

)
SxA (3.5)

+D(SzB)2 + γBBS
z
B +

(
ΩB

1 cos(ωB1 t) + ΩB
2 cos(ωB2 t)

)
SxB + νSzA ⊗ SzB

where D denotes zero-field splitting, ν denotes dipolar coupling between two NV

spins, ΩA,B
1 and ΩA,B

2 terms correspond to Rabi frequencies of |ms = 0〉 ↔ |ms = −1〉

and |ms = 0〉 ↔ |ms = +1〉 transitions for NVA and NVB respectively. SxA and SxB
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terms are the dressing terms in the Hamiltonian which transform the eigenstates into

dressed states. Pauli matrices for spin−1 is given as,

Sx =
1√
2


0 1 0

1 0 1

0 1 0

 , Sy =
1√
2


0 −i 0

i 0 −i

0 i 0

 , Sz =


1 0 0

0 0 0

0 0 −1

 (3.6)

Note that when we are in single quantum basis, we consider only |ms = 0〉 ↔ |ms = +1〉

transition, where ω1 = 0 and Ω1 = 0. Here, we ignore additional the flip-flop and

the strain terms. In order to go to the doubly rotating frame, we apply a unitary

operator

V =


eiω

A
1 t 0 0

0 1 0

0 0 eiω
A
2 t

⊗

eiω

B
1 t 0 0

0 1 0

0 0 eiω
B
2 t

 , (3.7)

which commutes with SA,Bz . Then the Hamiltonian becomes

H̃ = V H(t)V † − iV dV
†

dt
(3.8)

=
ΩA

1 cos(ωA1 t) + ΩA
2 cos(ωA2 t)√

2


0 eiω

A
1 t 0

e−iω
A
1 t 0 e−iω

A
2 t

0 eiω
A
2 t 0

⊗ 1

+ γBAS
z
A ⊗ 1 +D(SzA)2 ⊗ 1 +

(
−ωA1 |+1〉A 〈+1|A − ω

A
2 |−1〉A 〈−1|A

)
⊗ 1 (3.9)

+ 1⊗ ΩB
1 cos(ωB1 t) + ΩB

2 cos(ωB2 t)√
2


0 eiω

B
1 t 0

e−iω
B
1 t 0 e−iω

B
2 t

0 eiω
B
2 t 0


+ 1⊗ γBBS

z
B +D1⊗ (SzB)2 + 1⊗

(
−ωB1 |+1〉B 〈+1|B − ω

B
2 |−1〉B 〈−1|B

)
+ νSzA ⊗ SzB

(3.10)
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'


−ωA1 +D + γBA

ΩA1
2
√

2
0

ΩA1
2
√

2
0

ΩA2
2
√

2

0
ΩA2
2
√

2
−ωA2 +D − γBA

⊗ 1

+ 1⊗


−ωB1 +D + γBB

ΩB1
2
√

2
0

ΩB1
2
√

2
0

ΩB2
2
√

2

0
ΩB2
2
√

2
−ωB2 +D − γBB

+ νSzA ⊗ SzA (3.11)

where rotating-wave approximation is used to simplify the equation. To observe

the change of interaction dynamics in dressed states, we use Ramsey spectroscopy.

Detailed discussion on how Ramsey spectroscopy reveals coupling dynamics can be

found in Appendix D. By setting ωA1 = D+ γBA − δωA, ωA2 = D− γBA, which is for

single quantum Ramsey in the basis of |ms = 0〉 , |ms = +1〉, ΩA
1 = ΩA

2 = 0, assuming

no spin driving for NVA, and finally, letting ωB1 = D+ γBB, ωB2 = D− γBB, we have

H̃ =


δωA 0 0

0 0 0

0 0 0

⊗ 1 + 1⊗


0

ΩB1
2
√

2
0

ΩB1
2
√

2
0

ΩB2
2
√

2

0
ΩB2
2
√

2
0

+ νSzA ⊗ SzB (3.12)

Using this generalized Hamiltonian (3.12), we can analytically calculate eigenstates

and eigenvalues, where eigenstates are expressed in the NV spin σz basis in doubly

rotating frame. Depending on which initial state NVB is prepared in, which basis

we operate Ramsey spectroscopy, and between which basis we drive Rabi, observed

transition resonances (which contains information about the interactions) via Ramsey

sequence are varied. Detailed discussion on different conditions is presented in Section

3.4.
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3.3 Characterization of the System

3.3.1 Individual Spin Characterization

To realize isolated system of two NV spins that are strongly coupled (νdip � ∆,

where ∆ is coupling strength between NV spin and other electronic spin bath), we

used molecular implantation technique. 12C isotopic purified to 99.99% diamond

was used as a substrate, and 6 keV of +28N molecular ion beam was applied with

implantation dosage of 1×109/cm2. After the implantation, diamond was annealed

at 800 ◦C for 8 hours and at 1000 ◦C for 10 hours. More details on the sample is

discussed in Appendix C.

From the confocal fluorescence scan of the molecular implanted sample, we can

do robust statistical study of rate of creating double NV spins from single NV spins.

From Double Electron-Electron Resonance (DEER) measurement between two NV

spins, we measured dipolar coupling strength of ∼0.2 MHz on average, which agrees

pretty well with the estimate derived from simulated average distance between two

NV spins with given implantation energy [67].

Before applying any driving Hamiltonian into the system, we first need to recon-

struct the full time-independent Hamiltonian of the given two spin system. Since two

NV spins have different quantization axis, it is possible to spectrally distinguish them

via applying external magnetic field on one of the NV axis. From the ODMR (Opti-

cally Detected Magnetic Resonance) measurement, we set the magnet position to gen-

erate external magnetic field of B = 38.5G. In Figure 3-1 b, outer two resonance peaks

correspond to |ms = 0〉 to |ms = −1〉 and |ms = 0〉 to |ms = +1〉 transitions of NVA,

and inner two resonance peaks correspond to |ms = 0〉 to |ms = −1〉 and |ms = 0〉

to |ms = +1〉 transitions of off-axis NVB, respectively. By applying microwaves with

different resonances frequencies, we can individually control and readout the spin

state of each of NV spins. To characterize spin coherence properties of each of NV

spins, we employed Hahn-echo sequence to measure T2 and Ramsey spectroscopy to

measure T ∗2 . During each selective spin coherence measurements, uncontrolled NV is

prepared in |ms = 0〉 state. Overall measured spin coherence time is summarized in

56



Figure 3-1: Basic characterization measurement for two NV spin system. a,
Schematic of two NV spins inside the diamond lattice. External bias magnetic field,
Bext is applied to the sensor spin, NVA (red), and the control spin, NVB (blue) is
off-quantization axis to NVA. b, ODMR measurement of two NV system. Under the
different Zeeman splitting due to different amount of Bext field projected onto each
quantization axis, we can spectrally resolve both NV spins. c, By applying different
microwave frequencies the two NV each resonances, we can selectively induce Rabi
nutation on both NV spins. This means that we can selectively control and readout
the state of individual NV spins
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Table 3.1.

NVA NVB

T1 |0〉 |0〉
T2

|0〉−i|1〉√
2

|0〉
T ∗2

|0〉−i|1〉√
2

|0〉

Table 3.1: Spin coherence times for coupled two off-axis NV system

Spin coherence times of NVA are much longer than that of NVB, which indicates

NVB has more noisy environment. This might be the case where NVB has shallower

depth from the surface than NVA, therefore, subject to more surface noise [68]. To test

this hypothesis, one can try to measure the depth of individual NV spins by using the

surface proton NMR signal [69]. However, in this work, we didn’t investigate further

since NVA already had long enough T ∗2 to study interaction dynamics.

3.3.2 Coupling Strength Characterization

Double Electron Electron Resonance (DEER) Measurement

Double Electron-Electron Resonance (DEER) is a pulse scheme to measure the cou-

pling strength between interacting spins. In two spin interacting picture, DEER

measures dynamic phase accumulated by a sensor spin due to magnetic dipolar field

created by an external coupled spin. First, let us consider DEER in the basis of

|ms = 0〉 and |ms = −1〉 states of two off-axis interacting NV spins. Interaction is

given as an Ising interaction with dipolar coupling strength of ν (Equation (3.4)).

DEER is based on applying spin Hahn-echo sequence on sensor spin, and applying

π pulse flip on the coupled spin simultaneously when the sensor spin is flipped. Total

duration of Echo pulse τ is swept to measure the phase accumulation on the sensing

spin due to the dipolar field from the other spin projected onto the quantization axis

of the sensing spin. In details, we first initialize two NV spins in |00〉, apply π/2 pulse

on NVA, let the system evolve for time τ/2 with Hint, apply π pulse on both NVA and

NVB, let the system evolve again for time τ/2 with Hint, apply π/2 pulse on NVA,

and finally measure the population of |0〉 for NVA. Population measurement of |0〉
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for NVA can be expressed as

PSQ =
1− cos(ντ/2)

2
. (3.13)

DEER measurement can be done in different basis of NV spins. Now let us consider

DEER using |B〉 = |+1〉+|−1〉√
2

and |D〉 = |+1〉−|−1〉√
2

of NVA, and |−1〉, |+1〉 states for

NVB. The interaction Hamiltonian is the same. In this basis, we first initialize two

NV spins in |0−〉, apply double quantum π/2 pulse on NVA, let the system evolve for

time τ/2 with Hint, apply double quantum π pulse on NVA and NVB, let the system

evolve for time τ/2 with Hint, apply double quantum π/2 pulse on NVA, and measure

the population of |0〉 for NVA (3-2 a). Population measurement of |0〉 for NVA can

be expressed as

PDQ =
1 + cos(2νT )

4
. (3.14)

Figure 3-2 is the result of DEER measurement of our two NV spin system. In single

quantum basis of sensor spin with other spin flipped between |0〉 and |−1〉 states, we

measured coupling oscillation of ν/2 ∼ 0.125 ± 0.01 MHz. In double quantum basis

of sensor spin with other spin flipped between |−1〉 and |+1〉 states, we measured

coupling oscillation of 2ν ∼ 0.495± 0.031 MHz. From both measurements, we could

extract ν ∼ 0.250± 0.015 MHz.
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Figure 3-2: Double Electron Electron Resonance measurement on two NV
spin system. a, DEER measurement pulse sequence and DEER signal measurement
by sweeping total spin evolution time τ in single quantum basis (between |0〉 and
|−1〉) of NVA as a sensing spin, and NVB as a control spin. NVB is initially prepared
in |0〉 and flipped to |−1〉 state when NVA is flipped. During initial half of the τ
evolution, there is no phase accumulation on NVA, and only during the second half
NVA accumulates phase due to dipolar field of NVB projected on the quantization
axis of NVA. This results in measuring ν1 = ν/2 ≈ 0.125 ± 0.01 MHz. Uncertainty
is calculated from the fit b, We repeated same measurements, but now used NVB

as a sensing spin, and NVA as a control spin. Since the interaction Hamiltonian
is symmetric over two spins, we should get the same result, and we measure ν2 =
ν/2 ≈ 0.135 ± 0.016 MHz. c, DEER measurement now in double quantum basis
of sensing spin NVA, and control spin NVB is initially prepared in |−1〉. Double
quantum π pulse is applied to NVB when NVA is flipped in double quantum basis.
Since in double quantum basis, effective magnetic moment of NVA become twice of
the moment in single quantum basis, we measure twice faster phase accumulation,
ν3 = 2ν ≈ 0.495 ± 0.031 MHz. Reduction of the contrast by half is also due to the
measurement in DQ basis.
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Ramsey Spectroscopy Measurement

Similar mechanism as DEER, Ramsey sequence allows sensing spin, NVA to accumu-

late dynamic phase due to the static dipolar field from the spin NVB. Unlike DEER,

there is no π pulse applied to NVB, therefore, depending on which ms state that NVB

is prepared, generated dipolar field will be varied. Let us assume that Ramsey on

NVA is done in a single quantum basis of |0〉 and |+1〉. If NVB spin is prepared in

|mB
s = 0〉, then there is no phase accumulation on NVA, and for |mB

s = ±1〉, phase of

±γντ will be accumulated on NVA. Switching the state of NVB, we can turn on/off

the coupling between two spins. We can repeat the same Ramsey measurement in

a double quantum basis of |0〉 and |B〉 on NVA. In double quantum basis, overall

magnetic moment of NVA spin becomes twice the moment in single quantum basis,

therefore we measure twice larger dipolar coupling strength in double quantum basis.

First, |−1〉 and |0〉 basis of NVA were used for Single Quantum (SQ) Ramsey.

π/2 pulses for Ramsey sequence were detuned by −3 MHz, therefore, we observed

three peaks with separation of hyperfine coupling hf = 2.16 MHz in FFT of Ramsey

signal. In Figure 3-3 a, we focused on one of three hyperfine peaks, and plotted

FFT peak position change in frequency domain by preparing NVB in |0〉 or |±1〉

states. As NVB spin state is prepared in |±1〉, position of the resonance peak moves

to ∓ν ≈ 0.26 ± 0.02 MHz, relative to the peak with no-interaction turned on (NVB

in |0〉).

Next, |B〉 and |D〉 basis of NVA were used for double quantum (DQ) Ramsey. DQ

π/2 pulses for Ramsey sequence were detuned by ∓3 MHz, therefore, we observed

three peaks with separation of twice of hyperfine coupling 2hf = 4.32 MHz in FFT

of Ramsey signal, because in DQ basis, magnetic moment becomes twice. In Figure

3-3 b, we again focused on one of three hyperfine peaks, and plotted FFT peak

position change in frequency domain by preparing NVB in |0〉 or |±1〉 states. As

NVB spin state is prepared in |±1〉, position of the resonance peak moves to ∓2ν ≈

0.52 ± 0.02 MHz, relative to the peak with no-interaction turned on. Uncertainty is

given by the frequency resolution of the FFT. We confirmed that Ramsey spectroscopy
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Figure 3-3: Ramsey spectroscopy with no spin driving. a, Ramsey spectroscopy
pulse sequence and the discrete Fourier transform power spectrum from the Ramsey
time series measurement. Here, Ramsey with sensing spin, NVA, was performed in
SQ basis with control spin, NVB initialized in |0〉 (black), |+1〉 (blue) and |−1〉 (red)
states. By varying total spin evolution time τ , we measured Ramsey time series signal
and converted this signal into FFT power spectrum (|FFT|2). Gray shaded area is
indicating 1σ noise floor. Depending on the initial state of NVB, we observed shift of
the peaks in FFT, which corresponded to the dipolar coupling strength ν ≈ 0.26±0.02
MHz. b, we repeated same measurement, but now in DQ basis of sensing spin NVA.
Due to the twice of magnetic moment of spin NVA in DQ basis, we observed twice
larger shift of the peaks in FFT, 2ν ≈ 0.52± 0.02 MHz.
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measurement gives consistent result as DEER, and now we can start to drive the

control spin, NVB.

3.4 Ramsey Spectroscopy on Driven Spin System

3.4.1 Ramsey with Single Quantum Drive

Analytical Calculation

For the Ramsey on NVA in |0〉, |−1〉 single quantum basis, initial state of NVB is

prepared in |−1〉 state, and NVB is driven by ΩB
2 = 0, i.e., Rabi driving NVB in single

quantum basis, between |0〉 and |−1〉 states, the population of ms = 0 state of NVA

can be calculated using Equation 3.12

P
|0〉
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where we rewrote ΩB
1 as Ω1. This implies that in this Ramsey measurement, there

are four peaks in the FFT frequency domain, of which two on the far right and left

loose amplitudes and pushed further away as we increase Ω1, while the inner two

peaks converge to δωA + ν/2. Position of the peaks in frequency domain correspond

to eigenvalue differences between eigenstates where NVA spin flips between |0〉 and

|−1〉. When ν � Ω1, only the peaks merged at δωA + ν/2 survive, and an effective

dipolar coupling of the system becomes νeff = |ν/2|. In classical spin picture, this

could be understood as effective spin population, when driven between |0〉 and |−1〉

would time averaged to |meff
s = −1/2〉 (Figure 3-4 a).
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Figure 3-4: Ramsey spectroscopy with single quantum driving. a, Inside
box shows the energy level diagram of the control spin NVB. Only resonance of
ω2 between |−1〉 and |0〉 states is driven with Rabi frequency of Ω2. In classical
spin picture, if single quantum drive Ω2 � ν, then the time-averaged effective spin
state will be meff

s ∼ −1/2, therefore, effective coupling between NVA and NVB

becomes νeff = −ν/2. b, Pulse sequence for Ramsey spectroscopy with NVB spin
driven by Ω2. NVB spin state was initialized to |−1〉. c, Normalized discrete Fourier
transform power spectrum of Ramsey signal. Black solid lines with red shades are
the measurement, and red solid peaks are numerically calculated resonances (not
including hyperfine splittings). For NVB with no driving, resonance peak appears at
ν. As we gradually increase Ω2, multiple resonance peaks arise, and inner two peaks
eventually converge into one peak (Ω2 = 9 MHz � ν) at νeff = ν/2. Numerical
simulation matched well with the measurement, except for the case of Ω2 = 0.25
MHz. This is due to the detuning in the Rabi drive (ω2), which was induced by the
temperature drift of the system. Not all of the resonances were visible due to limited
signal-to-noise ratio of the measurement.
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Results

For the measurement, we detuned π/2 pulses on Ramsey sequence by −3 MHz, and

resolved all three hyperfine peaks in FFT. We focused on one hyperfine peak, and

traced position of the peak in frequency domain as we changed Ω1. Due to limited

signal-to-noise ratio, we couldn’t resolve all four peaks predicted in our analytical

calculation in Equation 3.15, however, trace of main two inner peaks were visible. As

we increased Ω1, FFT peaks indeed merged at νeff = ν/2 ≈ 0.13 MHz.

3.4.2 Ramsey with Double Quantum Even Drive

Analytical Calculation

Now, for the Ramsey on NVA between |0〉 and |+1〉 single quantum basis, initial

state of NVB is |+1〉 state, and when ΩB
2 = ΩB

1 = Ω, i.e., double quantum even

driving NVB between |0〉 and |B〉 state, the population of ms = 0 state of NVA can

be calculated as following
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This implies that in this Ramsey spectroscopy, there are total nine peaks, of which

six peaks loose their amplitudes and pushed further away as we increase Ω, while

the inner three peaks converge to δωA. Position of the peaks in frequency domain

correspond to eigenvalue differences between eigenstates of the Hamiltonian in (3.12),

where NVA spin flips between |0〉 and |+1〉. When ν � Ω, only the peaks merged

at δωA survive, and an effective dipolar coupling of the system becomes νeff = 0.

In classical spin picture, this could be understood as effective spin population, when

driven between |0〉 and |B〉 would time averaged to |0〉.

Results

For the measurement, we performed Ramsey sequence in double quantum basis, to

enhance the effective magnetic moment of a sensor spin NVA. We detuned double

quantum π/2 pulses on Ramsey sequence by ∓3 MHz, and resolved all three hyperfine

peaks in FFT. We focused on one hyperfine peak, and traced position of the peak in

frequency domain as we changed Ω. Due to limited signal-to-noise ratio, we couldn’t

resolve all nine peaks predicted in our analytical calculation in Equation 3.16, how-

ever, trace of few main peaks were visible. As we increased Ω, FFT peaks indeed

merged at νeff = 0.

3.4.3 Ramsey with Double Quantum Uneven Drive

Analytical Calculation

Finally, for the Ramsey on NVA between |0〉 and |+1〉 single quantum basis, initial

state of NVB prepared in |0〉, driven with ΩB
1 6= ΩB

2 6= 0, which is double quantum

uneven drive, we can still analytically solve the general Hamiltonian (Equation (3.12))

to extract resonances. Let ΩB
1 = Ω1 and ΩB

2 = Ω2. If we focus on the case where

ν � Ω1,Ω2, then under this condition, peaks merge at an arbitrary position in

frequency domain, which is not δωA anymore. We can analytically calculate this

resonance position where peaks converge, which corresponds to new effective dipolar

coupling νeff with unevenly driven Hamiltonian.
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Figure 3-5: Ramsey spectroscopy with double quantum even driving. a, In-
side box shows the energy level diagram of the control spin NVB. Resonances of ω1

(between |+1〉 and |0〉 states) and ω2 (between |−1〉 and |0〉 states) are driven with
same Rabi frequencies of Ω1 = Ω2 = Ω. In classical spin picture, if double quantum
even drive Ω� ν, then the time-averaged effective spin state will be meff

s ∼ 0, there-
fore, effective coupling between NVA and NVB becomes νeff = 0. b, Pulse sequence
for Ramsey spectroscopy with NVB spin driven by double quantum Ω = ΩDQ. NVB

spin state was initialized to |+1〉. c, Normalized discrete Fourier transform power
spectrum of Ramsey signal. Black solid lines with red shades are the measurement,
and red solid peaks are numerically calculated resonances (not including hyperfine
splittings). For NVB with no driving, ΩDQ = 0, resonance peak appears at −2ν, be-
cause NVA is in DQ basis. As we gradually increase ΩDQ, multiple resonance peaks
arise, and eventually one peak at νeff = 0 remains (ΩDQ = 12.72 MHz). Numerical
simulation matched well with the measurement. Broadened linewidth observed in
ΩDQ = 0.354 MHz and ΩDQ = 0.707 MHz are due to the imperfect double quantum
drive of all three hyperfine states. Not all of the resonances were visible due to limited
signal-to-noise ratio of the measurement.
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for ν � Ω1,Ω2. This simple analytical formula infers that by tuning Ω1,Ω2, we can

set an effective dipolar coupling strength to be continuously varied between -ν/2 and

+ν/2. This result could also be explained by the classical spin driving picture. For

uneven double quantum driving with Ω1 and Ω2, each spin state |+1〉 and |−1〉 will

have spin population proportional to Ω2
1 and Ω2

2, respectively. For fast driving limit,

each population is averaged into half, and the overall net spin is 1
2
(Ω2

1 − Ω2
2) (Figure

3-6 a). By normalizing with total population Ω2
1 + Ω2

2, we also get the same result as

equation (3.18). Furthermore, equation (3.18) is a generalized formula which satisfies

different driving conditions; when Ω1 = Ω2, then we get νeff = 0, and when Ω2 = 0,

then we get νeff = ν/2 as positions where Ramsey FFT peaks converge.

Results

For the measurement, again we performed Ramsey sequence in double quantum basis,

to enhance the effective magnetic moment of a sensor spin NVA. We detuned double

quantum π/2 pulses on Ramsey sequence by∓ 3 MHz, and resolved all three hyperfine

peaks in FFT. We focused on one hyperfine peak, and traced position of the peak in

frequency domain as we changed Ω1 and Ω2. To satisfy the ν � Ω1,Ω2 condition, all

the measurements are done with 2MHz < Ω1,Ω2. We define α = (Ω1−Ω2)
(Ω1+Ω2)

as a control

parameter, and measured peak converging points. As α is swept from -1 to +1, we

observed FFT peak transition from +ν = +0.26 MHz to −ν = −0.26 MHz (Figure

3-6 c, Figure 3-7 b).
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Figure 3-6: Ramsey spectroscopy with double quantum uneven driving. a,
Inside box shows the energy level diagram of the control spin NVB. Resonances of
ω1 (between |+1〉 and |0〉 states) and ω2 (between |−1〉 and |0〉 states) are driven
with different SQ Rabi frequencies of Ω1 > Ω2. In classical spin picture, if double
quantum uneven drive Ω1 > Ω2 � ν, then the time-averaged effective spin state will
be meff

s ∼ (Ω2
1−Ω2

2)/2(Ω2
1 +Ω2

2), therefore, effective coupling between NVA and NVB

becomes νeff = meff
s ν. b, Pulse sequence for DQ Ramsey spectroscopy with NVB

spin driven by double quantum uneven drive Ω1,2. NVB spin state was initialized
to |0〉. c, Normalized discrete Fourier transform power spectrum of Ramsey signal.
Black dots are the measurement, and red solid lines are Lorentzian fits to the data.
Control parameter α = (Ω1 − Ω2)/(Ω1 + Ω2). For NVB with SQ driving, α = ±1,
resonance peak appears at ±ν, because NVA is in DQ basis. For NVB with DQ even
driving, α = 0, resonance peak appears at 0. As we gradually sweep α from -1 to +1
with Ω1,Ω2 � ν, single resonance peak smoothly shifted from νeff = ν to νeff = −ν.
All the measurements are done with Ω1,Ω2 > 2 MHz
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Figure 3-7: Control of effective dipolar coupling via double quantum uneven
driving. a, Numerically calculated values for νeff by varying SQ Rabi frequencies
for both transitions. Ω1 and Ω2 are normalized by the maximum SQ Rabi frequencies,
and here we assumed for Ω1,Ω2 � ν. White dotted diagonal line reveals transition
of νeff from +ν to -ν by sweeping relative SQ Rabi frequencies. b, Cross sectional
plot of νeff transition by varying α = (Ω1 − Ω2)/(Ω1 + Ω2). Black hallow circles are
the measurements, blue crosses are the numerical simulation and red solid line is the
formula from Equation 3.18. Black dashed lines are indicating ±ν limits. Error bars
are calculated from the spectral resolution of the FFT.

3.5 Summary and Outlook

We measured the change of the effective dipolar coupling in a coupled two spin system,

when one of the spins is driven into a dressed state. Dressing with uneven Rabi

driving between different ground state sub-levels (|0〉 ↔ |±1〉), we could tune the

effective coupling strength between −ν/2 < νeff < +ν/2, and the transition was

observed via Ramsey spectroscopy. The dressing scheme is a robust way to tune

the effective coupling. Unlike other complicated pulse schemes [70] to manipulate

effective couplings, where the duration and fidelity of the engineered Hamiltonian

are limited by pulse errors, our scheme is effective as long as the dressing pulse is

applied. The dressing scheme has already been applied to nitrogen electronic spin

defect, P1s , to suppress overall dipolar field noise on NV spins [71, 72]. Ramsey

spectroscopy by varying the spin driving parameters can be used as a spectroscopic

tool to measure overall effective coupling strengths between NV spins and the P1 spin

bath (for high [N] density samples). Furthermore, recent studies have reported dense
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ensemble NV diamond samples with high conversion ratio from N to NV, resulting in

NV-NV couplings as a dominant source of spin interactions [21]. In this regime, our

scheme can be directly applied as a tuning knob to change the coupling dynamics or

the local disorder amplitude to study transition of non-equilibrium phases in strongly

correlated many body system.
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Chapter 4

Geometric Phase Magnetometry

4.1 Introduction

The geometric phase [73, 74] plays a fundamental role in a broad range of physical

phenomena [75, 76, 77]. Although it has been observed in many quantum plat-

forms [78, 79, 80, 81] and is known to be robust against certain types of noise [82, 83],

geometric phase applications are somewhat limited, including certain protocols for

quantum simulation [84, 85] and computation [86, 3, 87, 88]. However, when applied

to quantum sensing, e.g., of magnetic fields, unique aspects of the geometric phase

can be exploited to allow realization of both good magnetic field sensitivity and large

field range in one measurement protocol. This capability is in contrast to conventional

dynamic-phase DC magnetometry, where there is a trade-off between sensitivity and

field range. In this chapter, we use a single NV electronic spin in diamond to demon-

strate key advantages of geometric-phase DC magnetometry: it resolves the 2π phase

ambiguity limiting dynamic-phase magnetometry, and also decouples magnetic field

range and sensitivity, leading to a 400-fold enhancement in field range at constant

sensitivity in our experiment. We also present additional improvement of magnetic

field sensitivity in the non-adiabatic regime of mixed geometric and dynamic phase

evolution. By employing a power spectral density analysis [89], we find that adia-

baticity plays an important role in controlling the degree of coupling to environmental

noise and hence the spin coherence timescale.
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4.2 Dynamic-Phase magnetometry

4.2.1 Dynamic-Phase DC magnetometry Protocol

Before discussing about geometric-phase magnetometry, let us first revisit conven-

tional dynamic-phase magnetometry, i.e. Ramsey interferometry. In magnetometry

using a two-level system (e.g., two spin states), the amplitude of an unknown mag-

netic field B can be estimated by determining the relative shift between two energy

levels induced by that field. A commonly used approach is to measure the dynamic

phase accumulated in a Ramsey interferometry protocol as illustrated in Figure 4-1

a. An initial resonant π/2 pulse prepares the system in a superposition of the two

levels. In the presence of an external static magnetic field B along the quantization

axis, the system evolves under the Hamiltonian H = ~γBσz/2, where γ denotes the

gyromagnetic ratio and σz is the z-component of the Pauli spin vector. During the

interaction time T (limited by the spin dephasing time T ∗2 ), the Bloch vector ~s(t) de-

picted on the Bloch sphere precesses around the fixed Larmor vector ~R = (0, 0, γB),

and acquires a dynamic phase Φd = γBT . The next π/2 pulse maps this phase onto

a population difference P = cosφd, which can be measured to determine φd and

hence the magnetic field B. Such dynamic-phase magnetometry possesses two well-

known shortcomings. First, the sinusoidal variation of the population difference with

magnetic field leads to a 2π phase ambiguity in interpretation of the measurement

signal and hence determination of B. Second, there is a trade-off between magnetic

field sensitivity and field range, as the interaction time also restricts the shot-noise-

limited magnetic field sensitivity: η ∝ 1/T 1/2. Use of a quantum phase estimation

algorithm [90, 91] or non-classical states [92, 93] can alleviate these disadvantages;

however, they require either large resource overhead (additional experimental time)

or realization of long-lived entangled or squeezed states.
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4.2.2 2π Phase Ambiguity in Dynamic-Phase Magnetometry

In general, dynamic-phase magnetometry signal and its derivative are expressed as

Pd(B) = cos (γBT ) ,
dPd(B)

dB
= γT sin (γBT ) (4.1)

For any measured signal Pd, there are infinite degenerate magnetic field values, which

are related by Bm = B + 2πm(γT )−1, where m = 0,±1,±2 . . . ,∞ is an integer.

This degeneracy cannot be resolved by measuring the slope or adding a magnetic

field offset, leading to a fundamental limit in magnetic field range. In Figure 4-2 a,

the dynamic-phase signal is plotted in 3D as a function of magnetic field B, signal Pd,

and derivative dPd/dB. When the dynamic-phase magnetometry curve is projected

onto the (Pd, dPd/dB) plane, all data points lie on a closed 1D curve, given by

P 2
d + (γT )−2 (dPd/dB)−2 = 1. Even if a magnetic field offset is added, one encounters

another set of infinite degeneracies. For this reason, the degeneracy of dynamic-phase

magnetometry signal can be resolved only if the interaction time T is changed (for

example, via a quantum phase estimation algorithm). On the (Pd, dPd/dB) plane,

this approach is understood as changing the area of the closed curve. However,

changing T imposes an inevitable trade-off of magnetic field range with sensitivity.

Accounting for the three NV hyperfine transitions, the dynamic phase magnetometry

signal becomes:

Pd(B) =
1

3

∑
mI=−1,0,+1

cos [(γB +mIωHF )T ] = cos (γBT )[1 + 2 cos (ωHFT )] (4.2)

where ωHF = 2.16 MHz, the hyperfine splitting due to 14N nuclear spin. The hyperfine

transitions introduce an envelope modulation to Pd, which changes the area of the

closed curve in (Pd, dPd/dB), but all data points still lie on the same curve. Thus, it

is still not possible to resolve the degeneracy either by measuring the slope or moving

to other magnetic field values.
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4.2.3 Sensitivity and Field Range of Dynamic-Phase Magne-

tometry

To calculate the sensitivity and field range, the average change of fluorescence per

measurement is recast as ∆FL = αβ, where α ∼ 10% is the NV spin-state-dependent

fluorescence contrast, and β ∼ 0.015 is the average number of photons collected

per measurement. The sensitivity is given by η ≈ (SNR)−1|dP/dB|−1
max

√
tm, where

SNR = ∆FL/
√
β = α

√
β represents the signal-to-noise ratio of a single measure-

ment, |dP/dB|max is the maximum slope of the magnetometry curve, and tm ≈ T

is the measurement time. For dynamic phase magnetometry, the maximum slope is

|dPd/dB|max = γT , and then the sensitivity is

η ≈ 1

γα
√
β

1√
T

(4.3)

The maximum field-range is defined as the half cycle of one magnetometry oscillation:

Bmax ≈
π

γT
(4.4)

Thus, the range of magnetic field amplitudes that one can determine without modulo

2π phase ambiguity is limited to one cycle of oscillation. Consequently, an improve-

ment in field range via shorter T comes at the cost of a degradation in sensitivity.
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Figure 4-1: Concepts of dynamic and geometric-phase magnetometry. a,
For dynamic-phase magnetometry with an NV spin, the Bloch vector ~s = (sx, sy, sz)
(blue arrow), initially prepared by a π/2 pulse in a superposition state between two

levels, precesses about the fixed Larmor vector ~R = (0, 0, γB) (red arrow). During
the interaction time T between the two π/2 pulses, the spin coherence accumulates a
dynamic-phase φd = γBT , equivalent to the angle swept by the Bloch vector on the
equator. The phase is then mapped by a second π/2 pulse to a population difference
signal P = cos φd, which is measured optically. Due to a 2π phase periodicity, an in-
finite number of magnetic field values (black dots) give the same signal, leading to an
ambiguity. b, For geometric-phase magnetometry with an NV spin, a Berry sequence
is employed. The Bloch vector is first prepared by a π/2 pulse in a superposition
state between two levels. An additional off-resonant driving is then used to rotate
the Larmor vector about the z-axis N times, ~R(t) = (Ω cos ρ(t),Ω sin ρ(t), γB), where
ρ(t) = 4πNt/T . The spin coherence acquires a geometric-phase φg = NΘ, propor-
tional to the number of rotations N and the solid angle Θ = 2π(1− cos θ) subtended
by the trajectory of the Larmor vector. To cancel the dynamic-phase and double the
geometric-phase, the direction of rotation is alternated before and after a π pulse at
the midpoint of the interaction time. At the end of the Berry sequence, the phase is
mapped by a second π/2 pulse to a population difference signal P = cos φg, which is
measured optically. The signal exhibits chirped oscillation with magnetic field ampli-
tude, which yields at most finite magnetic field degeneracies (black dots). The signal
vs. field slope resolves this ambiguity.
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Figure 4-2: Graphical representation of 2π phase ambiguity. Magnetometry
signal P and slope dP/dB are plotted against magnetic field B. Gray curves are
projections. a, Dynamic-phase magnetometry. All data points lie on a single circle on
the (P, dP/dB) plane. Thus there are infinite possibilities of B (black dots) projected
onto the same point on the (P, dP/dB) plane. Adding a magnetic field offset does
not solve this 2π phase ambiguity. b, Geometric phase magnetometry. Since P (B) is
chirped, data points are distinct on the (P, dP/dB) plane, except for P = ±1. There
are finite values of B (black dots) that give the same signal; but one can resolve
this degeneracy by also evaluating dP/dB. For P = ±1, once can still resolve the
degeneracy by adding a known magnetic field offset.

4.3 Geometric-Phase Magnetometry

4.3.1 Geometric-Phase DC Magnetometry Protocol

To implement geometric-phase magnetometry, we use a modified version of an experi-

mental protocol (Berry sequence) previously applied to a superconducting qubit [81].

In our realization, the NV spin sensor is placed in a superposition state by a π/2

pulse, where driving frequency of the π/2 pulse is chosen to be resonant with the NV

transition at B = 0 (i.e. zero signal field), and then acquires a geometric-phase due to

off-resonant driving with control parameters cycled along a closed path as illustrated

in Figure 4-1 b. Under the rotating wave approximation and assuming only two of

the NV ms ground-state sub-levels are addressed by the microwave driving field, the
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effective two-level Hamiltonian is given by:

H =
~
2

(Ω cos (ρ)σx + Ω sin (ρ)σy + γBσz) (4.5)

Here, Ω is the NV spin Rabi frequency for the microwave driving field, ρ is the

phase of the driving field, and ~σ = (σx, σy, σz) is the Pauli spin vector. By sweeping

the phase, the Larmor vector ~R(t) = R · (sin θ cos ρ, sin θ sin ρ, cos θ), where cos θ =

γB/(Ω2 + (γB)2)1/2, R = (Ω2 + (γ)2)1/2, rotates around the z axis. The Bloch

vector ~s(t) then undergoes precession around this rotating Larmor vector (for detailed

picture of the measurement protocol, see Figure 4-3). If the rotation is adiabatic

(i.e., adiabaticity parameter A ≡ ρ · sin θ/2R � 1), then the system acquires a

geometric-phase proportional to the product of (i) the solid angle Θ = 2π(1− cos θ)

subtended by the Bloch vector trajectory and (ii) the number of complete rotations

N of the Bloch vector around the Larmor vector in the rotating frame defined by

the frequency of the initial π/2 pulse. We apply this Bloch vector rotation twice

during the interaction time , with alternating direction separated by a π pulse, which

cancels the accumulated dynamic phase and doubles the geometric phase: φg = 2NΘ

(full derivation in next section). A final π/2 pulse allows this geometric-phase to

be determined from standard fluorescence readout of the NV spin-state population

difference:

Pmeas(B) = cos

[
4πN

(
1− γB√

(γB)2 + Ω2

)]
(4.6)

This normalized geometric phase signal exhibits chirped oscillation as a function of

magnetic field. There are typically only a small number of field ambiguities that

give the same signal Pmeas; these can be resolved uniquely by measuring the slope

dPmeas/dB (Figure 4-2 b). From the form of Equation 4.6, it is evident that at large

B, cosine signal approaches to zero like B−2, and the slope goes to zero. Hence, we

define the field range as the largest magnetic field value (Bmax) that gives the last

oscillation minimum in the signal: Bmax ∝ ΩN1/2. Importantly, the field range of
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Figure 4-3: Schematic of geometric-phase magnetometry. a, Pulse sequence for
geometric-phase magnetometry with an external dc magnetic field Bdc that is varied
to acquire a magnetometry curve. A pulsed green laser initializes and reads out the
NV spin state. A Berry sequence is applied on top of a Hahn-echo pulse sequence
to cancel out the dynamic phase component of total phase accumulation. Resonant
(π/2)x and (π)x pulses define a rotating frame, and Bdc causes a detuning of the

Larmor vector ~R(t) during the Berry sequence. Phase rotation of the Larmor vector
~R(t) is controlled by two quadrature bias microwave fields (X : blue, Y : red). One
sinusoidal modulation period corresponds to a full rotation (φ = 2π) with the winding
number N=1. N can be controlled by varying the sinusoidal modulation number of
two quadrature bias microwaves. b, Geometric phase magnetometry. Since P (B) is
chirped, data points are distinct on the (P, dP/dB) plane, except for P = ±1. There
are finite values of B (black dots) that give the same signal; but one can resolve
this degeneracy by also evaluating dP/dB. For P = ±1, once can still resolve the
degeneracy by adding a known magnetic field offset.
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geometric-phase magnetometry has no dependence on the interaction time . If the

magnetic field is below Bmax, then one can make a geometric-phase magnetometry

measurement with optimal sensitivity η ∝ ΩN−1 T 1/2.

4.3.2 Derivation of Geometric-Phase Magnetometry Signal

The geometric-phase magnetometry protocol is characterized by a time-varying Hamil-

tonian with three control parameters, Rabi frequency Ω, driving field phase ρ, and

external magnetic field B:

H(t) =
~
2
~R(t) · ~σ (4.7)

where ~R(t) = (Ω cos ρ(t), Ω sin ρ(t), γB) is the Larmor vector and ~σ = (σx, σy, σz)

are the Pauli matrices. At time t = ti, the NV spin is prepared in a superposition of

two levels: |ψ(ti)〉 = 1√
2
(|+〉+ |−〉). If the evolution of the Larmor vector is adiabatic,

the instantaneous eigenstates depend on the Larmor vector

|+R〉 = +cos
θ

2
|+〉+ eiρsin

θ

2
|−〉 (4.8)

|−R〉 = −sin
θ

2
|+〉+ eiρcos

θ

2
|−〉 (4.9)

where θ is the polar angle between the z-axis and the Larmor vector ~R(t). During the

precession, the spin state vector rotates around the Larmor vector. Thus, the spin

acquires a dynamic phase φd, given by

φd(ti, tf ) =

∫ tf

ti

|~R(t′)|dt′ = γB(tf − ti) (4.10)

It is clear from this expression that the dynamic phase depends on the precession

time. If this precession is cyclic, namely, ~R(tf ) = ~R(ti), the state will also acquire

a geometric phase φg. To obtain the expression for the geometric phase, we first

calculate the Berry connection: ~A± = i〈±R|∇λ|±R〉 = −1∓ cos θ
2 r sin θ

ρ̂, where λ = (θ, ρ)

describes the polar and azimuthal angles for the Larmor vector, and ∇λ = r−1∂θθ̂+
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r−1 sin −1θ∂ρρ̂ is the gradient. Only the ρ component of the Berry connection is

nonzero. Then, the geometric phase between two states is given by

φ∓g (ti, tf ) =

∮
C

~A± · d~λ = −πN(1∓ cos θ) = ∓N
2

Θ mod 2π (4.11)

The integration is performed along the closed path C with ρ ∈ [0, 2πN ], and Θ =

2π(1 − cos θ) representing the solid angle subtended by the path C. In the Berry

sequence used for geometric-phase magnetometry (Figure 4-3), we insert two Berry

pulses between the spin echo pulses. Let us take the entire sequence length to be

T . The microwave π rotation pulse about the x axis, e−iσxπ/2 = −iσx, flips the |±〉

states, giving a minus sign in front of the phase acquired during the second half of

the interaction time.

|Ψ(T )〉 = − i√
2
e−

i
2 [φd(0,T

2 )−φd(T2 ,T)+φg(0,T
2 )−φg(T2 ,T)]|+〉

− i√
2
e+ i

2 [φd(0,T
2 )−φd(T2 ,T)+φg(0,T

2 )−φg(T2 ,T)]|−〉
(4.12)

The dynamic phase cancels because φd(0, T/2) = φd(T/2, T ) = γBT/2. However,

the geometric phase can add constructively and be doubled in magnitude by alter-

nating the direction of Larmor vector precession between each pulse: φg(0, T/2) =

φg(T/2, T ) = NΘ. At the end of the interaction time the spin state is |Ψ(T )〉 =

− i√
2

(
e−iNΘ|+〉+ e+iNΘ|−〉

)
. The final π/2-pulse maps the phase into a population

difference: P = cos (2NΘ). In Figure 4-4 b, the geometric phase signal is mea-

sured in a 3D parameter space of Rabi frequency, microwave frequency detuning, and

winding number.
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Figure 4-4: Observation of geometric-phase dependence on control param-
eters using a single NV spin in diamond. a, Measurement of the cosine of the
geometric-phase as a function of Rabi frequency Ω, microwave frequency detuning ∆,
and winding number N with a fixed interaction time of T = 10 µs. The amplitude of
each hyperfine oscillation is extracted by fitting the data along ∆ at N = 2, Ω/2π =
12 MHz to an analytical expression for the geometric-phase signal including the three
NV hyperfine transitions. The measured signal is normalized to the mean of these
three amplitudes. b, Analytical model of the cosine of the geometric phase including
the three hyperfine transitions, with the relative amplitudes determined in a. The
measurement and analytical model agree well.
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4.3.3 2π Phase Ambiguity Unwrapped in Geometric-Phase

Magnetometry

Again, the geometric phase signal and its derivative are

Pg(B) = cos

[
4πN

(
1− γB√

(γB)2 + Ω2

)]
dPg(B)

dB
=

4πNγΩ2

((γB)2 + Ω2)
3
2

sin

[
4πN

(
1− γB√

(γB)2 + Ω2

)] (4.13)

For any given value of Pg 6= ±1, there are only finite degeneracies of magnetic field

values. They are related by γBm√
(γBm)2+Ω2

= γB√
(γB)2+Ω2

+ m
2N

, where m is an integer,

which satisfies |m| < 2N . This degeneracy can be resolved by measuring dPg/dB

because the slope decreases monotonically with increasing B across a fixed value of Pg,

unless Pg = ±1. This concept can also be presented clearly by plotting the geometric

phase signal in 3D (Figure 4-2 b). In contrast to dynamic phase, geometric phase

magnetometry measurements, projected onto the (Pg, dPg/dB) plane, do not lie on a

closed 1D curve. All data points except for (Pg = ±1, dPg/dB = 0) are spread across

a 2D map and the degeneracy is resolved. Note that even if Pg = ±1 is measured, one

can always add a microwave frequency detuning to look for Pg 6= ±1. In summary, the

geometric phase magnetometry protocol is as follows: (Step 1) Measure the signal Pg

and slope dPg/dB. (Step 2) Identify the corresponding magnetic field value B. If the

measured signal and slope leaves an ambiguity, for example (Pg = ±1, dPg/dB = 0),

add a microwave frequency offset and repeat the measurement. (Step 3) The steepest

slope for high-sensitivity magnetometry is accessible by tuning a microwave frequency.

The geometric phase magnetometry signal with three hyperfine transitions is

Pg(B) =
1

3

∑
mI=−1,0,+1

cos

[
4πN

(
1 − γB +mIωHF√

(γB +mIωHF )2 + Ω2

)]
(4.14)

The hyperfine transitions introduce a complicated modulation. In particular, degen-

eracy points can appear at Pg = ±1. However, since the data points are spread across

the two-dimensional (Pg, dPg/dB) space, the degeneracy can always be resolved by
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moving to a different magnetic field value. Although it is difficult to derive an an-

alytical expression to show 2π phase unwrapping in general, exploring the following

three cases are sufficient to cover the parameter space:

• For γ|B| � ωHF , Pg(B) ∼ cos
[
4πN

(
1− γB/

√
(γB)2 + Ω2

)]
+O(ω2

HF )

• For γ|B| ∼ ωHF � Ω, Pg(B) ∼ cos [4πN (1− γB/Ω)] (1 + 2cos[4πN(1− ωHF/Ω)])

• For γ|B| ∼ ωHF ≥ Ω, approximation is difficult. However, this parameter range

is of importance for neither large-field-range nor high-sensitivity magnetometry.

4.3.4 Sensitivity and Field Range of Geometric-Phase Mag-

netometry

For the geometric phase magnetometry, the maximum slope of the curve is given by

|dPg/dB|max = 4πγNΩ−1, and then the sensitivity is

η ≈ 1

γα
√
β

Ω
√
T

4πN
=

1

γα
√
β

1

2A
√
T

(4.15)

where A = 2πN/ΩT is the adiabaticity parameter evaluated at B ≈ 0. The maximum

field-range is defined at the last minimum of the chirped curve: φg(Bmax) = 4πN(1−

γBmax/
√

(γBmax)2 + Ω2) = π. By defining a small parameter, ε ≡ φg/4πN � 1, the

above equation can be solved in terms of Bmax to first order:

Bmax ≈
√

2NΩ (4.16)
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4.4 Measurement of Dynamic and Geometric-Phase

Magnetometry

4.4.1 Sample and Measurement Calibration

NV Diamond Sample

The diamond chip used in this experiment is an electronic-grade single-crystal cut

along the [110] direction into a volume of 4×4×0.5 mm3 (Element 6 Corporation). A

high-purity chemical vapor deposition (CVD) layer with 99.99 % 12C near the surface

contains preferentially oriented NV centers. The estimated N and NV densities are

1×1015 and 3×1012 cm−3, respectively. The spin qubit used in this work consists

of the ms = +1 and 0 ground states. Near-resonant microwave irradiation allows

coherent manipulation of the ground spin states. The NV spin resonance lifetimes

are T1 ∼ 3 ms, T2 ∼ 500 µs, and T ∗2 ∼ 50 µs.
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Figure 4-5: Calibration of NV Rabi frequency as a function of AWG output
voltage. a, Normalized Rabi signal, measured as a function of the AWG output
voltage and microwave pulse duration. b, Reduced Rabi frequency values ΩRabi =
Ω/2π in units of MHz (blue dots) obtained by fitting data in a to a sinusoidal function
at each AWG voltage. Red line is a linear fit of ΩRabi to voltage. c, Residuals of linear
fit shown in b. The nonlinearity of ΩRabi is less than 0.2 MHz, which can be attributed
to power compression by the I/Q mixer (1 dB compression point is measured to be
1.0 Vpp).
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Figure 4-6: Magnetic field calibration via NV electron spin resonance. a,
Continuous electron spin resonance (ESR) measurement of NV spin transitions in
presence of an external magnetic field. First, to split the ms = ±1 states, a static
field of B0 = 93 G is applied along the [111] NV axis using a permanent magnet, which
sets the |ms = 0,+1〉 resonance peak at 3.13 GHz. Next, an additional external field
B is applied using a 40-turn electromagnetic coil placed h = 0.5 mm above the NV
center. The coil is also connected to a 150 Ω resistor in series. A high-stability
voltage controller provides a high-precision electric current through the coil. An
output voltage setting of 3.0 V gives I = 0.02 A, corresponding to a magnetic field of
B = µ0NI/4πh ∼ 16 G in the direction perpendicular to the [100] diamond surface.
NV ESR lines are measured for V = 0.2, 1.5, and 3.0 V (color dots). The ESR center
frequency is extracted by Gaussian fitting to the date (solid lines). b, Absolute value
of the ESR frequency shift as a function of applied voltage to the electromagnet
(dots). The additional external field B has longitudinal and transverse components
with respect to the NV axis: B = B‖ + B⊥. The inset diagram indicates a side-view
of the magnetometry setup, showing the diamond (gray box), NV axis (red arrow),
copper electromagnet (orange circle), and direction of B (blue arrow). The NV spin
state frequencies as a function of B are obtained by solving the eigenvalue problem,
det(H-λI)=0, where H/~ = (D+ γB0 + γB‖)σz/2 + γB⊥σx/2 is the two-level system
Hamiltonian. Thus, for γB � D, the measured frequency shift exhibits a quadratic
term as a perturbation: B‖ + 2γB2

⊥/(D + B0) (thick solid curve). For very small B
(few gauss), a linear fit gives a calibration of B to the applied electromagnet voltage
of ∆B/V = 0.50 ± 0.01 G V−1 (thin line).
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Hamiltonian Parameter Control System

The Rabi frequency Ω and phase ρ of the microwave drive field, as well as the applied

magnetic field to be sensed B, are key variables of this work. It is thus crucial to

calibrate the microwave driving system and magnetic field control system beforehand.

Microwave pulses for NV geometric phase magnetometry are generated by mixing a

high frequency (∼3 GHz) local oscillator signal and a low frequency (∼50 MHz)

arbitrary waveform signal using an IQ mixer. The Rabi frequency and microwave

phase are controlled by the output voltage of an arbitrary waveform generator (Figure

4-5). For more details on the microwave setup, please see the Appendix A. An

external magnetic field for magnetometry demonstration is created by sending an

electric current through a copper electromagnetic coil (4 mm diameter, 0.2 mm thick,

n = 40 turns, R = 0.25 Ohm) placed h = 0.5 mm above the diamond surface. The

electric current is provided by a high-stability DC voltage controller. To enable fine

scan of the electric current with limited voltage resolution, another resistor with 150

Ohm is added in series. Thus, a DC power supply voltage of 3V approximately

corresponds to I = 0.02A, which creates an external field of B = µ0nI/4πh ∼ 16

G. One can determine the change of the external magnetic field as a function of

DC power supply voltage ∆B(V ) by measuring the shift of the resonance peak ∆f

in the NV electron spin resonance (ESR) spectrum using ∆f = γ∆B. The result

is ∆B/V = 0.50 ± 0.01GV −1 (Figure 4-6). Joule heating produced by the coil is

P = I2R ∼ 10−4 W. The mass and heat capacity of the coil are about 0.15 g and

0.06 J K−1, respectively. Thus, the temperature rise is at most 2 mK s−1. Since

the temperature coefficient of the fractional resistivity change for copper is 0.00386

K−1 [94], the change of resistance due to Joule heating is negligible.
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Numerical Methods for Geometric Phase Simulation

All simulations of NV spin evolution in this work are carried out by computing the

time-ordered time evolution operator at each time step.

U(ti, tf ) = T
[
exp

(
−i
∫ tf

ti

H(t)dt

)]
=

N∏
j=1

exp[−i∆tH(tj)] (4.17)

where ti and tf are the initial and final time, respectively, T is the time-ordering

operator, ∆t is the time step size of the simulation, N = (tf − ti)/∆t is the number of

time step, and H(t) is the time-dependent Hamiltonian (Eq. (1)). In the simulation,

we used ∆t = 1 ns step size which is sufficiently small in the rotating frame. The

algorithm is implemented with MATLAB R©.

4.4.2 Magnetometry Measurement Results

Dynamic-Phase Magnetometry

We implemented both dynamic and geometric-phase magnetometry using the opti-

cally addressable electronic spin of a single NV color center in diamond. NV-diamond

magnetometers provide high spatial resolution under ambient conditions [15, 13, 95],

and have therefore found wide-ranging applications, including in condensed matter

physics [96, 97], the life sciences [18, 98, 99], and geoscience [100, 101]. At an applied

bias magnetic field of 96 G, the degeneracy of the NV |ms = ±1〉 levels is lifted. The

two-level system used in this work consists of the ground state magnetic sublevels

|ms = 0〉 and |ms = +1〉, which can be coherently addressed by applied microwave

fields. The hyperfine interaction between the NV electronic spin and the host 14N

nuclear spin further splits the levels into three states, each separated by 2.16 MHz.

First, we performed dynamic-phase magnetometry using a Ramsey sequence to illus-

trate the 2π phase ambiguity and show how the dependence on interaction time gives

rise to a trade-off between field range and magnetic field sensitivity. We recorded

the NV fluorescence signal as a function of the interaction time T between the two

microwave π/2 pulses (Figure 4-1 a). Signal contributions from the three hyperfine
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transitions of the NV spin result in the observed beating behavior seen in Figure 4-7

b. We fixed the interaction time at T = 0.2, 0.5, 1.0µs, varied the external magnetic

field for each value of T , and observed a periodic fluorescence signal with a 2π phase

ambiguity (Figure 4-7 c). The oscillation period decreased as the interaction time

was increased, indicating a reduction in the magnetic field range (i.e., smaller Bmax).

In contrast, the magnetic field sensitivity, which depends on the maximum slope of

the signal, improved as the interaction time increased. For each value of T , we fit

the fluorescence signal to a sinusoid dependent on the applied magnetic field and

extracted the oscillation period and slope, which we used to determine the experi-

mental sensitivity and field range. From this procedure, we obtained η ∝ T−0.49(6)

and Bmax ∝ T−0.96(2), consistent with expectations for dynamic-phase magnetometry

and illustrative of the trade-off inherent in optimizing both η and Bmax as a function

of interaction time (Figure 4-8 a).
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Figure 4-7: Demonstration of dynamic and geometric-phase magnetometry
using a single NV spin in diamond. a, NV electronic spin (S=1) sublevels ms

= 0 and ±1 with zero-field splitting D = 2π × 2.87 GHz. An external magnetic
field B introduces Zeeman splitting between the ms = ±1 states with gyromagnetic
ratio γ = 2π × 28 GHz/T. ms = 0 and +1 define the two-level system used in this
work. Hyperfine interactions with the host 14N nuclear spin lead to mI = 0,±1,
split by ± 2.16 MHz. b-e, Blue and red dots represent measured magnetometry
data for dynamic-phase b,c and geometric-phase d,e protocols, respectively. Vertical
axes give the measured optical signal Pmeas = k × (∆FL/FL), where ∆FL/FL is
the fractional change of NV-spin-state-dependent fluorescence and k is a constant
that depends on NV readout contrast. Error bars are 1σ photon shot-noise. Black
lines show fits to a model outlined in the main text. Blue and red shaded regions
represent maximum magnetic field ranges. Beating due to three hyperfine resonances
is evident in b. In dynamic-phase magnetometry, the oscillation period decreases
as the interaction time increases, indicating a trade-off between sensitivity and field
range c. Geometric-phase magnetometry signal in d shows independence of T . Field
range is defined at the last minimum e.
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Figure 4-8: Scaling of sensitivity and field range with three control param-
eters. a, Measured sensitivity and field range of dynamic-phase magnetometry as
a function of interaction time T . The theoretical model predicts η ∝ T−1/2 and
Bmax ∝ T−1, and the measurement gives η ∝ T−0.49(6) and Bmax ∝ T−0.96(2). b,
Measured sensitivity and field range of geometric-phase magnetometry as a function
of Rabi frequency Ω, winding number N , and interaction time T . The theoretical
model predicts η ∝ Ω1N−1T 1/2 and Bmax ∝ Ω1N1/2T 0, and the measurements give
η ∝ Ω1.2(5)N−0.92(1)T 0.46(1) and Bmax ∝ Ω0.9(1)N0.52(1)T 0.02(1). a,b, Dots indicate data
points and lines are linear fits to data.
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Geometric-Phase Magnetometry

Next, we used a Berry sequence to demonstrate two key advantages of geometric-phase

magnetometry: i.e., there is neither a 2π phase ambiguity nor a sensitivity/field-range

trade-off with respect to interaction time. For fixed adiabatic control parameters of

Ω/2π = 5 MHz and N = 3, the observed geometric-phase magnetometry signal Pmeas

has no dependence on interaction time T (Figure 4-7 d). Varying the external mag-

netic field with fixed interaction times T = 4.0, 6.0, 8.0µs, Pmeas exhibits identical

chirped oscillations for all T values (Figure 4-7 e), as expected from Equation 4.6.

From the Pmeas data we extract dPmeas/dB, which allows us to determine the mag-

netic field uniquely for values within the oscillatory range, and also to quantify Bmax

from the last minimum point of the chirped oscillation (Figure 4-7e). Additional

measurements of the dependence of Pmeas on the adiabatic control parameters Ω, N ,

and T yield the scaling of sensitivity and field range: η ∝ Ω1.2(5)N−0.92(1)T 0.46(1) and

Bmax ∝ Ω0.9(1)N0.52(5)T 0.02(1), which is consistent with expectations and shows that

geometric-phase magnetometry allows η and Bmax to be independently optimized as

a function of interaction time (Figure 4-10).

Comparison of Sensitivity and Field range

In Figure 4-9, we compare the measured sensitivity and field range for geometric-

phase and dynamic-phase magnetometry. For each point displayed, the sensitivity is

measured directly at small B (0.01∼0.1 mT), whereas the field range is calculated

from the measured values of N and Ω (for geometric-phase magnetometry) and T (for

dynamic-phase magnetometry, with T limited by the dephasing time T ∗2 ), following

the scaling laws give above. Since geometric-phase magnetometry has three inde-

pendent control parameters (T , N , and Ω), Bmax can be increased without changing

sensitivity by increasing N and Ω while keeping the ratio N/Ω fixed. Such smart

control allows a 10-fold improvement in geometric-phase sensitivity (compared to dy-

namic phase measurements) for Bmax ∼1 mT, and a 400-fold enhancement of Bmax

at a sensitivity of ∼ 2µT· Hz−1/2. Similarly, the sensitivity can be improved without
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Figure 4-9: Decoupling of magnetic field sensitivity and maximum field
range. Measured performance of dynamic-phase (blue dots) and geometric-phase
(red squares) magnetometry. Dashed lines are linear fits to data. Dashed arrows
indicate the orientation of control parameters Ω, N , T as independent vectors on the
(η2, Bmax) map. Since a Ramsey sequence used for dynamic-phase magnetometry
has only a single control parameter (T ), the relations for sensitivity (η ∝ T−1/2)
and field range (Bmax ∝ T−1) are unavoidably coupled as η2 ∝ Bmax. In contrast,
a Berry sequence used for geometric-phase magnetometry employs all three control
parameters, and thus the sensitivity (η ∝ Ω−1NT 1/2) can be chosen independently
of the field range (Bmax ∝ ΩN1/2T 0). For example, larger Bmax with constant η is
obtainable with geometric-phase magnetometry by increasing Ω and N while keeping
T and the ratio Ω/N fixed.
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changing Bmax by decreasing the interaction time, with a limit set by the adiabaticity

condition (A ≡ ρ · sin θ/2R ≈ N/ΩT � 1).
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Figure 4-10: Dependence of geometric-phase magnetometry signal on con-
trol parameters. a-d, Geometric-phase magnetometry data (dots) for various values
of Rabi frequency Ω and winding number N , as well as applied magnetic field B. Er-
ror bars are 1σ photon shot-noise. Black lines are fits of the data to an analytical
expression of the geometric-phase signal including the three NV hyperfine transitions.
Red shaded regions indicate the maximum magnetic field range defined by the last
oscillation minimum. Fixed parameters used in these measurements are: a, B = 179
µT, N = 3, T = 10 µs, b, Ω/2π = 4,6,8 MHz, N = 3, T = 10 µs, c, B = 179 µT,
Ω/2π = 5 MHz, T = 10 µs, and d, Ω/2π = 5 MHz, N = 1,2,3, T = 10 µs.
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4.4.3 Geometric-Phase Magnetometry in Non-Adiabatic Regime

Finally, we explored geometric-phase magnetometry outside the adiabatic limit by

performing Berry sequence experiments and varying the adiabaticity parameter by

more than two orders of magnitude (from A ≈ 0.01 to 5). We find good agree-

ment between our measurements and simulations, with an onset of non-adiabatic

behavior for A ≥ 0.2 (Figure 4-11). At each value of the adiabaticity parameter A,

we determine the magnetic field sensitivity from the largest slope of the measured

magnetometry curve. (The magnetometry curve is the plot of Pmeas obtained as a

function of applied magnetic field B.) To compare with the best sensitivity pro-

vided by dynamic-phase magnetometry, we fix the interaction time at T ≈ T ∗2 /2

in the non-adiabatic geometric-phase measurements. We find that the sensitivity of

geometric-phase magnetometry improves in the non-adiabatic regime, and becomes

smaller than the sensitivity from dynamic-phase measurements for A ≥ 1.0 (Figure

4-12 a). We recast the sensitivity scaling in terms of the adiabaticity parameter and

interaction time, η ∝ A−1T−1/2 and investigated the trade-off between these param-

eters. (Note that in the non-adiabatic regime the Bloch vector no longer strictly

follows the Larmor vector, and thus the sensitivity scaling is not exact.)
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Figure 4-11: Measurement and simulation of geometric phase signal in the
non-adiabatic regime. a, Measurement of the cosine of the geometric-phase as a
function of microwave frequency detuning ∆ and winding number N with a fixed Rabi
frequency of Ω/2π = 13 MHz. Three layers represent isochrone planes at T = 200,
800, 3200 ns. Vertical axis is adiabaticity A = ρ·sin θ/2R, where R = (Ω2+∆2)2. The
amplitude of each hyperfine oscillation is extracted by fitting the data along ∆ at N
= -2, T = 3200 ns to an analytical expression for the geometric-phase signal including
the three NV hyperfine transitions. The measured signal is normalized to the mean
of these three amplitudes. The analytical expression for the geometric-phase signal
assumes adiabaticity and thus is independent of the interaction time T . The data for
layers at T = 3200 ns and 800 ns (0.01 < A < 0.2) look very similar, as expected.
However, the layer at T = 200 ns (A > 0.2) looks distinctly different, indicating that
the analytical expression becomes invalid in the non-adiabatic regime. b, Simulation
of the cosine of the geometric-phase including the three hyperfine transitions with
the relative amplitudes obtained in a (see also Methods). The measurement and
simulation agree, indicating that the time evolution of the spin state is described
deterministically by the Schrödinger equation even in the non-adiabatic regime.
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4.5 Geometric Phase Coherence time

4.5.1 Geometric Phase Coherence Theory

If the NV spin qubit interacts with an environment with random noise, the Larmor

vector will experience a perturbation:

~R(t) = ~R0(t) + δ ~R(t) (4.18)

The second term, assumed to be smaller than the first term, is a classical random

variable representing fluctuation of the energy splitting due to coupling to environ-

mental noise. When the measurement is repeated, the qubit acquires a different

phase each time due to the random noise. Then the system is described by a mixed

state using a density matrix, which is obtained by weighting the appropriate prob-

ability p for each environmental condition, ρ(tf ) = pU(ti, tf )ρ(ti)U
†(ti, tf ), where

ρ(ti) = |ψ(ti)〉〈ψ(ti)| is the initial density matrix at time t = ti constructed from a

pure initial state. In particular, the diagonal elements give the probability of occupy-

ing each state, and the off-diagonal elements represent the coherence between these

states. Thus, the time-averaged coherence, which can be compared to experiments,

is defined as the off-diagonal component of the density matrix averaged over many

realizations: W (ti, tf ) = |〈ρ±(tf )〉|/|〈ρ±(ti)〉|. For magnetic field sensing, the longi-

tudinal magnetic fluctuations are of main interest as a decoherence source, so that

δ ~R = (0, 0, δR) is considered in the following calculations. First, the dynamic phase

fluctuation is given by

δφd(ti, tf ) =

∫ tf

ti

Rz

R
δRdt′ (4.19)

Since we know that the dynamic phase is canceled by an echo operation, we consider

only the fluctuation term. Next, to calculate the geometric phase fluctuation, we

modify the Berry connection as Aρ → A′ρ = Aρ + ∂θAρδθ = 1
2
cos θ + 1

2
δ(cos θ).

The second term describes the fluctuation of the polar angle due to the fluctuating
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Figure 4-12: Improved geometric-phase coherence time and sensitivity in
nonadiabatic regime. a, Measured geometric-phase magnetic field sensitivity-
squared (red squares) plotted against adiabaticity parameter A using a fixed interac-
tion time of T ≈ T ∗2 /2 at which the dynamic-phase Ramsey sequence gives optimal
sensitivity (dashed blue line). Dashed red line shows geometric-phase sensitivity lower
limit calculated by a numerical simulation assuming maximum signal contrast. The
simulation does not include the contrast reduction due to hyperfine modulation. b,
Measured Berry sequence signal as a function of interaction time T for various adia-
baticity parameter values. Color dots are data; solid color lines are exponential fits
to data ∼ exp (T/T2g)

2. Blue and green dashed lines indicate T ∗2 and T2 decay of the
dynamic-phase signal measured with a Ramsey and Hahn-echo sequence, respectively.
c, Measured geometric-phase coherence time T2g as a function of adiabaticity param-
eter A. Three regimes are observed: (i) For A < 0.1, T2g ∼ T2, (ii) For 0.1 < A < 1.0,
T2g ∼ 1/A, and (iii) For A ∼ 1.0, T2g ∼ T ∗2 . d, Qualitative representation of contribu-
tions to the decoherence function (Eq. 4.24) in the frequency domain: environmental
noise spectral density function S(ω) (black line); dynamic-phase (spin-echo) filter
function F1(ωT )/ω2 (dashed green line); and geometric-phase (Berry sequence) filter
function A2F0(ωT )/ω2 (filled color area, same color-coding as in a), which vanishes
in the limit A → 0 and reaches the Ramsey sequence function F0(ωT )/ω2 (dashed
blue line) in the limit A→ 1.
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field δR. The cyclic path is also perturbed due to the fluctuation: dCφ → dC ′φ =

Nt−1dt′+δNt−1dt′. The first term corresponds to the speed of rotation of the Larmor

vector, and the second term gives the first order correction due to the fluctuation.

The geometric phase fluctuation is then given by

δφg(ti, tf ) =
Nπ

tf − ti

∫ tf

ti

δ(cos θ)dt′ =
Nπ

tf − ti

∫ tf

ti

[
R2 −R2

z

R3

]
δRdt′

≈ A

∫ tf

ti

δRdt′
(4.20)

Here the definition of adiabaticity A = ρ̇ · sin θ/2R is used. The final state is

|Ψ(T )〉 = − i√
2
e+ i

2 [δφd(0,T
2 )−δφd(T2 ,T)]+ i

2 [δφg(0,T
2 )−δφg(T2 ,T)]|+〉

− i√
2
e−

i
2 [δφd(0,T

2 )−δφd(T2 ,T)]− i
2 [δφg(0,T

2 )−δφg(T2 ,T)]|−〉
(4.21)

It is important to remember that the direction of revolution is switched between the

first and second Berry pulses. Finally, the coherence becomes

W (0, T ) = 〈exp

[
−iRz

R

∫ T

0

δRf1(T ; t)dt− iA
∫ T

0

δRf0(T ; t)dt

]
〉 (4.22)

where fn(T ; t) =
∑n

k=0(−1)kΘ(tk+1 − t)Θ(t− tk) is a function that characterizes the

pulse sequence, Θ is the Heaviside step function, and t0 = 0, tn+1 = T . If the noise

is assumed to follow a Gaussian distribution with a zero mean 〈δR(t)〉 = 0, then the

coherence function can be reduced to the two-point correlation function S(ti, tf ) =

〈δR(ti)δR(tf )〉 using Wick’s theorem: W (0, T ) ∼ 〈e−iδR〉 ∼ exp [−〈δRδR〉/2]. Hence,

the coherence can be analyzed in the frequency domain by use of the spectral den-

sity of the noise: S(ω) =
∫ +∞
−∞ dteiωtS(t). We also define the decoherence function

as χ(T ) = −logW (T ). The cross term between the dynamic and geometric part

becomes zero because the sequence functions f1 and f0 have opposite parity. Thus,

102



the decoherence function reduces to two terms

χd(T ) =
1

2

(
Rz

R

)2 ∫ T

0

dta

∫ T

0

dtb〈δR(ta)δR(tb)〉f1(T ; ta)f1(T ; tb)

=

(
Rz

R

)2 ∫ ∞
0

dω

π
S(ω)

F1(ωT )

ω2

(4.23)

χg(T ) =
1

2
A2

∫ T

0

dta

∫ T

0

dtb〈δR(ta)δR(tb)〉f0(T ; ta)f0(T ; tb)

= A2

∫ ∞
0

dω

π
S(ω)

F0(ωT )

ω2

(4.24)

Here F0(ωT ) = ω2

2
|FT(f0)|2 = 2 sin2

(
ωT
2

)
and F1(ωT ) = ω2

2
|FT(f1)|2 = 8 sin4

(
ωT
4

)
are the filter functions for geometric and dynamic phase evolution in the Berry se-

quence, respectively.

4.5.2 Measurement of Geometric-Phase Coherence Time

We performed a spectral density analysis to assess how environmental noise leads to

both dynamic and geometric phase decoherence, with the relative contribution set by

the adiabaticity parameter A, thereby limiting the interaction time T . We take the

exponential decay of the NV spin coherence W (T ) ∼ exp(−χ(T )), characterized by

the decoherence function χ(t)

χ(T ) = A2

∫ ∞
0

dω

π
S(ω)

F0(ωT )

ω2
+

∫ ∞
0

dω

π
S(ω)

F1(ωT )

ω2
(4.25)

Here, S(ω) is a spectral density function that describes magnetic noise from the

environment; F0(ωT ) = 2 sin2(ωT/2) is the filter function for geometric-phase evo-

lution in the Berry sequence, which is spectrally similar to a Ramsey sequence,

with maximum sensitivity to static and low frequency (≤ 1/T ) magnetic fields; and

F1(ωT ) = 8 sin4(ωT/4) is the filter function for dynamic-phase evolution in the Berry

sequence, which is spectrally similar to a Hahn-echo sequence, with maximum sensi-

tivity to higher frequency (≥ 1/T ) magnetic fields.

Figure 4-12 b shows examples of the measured decay of the geometric-phase signal

103



(Pmeas) as a function of interaction time T and adiabaticity parameter A. From such

data we extract the geometric-phase coherence time T2g by fitting Pmeas ∼exp[−(T/T2g)
2].

We observe four regimes of decoherence behavior (Figure 4-12 c), which can be un-

derstood from Equation (4.25) and its schematic spectral representation in Figure

4-12 d. For A < 0.1 (adiabatic regime), dynamic-phase evolution (i.e., Hahn-echo-

like behavior) dominates the decoherence function χ(T ) and thus T2g ∼ T2 ≈ 500 µs.

For 0.1 ≤ A < 1.0 (intermediate regime), the coherence time is inversely proportional

to the adiabaticity parameter (T2g ∼ 1/A) as expected from the scaling in Equation

(4.25). For A ≈ 1.0 (non-adiabatic regime), geometric-phase evolution (i.e., Ramsey-

like behavior) dominates χ(T ) at long times and thus T2g ∼ T ∗2 ≈ 50 µs. For A� 1.0

(strongly non-adiabatic limit), the driven rotation of the Larmor vector is expected

to average out during a Berry sequence (Figure 4-1 b) and only the z-component of

the Larmor vector remains. Thus, the Berry sequence converges to a Hahn-echo-like

sequence and the coherence time is expected to increase to T2 for very large A.

4.6 Summary and Outlook

In summary, we demonstrated a new approach to NV-diamond magnetometry us-

ing geometric-phase measurements, which avoids the trade-off between magnetic field

sensitivity and maximum field range that limits traditional dynamic-phase magne-

tometry. For an example experiment with a single NV, we realize a 400-fold enhance-

ment in static (DC) magnetic field range at constant sensitivity. We also explore

geometric-phase magnetometry as a function of adiabaticity, with good agreement

between measurements and model simulations. We find that adiabaticity controls

the coupling between the NV spin and environmental noise during geometric manip-

ulation, thereby determining the geometric-phase coherence time. We also show that

operation in the non-adiabatic regime, where there is mixed geometric and dynamic

phase evolution, allows magnetic field sensitivity to be better than that of dynamic-

phase magnetometry. The generality of our geometric-phase technique should make

it broadly applicable to precision measurements in many quantum systems, such as
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trapped ions, ultracold atoms, and other solid-state spins.
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Chapter 5

Observation of Topological

Transition in NV Spin Qubit

5.1 Introduction

Topology of quantum systems has gained great interest after the discovery of topo-

logical insulators [77, 102, 103]. To understand the topology of a quantum system,

topologically invariant numbers, such as the Chern number [104, 105], are introduced

as observables. As topological numbers are in general be robust to small perturba-

tions in the system, change of this number represents the topological transition in

the quantum system, such as an integer quantum Hall state [76]. In recent years, a

theoretical framework, to measure the Chern number in a two-level system was devel-

oped [106], and the Chern number transitions from 0 to 1 and 1 to 2 were measured

in super conducting qubits [107, 108]. In this chapter, we present results on mea-

suring Chern number transitions in various topologies using the NV center as a spin

qubit. Taking advantage of the three hyperfine splitting in the ground state, we show

that even with single NV spin qubit we can study topological phases of interacting

three qubit system. This new scheme to study topology can be applied to simulate

topological phases of conventionally unaccessible Hamiltonians.
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Figure 5-1: Conceptual picture of topologically invariant number. a, Gaussian
sphere in real space with magnetic monopole (yellow dot) at the center. By Gauss’s
law, total magnetic flux (red arrows) enclosed by the closed surface (red shaded area)
is equal to the number of monopoles inside. b, In spin qubit quantum system, when
the Larmor vector (red arrow) is swept over the Hamiltonian parameter space, non-
adiabatic response from the qubit arises (red shade). Integrating this area over the
path of Larmor vector sweep is equal to the number of quantum degeneracy points
(yellow dot) enclosed by the sweeping parameter sphere.

5.2 Concept of Measuring Chern Number using

Spin Qubit

5.2.1 Chern Number Basics

In Chapter 4, we discussed about the Berry phase in a qubit system. By using the

Stoke’s theorem, we can rewrite the Berry phase in terms of surface integral of the

’Berry curvature’ over the surface where Larmor vector’s geometric path makes the

boundary. If the surface is closed, then the boundary term vanishes, but the in-

determinacy of the boundary term which is multiples of 2π appears in the Chern

theorem [109]. And according to the Chern theorem, the integral of the Berry cur-

vature over a closed manifold is quantized in units of 2π. This number is the called

Chern number, and is important for understanding various quantization effects in
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quantum physics.

Chern number can be intuitively understood as number of times an eigenstate

wraps around a given manifold in Hamiltonian space [109] and yields quantization of

the resistance in the integer quantum Hall effect [76, 104, 105]. In quantum system,

Chern number is defined as the integral over a closed manifold S in the Hamiltonian

parameter space

C1 =

∫
S

B · dS (5.1)

where B is the Berry curvature [73]. Berry curvature can intuitively thought as a mag-

netic field with points of ground state degeneracy acting as its sources, i.e. magnetic

monopoles [74, 76]. Applying Gauss law for the Berry curvature (magnetic field),

C1 counts the number of degenerate energy eigenvalues enclosed in the parameter

manifold S (Figure 5-1).

5.2.2 Chern Number in Spin Qubit

In Gritsev et.al., the paper proposed to directly measure the Chern number, using a

two-level qubit system [106]. The key result is to extract the Berry curvature from

the non-adiabatic response of a qubit. Berry curvature equation is given as

〈Fφ〉 = −〈∂φH〉 = 〈φ0|Fφ |φ0〉 − vθBθφ +O(v2) (5.2)

where the first term is a constant and the second term is the product of parameter

ramp speed vθ and the Berry curvature Bθφ. This equation can be understood in

analogy with the Lorentz force in electromagnetism. Derivation of above equation

is discussed in Appendix E. In this section, let us discuss how Berry curvature in

above equation can be measured in the experiment. Let us first assume that our

time varying Hamiltonian is a spherical version of the gradient. Then the φ and θ
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components are

ASφ = i
1

rsinθ
〈ψ0|∂φ|ψ0〉 =

ACφ
rsinθ

, (5.3)

ASθ = i
1

r
〈ψ0|∂θ|ψ0〉 =

ACθ
r

(5.4)

where the Berry curvature vector is given by BS = ∇ × AS, which in general a

complicated expression. However, for our spherical surface of integration, the Chern

integral is given by

C1 =
1

2π

∫
B · dS =

1

2π

∫
BS
r dSr (5.5)

since the surface element is strictly radial:

dSr = r̂dSr = r̂(r2 sin θ dθ dφ) (5.6)

where we have used the standard form of a spherical surface element. Taking the curl

in spherical coordinates, the radial component of BS is

BS
r =

1

r sin θ
[∂θ(sin θA

S
φ)− ∂φASθ ] =

1

r2 sin θ
[∂θA

C
φ − ∂φACθ ] =

BC
θφ

r2 sin θ
(5.7)

Plugging equation (5.6) and (5.7) into (5.5), we get the Cartesian expression for

C1. Finally, for our case, the Hamiltonian is cylindrically invariant: we can get the

Hamiltonian at arbitrary φ from the Hamiltonian at φ = 0 by just rotating the spins

by an angle φ around the z-axis. Also, the Berry curvature must be cylindrically

symmetric, such that Bθφ(θ, φ) = Bθφ(θ) is independent of φ. Therefore, if we plug

into the expression for the Chern number, we find

C1 =
1

2π

∫ 2π

0

dφ︸ ︷︷ ︸
=1

∫ π

0

dθBθφ(θ) =

∫ π

0

Bθφ(θ)dθ (5.8)
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Starting with the Hamiltonian of a single qubit or equivalently spin-1/2 particle in a

magnetic field:

HS = −~
2

(HXσ
x +HY σ

y +HZσ
z) (5.9)

and re-parameterizing it for spherical coordinates, it becomes

HS(Hr, θ, φ) = −~
2
Hr(sin θ cosφσx + sin θ sinφσy + cos θ σz) (5.10)

Therefore,

Fφ = −〈∂φH(φ = 0)〉 =
~
2
Hr sin θ 〈σy〉 (5.11)

~Bθφdθ =
~
2
Hr sin θ 〈σy〉dt (5.12)

Bθφ =
Hr

2vθ sin θ
〈σy〉 (5.13)
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5.3 Measurement of Landau Zener transition

Before getting into the complicated Chern number measurement directly, let us study

the well understood Landau-Zener transition where a spin qubit is subject to linearly

time-varying Hamiltonian. In two-level system, when qubit is subject to a time-

dependent Hamiltonian such that the energy separation of the two states is a linear

function of time, it undergoes a non-adiabatic process, the Landau-Zener (L-Z) tran-

sition, with probability of transition between the two energy states given by the

Laudau-Zener (L-Z) formula [110, 111]. In this section, we measure this probability

of transition between two energy levels of the NV spin qubit states smoothly sweep-

ing the detuning ∆ and Rabi frequency Ω of microwave driving. L-Z formula for this

elliptical trajectory can be semi-analytically calculated. We measure the change of

transition probability by varying the maximum Rabi frequency and total time it takes

to complete the half-cycle of elliptical trajectory. This measurement is an important

stepping stone for the next measurement - the Chern number measurement.

5.3.1 Landau Zener transition in elliptical trajectory

First, let us use a standard approach to discuss the Schrödinger equation with a time-

dependent HamiltonianH(t). At each steps of time, there exists a set of instantaneous

basis states |n(t)〉, which are eigenstates of the instantaneous Hamiltonian

H(t)|n(t)〉 = ωn(t)|n(t)〉 (5.14)

where ωn(t) is the eigenenergy. A general state can be described by a linear combi-

nation of eigenstates.

|ψ(t)〉 =
∑
n

an(t)|n(t)〉 (5.15)
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Using the Schrödinger equation, i∂t|ψ(t)〉 = H(t)|ψ(t)〉, Equation (5.15) can be rewrit-

ten in terms of the basis amplitude as

i∂tam(t) + i
∑
n

(t)〈m(t)|∂t|n(t)〉 = ωm(t)am(t) (5.16)

By applying a Gauge transformation: an(t)→ an(t)exp[−iχn(t)], where

χn(t) =

∫ t

ti

ωn(τ)dτ (5.17)

right hand side of Equation (5.16) can be removed. After fixing the gauge, both hands

can be integrated as following.

an(t) = −
∫ t

ti

dt′
∑
m

am(t′)〈n|∂t′|m〉ei(χn(t)−χm(t)) + C (5.18)

If degenerate states are neglected, m = n gives the Berry phase.

γg = −i
∫ t

ti

dt′〈n|∂t′ |n〉 (5.19)

Next, let us consider a two-level system. Two energy levels can be coupled via Hamil-

tonian in Pauli vector basis.

H(t) = ~n · ~σ (5.20)

Without losing generality, let ~n = (Ω(t)cosφ,Ω(t)sinφ,∆(t)), where Ω is the Rabi

frequency, ∆ is the detuning and φ is the azimuthal rotation angle. Since ~n is a

generalized vector in the Hamiltonian space such that a spin qubit will precess around,

let us call it Larmor vector. For simplicity, let φ = 0. The eigenenergies of the system

are

ω±(t) = ±
√

Ω(t)2 + ∆(t)2 (5.21)
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Eigenstates can be obtained by solving following equations.

i∂t|Ψ+(t)〉 = ∆(t)|Ψ+(t)〉+ Ω(t)|Ψ−(t)〉 (5.22)

i∂t|Ψ−(t)〉 = Ω(t)|Ψ+(t)〉 −∆(t)|Ψ−(t)〉 (5.23)

At t = 0, set the initial conditions as |Ψ−(0)〉 = |0〉, |Ψ+(0)〉 = |1〉, and amplitudes

as a1(0) = 0, a0(0) = 1. Rabi frequency and detuning are swept using a parametric

representations.

Ω(t) = Ω1cosθ (5.24)

∆(t) = ∆1sinθ (5.25)

Ω1 and ∆1 are maximum Rabi frequency and detuning in the sweep. Here, the

parameter θ(t) is monotonically increasing from 0 to π at a rate of vθ = dθ/dt. The

transition amplitude is calculated from

a+(θ) = −
∫ θ

0

dθ′〈Ψ+(t)|∂θ′|Ψ−(t)〉ei[χ+(θ′)−χ−(θ′)] + C (5.26)

and transition probability from |Ψ−〉 to Ψ+〉 is given by P = |a+(θf )|2. The phase

part can be written as

χ+ − χ− =

∫ t′

0

(ω+ − ω−)dt =
∆1

vθ
E(θ′, k) (5.27)

where E is an incomplete ellipsoidal integral of second kind and k =
√

(∆2
1 + Ω2

1)/∆2
1

is the eccentricity. There is no analytical expression for this integral. However,

information on scaling of parameters can be extracted by considering asymptotic

cases.

Adiabatic case (vθ → 0) : P → 0

Diabatic case (vθ →∞) : P ∼ Ω2
1
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One more important special case is a circular trajectory, where Ω1 = ∆1.

P ∼ Ω2
1

v2
θ

v2
θ + ∆2

1

(5.28)

5.3.2 Results of Landau-Zener transition measurements

In the measurement, we used two-level qubit state of |0〉 and |+1〉 of the NV spin.

|0〉 is considered as a ground state, and |+1〉 is considered to be an excited state.

In L-Z measurement, both the Rabi frequency and detuning are varied to make an

ellipsoidal trajectory as shown in Figure 5-2 b,c, which will also be used in the future

topological number measurements. Let us adopt parametric representation for Ω(t)

and ∆(t) from Equation (5.24) and (5.25), and let θ be a linear function of time.

0 < T < Tramp , θ(t) = π
T

Tramp
(5.29)

Tramp is a ramping time until the Larmor vector travels from θ = 0 to θ = π. Mi-

crowave pulse sequence which generates this elliptical trajectory is shown in Figure

5-2 c. While fixing the maximum detuning ∆1 = 25 MHz, there are two parameters

that can be varied: (1) the maximum Rabi frequency Ω1 and (2) Tramp time. First,

L-Z transition by varying the maximum Rabi frequency Ω1 is measured. In this mea-

surement, Tramp = 1 µs. The 〈σz〉 component of the qubit is measured at various

intermediate times Tmeas (Figure 5-2 c). The result is presented in Figure 5-3 a. The

top plot shows the signal contrast as a function of the sweep angle θ. The bottom

2D-plot is a measure of signal contrast as a function of the sweep angle and sweeping

maximum Rabi frequency Ω1. Red and blue region correspond to the |0〉 and | + 1〉

state, respectively. Figure 5-3 b shows the result of numerical simulation, obtained

by computing the time-ordered time evolution operator at each time steps of ∆t.

U(ti, tf ) = T{exp(−i
∫ tf

ti

dtH(t))} =
∏
j

{exp(−i∆tH(tj)} (5.30)
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Figure 5-2: Landau-Zener transition measurement scheme. a, Diagram of
single qubit energy level with time-dependent perturbation. If the change of Hamil-
tonian over time is low (adiabatic), then by the Adiabatic theorem, spin initialized
in ground state will stay in its ground state over the time evolution. However, if the
change of Hamiltonian is non-adiabatic, qubit can be excited via Landau-Zener (L-Z)
transition. b, Schematics of Larmor vector sweeping trajectory in Hamiltonian pa-
rameter space with Rabi frequency Ω and detuning ∆. Change of Larmor vector over
time will induce the L-Z transition. c, Pulse sequence to create Larmor vector sweep.
Detuning is swept as ∆ = ∆1 cos θ(t) and Rabi frequency is swept as Ω = Ω1 sin θ(t),
where 0 < θ < π. Total sweep time is given by Tramp time, and by varying Tmeas, we
measure the qubit spin state via green laser.
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Figure 5-3: Landau-Zener transition measurement by sweeping Rabi fre-
quency. a, Measuring 〈σz〉 of the qubit by sweeping θ. Ω1 was varied from 0 to
10 MHz. Tramp = 1 µs (slow change), ∆1 = 25 MHz were fixed. Lower figure is
〈σz〉 2D plot by varying θ and Ω1. Red and blue regions are |0〉 and |+1〉 states
respectively. Upper figure is a cross sectional plot of the lower figure when Ω1 = 0,
2.5 and 10 MHz. Let’s call the Larmor vector velocity projected in z-axis as L-Z
velocity. For large L-Z velocity (Ω1 > 3 MHz), qubit state remained in its ground
state (|0〉 → |+1〉), however, for small Ω1 < 3 MHz, we observed L-Z transition into
excited states (|0〉 → |0〉). At Ω1 ∼ 5 MHz, ripple structure starts to appear, and this
is when the transition starts to happen. b, Numerically simulated L-Z transitions.
We confirmed that the simulation matches with our measurement.
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Figure 5-4: Landau-Zener transition measurement by sweeping Tramp. a,
Measuring 〈σz〉 of the qubit by sweeping θ. Tramp was varied from 0 to 1000 ns. Ω1

= 10 MHz, ∆1 = 25 MHz were fixed. Lower figure is 〈σz〉 2D plot by varying θ and
Tramp. Red and blue regions are |0〉 and |+1〉 states respectively. Upper figure is a
cross sectional plot of the lower figure when Tramp = 100, 500 and 1000 ns. For fast L-
Z velocity (Tramp < 200 ns), qubit is in diabatic case, therefore L-Z transition happens
(ground state |0〉 to excited state |0〉) with rate ∼ Ω2

1. However, for slow L-Z velocity
Tramp > 500 ns, we observed suppressed L-Z transition. b, Numerically simulated
L-Z transitions. We confirmed that the simulation matches with our measurement.

In the simulation, the time-ordering operator T is very important because the Hamil-

tonian at each time point doesn’t commute with each other; a qubit Hamiltonian is

described by SU(2) ∼ U(1)× SO(3), and two successive rotation operators in three-

dimension don’t commute. In equation (5.30), second equality holds in the limit of

∆t → 0. Here, ∆t = 1ns is chosen to be ∆t � 1/Ω1, 1/∆1. This approach is still

more accurate than taking the first few terms of Magnus expansion or Dyson series.

In Figure 5-3, both measurement and simulation show that for fixed Tramp, the L-Z

transition doesn’t happen for large Rabi frequency, and transition rate increases as

Rabi frequency gets small. For fixed Tramp and ∆1, smaller Rabi frequency corre-

sponds to larger L-Z velocity, vθ in z-axis, therefore, L-Z transition probability gets

larger. In Figure 5-3 a, at Ω1 ∼ 5 MHz, ripple structure starts to appear, and this

118



is when the transition starts to happen. Next, we measured L-Z transition by vary-

ing the Tramp with fixed Ω1 and ∆1. This measurement is the same as varying the

Larmor vector velocity in z-axis. With ∆1 = 25 MHz and Ω1 = 10 MHz fixed, Tramp

is swept from 0.1µs to 1µs with 0.1µs of incrementation. In Figure 5-4 a, top plot

shows the signal contrast as a function of the sweep angle θ. The bottom 2D-plot

is a measure of signal contrast as a function of the sweep angle and the ramp time.

The red and blue region correspond to the |0〉 and |1〉 state, respectively. Figure

5-4 b shows the result of numerical simulation. For short Tramp time, i.e. larger L-Z

velocity, higher probability of transition is observed, and this is consistent with the

equation (5.28). There is a significant change in transition probability at Tramp = 300

ns from both measurement and simulation results. This indicates that for Tramp >

300 ns, time-evolution of the qubit almost follows the adiabatic passage.

5.4 Measurement Calibration for Chern number

measurement

5.4.1 Control Pulse Calibration via Dynamic State Prepara-

tion

To determine the topological invariant number associated with a topological phase,

precise state tomography measurements in all three directions should be performed.

The first step toward this goal is to measure 〈σz〉 after an elliptic or spherical manip-

ulation of a spin qubit. In previous section, we reported observation of the Landau-

Zener transition during the manipulation and confirmed that the transition probabil-

ity was dependent on the Rabi frequency and the ramp time. The next step, is to

measure 〈σz〉 under various topological cases, which can be transited back and forth

by changing the offset microwave detuning, ∆2 (Figure 5-5 a). Using this result as a

springboard, we can move onto the measurement of all three components of the spin

and extract the Chern number.
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Figure 5-5: Dynamic State Preparation Schematics. a, Red pulse, the control
pulse, indicates Larmor vector sweep in spherical Hamiltonian parameter space. Z-
axis is a detuning, ∆, and X,Y-axis are the Rabi frequencies, Ωx and Ωy, same
construction as in geomatric phase magnetometry. ∆1 is the maximum detuning in
∆ = ∆1 sin θ(t)+∆2, and Ω1 is the maximum Rabi frequency in Ω = Ω1 cos θ(t). Here,
we assume spherical sweep, therefore, ∆1 = Ω1. Yellow dot represents the quantum
degeneracy point (resonance point), and ∆2 is an offset detuning, which is from the

degeneracy point to the center of parameter sweep sphere. Larmor vector ~R(t) (red
arrorw) is swept with θ(t) from 0 to π, which is along the path on the parameter
sweep sphere. b, Microwave pulse sequence to generate spherical parameter sweep in
a. After the qubit is initialized into ground state, microwave frequency with detuning
is swept as ∆ = ∆1 sin θ(t) + ∆2 with modulated amplitude of Ω = Ω1 cos θ(t) (Rabi
frequency). At each θ(t), 〈σx〉, 〈σy〉 and 〈σz〉 are measured (green readout pulse) at
Tmeas with tomography pulse (yellow).
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Let us first look at the control Hamiltonian of a spin qubit,

H = ~H(t) · ~σ (5.31)

where ~σ = (σx, σy, σz) are the spin−1/2 Pauli matrices in Bloch sphere, and ~H(t) =

(HX , HY , HZ) is a control magnetic field, which constructs the Hamiltonian param-

eter space. We can experimentally realize this Hamiltonian parameter space by mi-

crowave pulses. HX and HY correspond to the Rabi frequency, Ω and HZ is the

detuning from the resonance frequency, ∆. The eigenenergy of the states are given

by E±(t) = ±
√
H2
X +H2

Y +H2
Z , and the eigenstates are obtained by solving the

Shrödinger equation. As a Hamiltonian path for measuring topological invariant

number, we choose a spherical trajectory in the Hamiltonian space of (ΩX ,ΩY ,∆).

To illustrate the dynamical state preparation using this spherical trajectory, we use

the spherical coordinates (θ, φ). Using this parametric representation, we can write

the measurement sequence as follows

HX = Ω1 sin θ cosφ, HY = Ω1 sin θ sinφ, HZ = ∆1 cos θ + ∆2, (5.32)

where θ(t) = πt/Tramp, 0 < t < Tmeas and Ω1 = ∆1. Let us call this as control pulse

sequence. From the azimuthal symmetry, we can fix φ = 0. This spherical trajectory

starts at the north pole when t = 0 and ramps along the HY = 0 meridian with

constant velocity vθ = dθ/dt until it reaches the south pole at t = Tramp. Here, let us

define adiabaticity parameter

A =
Ω1Tramp

2π
(5.33)

which is a normalized factor to determine how fast the Larmor vector changes over

time when we vary both Tramp and Ω1. First, to realize the motion on a spherical

manifold, the control magnitude |H| = Ω1 = ∆1 is fixed. In the adiabatic limit, the

state would remain in the instantaneous ground state, with the spin vector parallel

to the direction of the control field, following the meridian. In this measurement, the
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Figure 5-6: Projection measurement 〈σz〉 of spin qubit after dynamic state
preparation. a, 〈σz〉 of spin qubit after dynamic state preparation. The horizontal
axis is an angle θ/π sweep and the vertical axis is ∆2/∆1, the sweep of degeneracy
point. Red region is |0〉 and blue region is |+1〉. Moving in the horizontal direction
(white dashed arrow) corresponds to the adiabatic passage. The vertical direction at
θ/π ∼ 1 (yellow dashed arrow) indicates the transition. b, The cross section at θ/π ∼
1. Y axis is the probability of spin state being in |0〉. Red solid line is simulation,
blue dots are measurement, black line is a linear fit. The sensitivity obtained from
this measurement (slope of the black line) is ∼ 12 µT Hz−1/2.

z component of the spin is determined at each point in time by pausing the ramp

and performing projection measurement P = |0〉 〈0|. There are two parameters varied

during the measurement. The angle θ is swept from 0 to π in Tramp = 3000 ns, and

the ∆2/∆1 is swept from -2 to +2 where ∆1 = 10 MHz. The detuning offset ∆2 is

introduced by changing the signal generator carrier frequency (for more details, see

Appendix A). The result is shown in Figure 5-6.

By taking a cross section at θ ∼ π, we observed a transition of |0〉 to |+1〉, where |0〉

indicates spin up and |+1〉 indicates spin down when we project spin−1/2 manifold.

In following text, we will project |ms = 0〉 into spin up (〈σz〉 = +1) and |ms = +1〉

into spin down (〈σz〉 = -1) to have sub-manifold of spin−1/2 from spin−1. The

measured transition is less sharp than what the simulation predicts mainly because

of the hyperfine coupling to the host nitrogen nuclear spin. The DC-field sensitivity

obtained from this measurement is ∼12 µT Hz−1/2. The estimation is obtained by
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Figure 5-7: Measurement and simulation of dynamic state preparation by
varying Tramp. b,d,f,h,j,l, The bottom row is experiment and the a,c,e,g,i,k, top
row is simulation. From the left, Tramp is changed from 100 ns to 3000 ns. For each
plot, we show the contrast of projection measurement as a function of state angle
theta in the horizontal direction and the ∆2/∆1 ratio in the vertical direction.

using the slope = dS/d(H0/Hr) ∼3.31, d(H0/Hr)/dB = 1/10MHz - 1, std(error) =

0.09, Ttot = 1.5 s.

Next, we can vary the ramp speed vθ. This can be tuned by varying Tramp =

100, 200, 300, 500, 1000 and 3000 ns. The result is compared with the simulation

(Figure 5-7). The bottom plots (Figure 5-7 b,d,f,h,j,l) show the measurement of

signal contrast as a function of the sweep angle. The top plots (Figure 5-7 a,c,e,g,i,k)

are simulation results. The red and blue region correspond to the |0〉 and |+1〉

state, respectively. The simulation was carried out by calculating the time-ordered

time evolution operator at each time steps, and we confirmed it matched with the

measurement.

5.4.2 Tomography Pulse Calibration

To measure the non-adiabatic response from a spin qubit while it travels the spher-

ical trajectory, it is important to perform a good tomography measurement; having

correct phase matching scheme and pulse duration to precisely measure 〈σx〉 and 〈σy〉

components. General scheme of control pulse to create spherical trajectory is a sine
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enveloped chirped signal, since we sweep both detuning and Rabi frequency. For the

chirped signal, it is not trivial how to define a certain phase in an arbitrary time,

because during the control pulse is applied, qubit spin is no longer in a resonance

rotating frame due to the detuning.

To match the relative phase, we connected the tomography pulse directly to the

control pulse after a given time Tmeas (Figure 5-8). Assuming that for control pulse

is creating the Larmor vector, ~R(t) to rotate along Ωy, then continuing tomography

pulse with in phase will still be a Larmor vector pointing to Ωy (Figure 5-8 a inset),

which we then can rotate for π/2 duration to read out 〈σx〉 component of a qubit.

If the tomography pulse had off phase of π/2, then this will create Larmor vector

pointing Ωx (Figure 5-8 b inset), which we then can rotate for π/2 duration to read

out 〈σy〉 component of a qubit. To confirm if this tomography pulse scheme works and

to check if there is any dynamic phase noise leaks into the measurement, we swept

only the Rabi frequency, without any detuning in the parameter space, and performed

tomography measurements. Tomography pulse Rabi frequency was set to 10 MHz,

and Tramp = 400 ns (details on choosing this particular Tramp will be discussed in

later section). Theoretically, when we increase our Larmor vector ~R(t) in Ωx, then

spin qubit will fully precess around ~R(t) in y-z plane. Therefore, 〈σx〉 would be a

decaying oscillation and 〈σy〉 would be a flat signal, if there is no dynamic phase

contribution to the measurement. This was indeed what we measured (Figure 5-8

c,d). For measuring Chern number, careful measurement on 〈σy〉 is important, and

we measured dynamic phase noise contribution to be highly suppressed. Note that this

tomography pulse calibration process is much simpler than that of superconducting

qubit system [107, 108]. Due to the presence of finite inharmonicity in SCQ, they

had to go through more complicated calibration process. Since the NV spin qubit

system has only two levels under an external bias magnetic field, we can forget about

leakage to other states, which gives fidelity advantage of using NV center for quantum

simulations.
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Figure 5-8: Tomography pulse matching scheme. a, Tomography pulse for mea-
suring 〈σx〉. In Hamiltonian parameter sphere, this is to rotate the qubit around
Ωy axis. Inset figure on the left shows the chirped control sequence (black) with to-
mography pulse (yellow). Tomography pulse is continuously connected to the control
pulse. c, To check if this scheme works, we swept only Rabi frequency Ω without any
detuning, and applied 〈σx〉 tomography pulse. We measured full contrast oscillation,
which is what we expected from 〈σx〉 tomography pulse. b, Tomography pulse for
measuring 〈σy〉. In Hamiltonian parameter sphere, this is to rotate the qubit around
Ωx axis. Inset figure on the left shows the chirped control sequence (black) with
tomography pulse (yellow). Tomography pulse is now 90 degree phase off from the
control pulse. d, To check if this scheme works, we swept only Rabi frequency Ω
without any detuning, and applied 〈σy〉 tomography pulse. We measured 0 contrast
signal, which is what we expected from 〈σy〉 tomography pulse.
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5.5 Measurement of Chern number of a Single Qubit

5.5.1 Chern Number Measurement

Using the dynamic state preparation, and precise quantum state tomography scheme,

now we can measure the Berry-curvature. The 〈σy〉-component is particularly impor-

tant here because it gives the deviation from the trajectory due to non-adiabatic

effect (Equation (5.13)). To observe the Berry-curvature, we should operate our con-

trol pulse scheme in a non-adiabatic regime. In the mean time, we want to be in

a quasi-adiabatic regime so that the spin qubit also quasi-adiabatically follows the

Larmor vector ~R(t) (Figure 5-5 a).

Since we fix the sweep parameter space size Ω1, what determines the adiabaticity

of dynamic state preparation is the total ramp time, Tramp. In Figure 5-7 of dynamic

state preparation, we varied Tramp and observed non-adiabatic response starts to

appear when Tramp < 1000 ns. As a quasi-adiabatic boundary value, we choose Tramp

= 400 ns. By integrating 〈σy〉 over the Larmor vector path S, we can calculate the

corresponding Chern number of given topology (Equation (5.5), (5.13)).

First, we swept θ from 0 to π in Tramp = 400 ns and measure the non-adiabatic

response of a qubit at each Tmeas when ∆2/∆1=0, which is called the topological case

and ∆2/∆1=-2, which is called the trivial case. The results are shown in Figure 5-9.

For topological case, the degeneracy point is placed inside the Hamiltonian parameter

sphere (resonance point is placed inside the spherical sweep of ∆1 and Ω1), therefore,

while the qubit spin travels along the spherical path, it acquires a Berry-curvature

due to Lorentzian force response. By integrating over this deviation over the θ path,

we extract Chern number C1 = 1.117 ± 0.120 for topological case (Equation (5.5)).

In contrast, for trivial case, the degeneracy point is placed outside the Hamiltonian

parameter sphere (resonance point is placed outside the spherical sweep of ∆1 and

Ω1), overall Berry-curvature acquired during the spherical path is zero. By integrating

over the trajectory over the θ path, we extract Chern number C1 = 0.006 ± 0.115 for

trivial case. In theory, we expect the Chern number to be C1 = 1 for topological case

and C1 = 0 for trivial case, and this matched with our measurements.
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Figure 5-9: Chern number measurement for two different topologies. a,b,
Spin tomography measurements (〈σx〉 blue, 〈σy〉 red, 〈σz〉 black) when degeneracy
point is inside the parameter sweeping sphere (∆2/∆1 = 0). a is a numerical simula-
tion with hyperfine coupling effect implemented, and b is the measurement. c, Calcu-
lated Berry curvature Bθφ from 〈σy〉 tomography measurement. Integrating over the θ
path swept from 0 to π gives Chern number of C1 = 1.117±0.120. Uncertainty is cal-
culated from the uncertainty of Ω1 in the measurement. d, Deviation of the qubit (red
shaded area) along the Larmor vector path (red solid line) in Bloch sphere picture.
Yellow dot indicates the degeneracy point relative to parameter sphere. e,f, Spin
tomography measurements when degeneracy point is outside the parameter sweeping
sphere (∆2/∆1 = -2). e is a numerical simulation with hyperfine coupling effect im-
plemented, and f is the measurement. g, Calculated Berry curvature Bθφ from 〈σy〉
tomography measurement. Integrating over the θ path swept from 0 to π gives Chern
number of C1 = 0.006± 0.115. Uncertainty is calculated from the uncertainty of Ω1

in the measurement. h, Suppressed deviation of the qubit (red shaded area) along
the Larmor vector path (red solid line) in Bloch sphere picture. Yellow dot indicates
the degeneracy point relative to parameter sphere.
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5.5.2 Measurement of Topological Transition via Chern Num-

bers

Chern number of a single qubit is a number of times that the Larmor vector wraps

around the sphere as θ and φ are swept. When the Hamiltonian parameter sphere

contains the quantum degeneracy point, then the Larmor vector can wrap the sphere

once θ is swept (C1 = 1). In contrast, when the quantum degeneracy point is outside

the parameter sphere, then the Larmor vector fails to wrap around the sphere (C1 =

0). The topological transition happens when the quantum degeneracy point moves

from inside to outside the spherical manifold in Hamiltonian parameter space. In this

section, we present the measurement of topological transition via extracting Chern

number by varying relative position of the quantum degeneracy point, ∆2/∆1.

We performed 〈σy〉 tomography measurements by sweeping ∆2/∆1 from 0 to -

2. Again, ∆1 = 10MHz, and Tramp = 400 ns were fixed. 〈σz〉 was also measured

as a check for the dynamic state preparation. These measurements agreed with the

simulation (Figure 5-10). Each cross sections along the sweep of θ in 〈σy〉 tomography

measurement corresponds to the non-adiabatic responds of a spin qubit over the path

for given ∆2/∆1. By integrating 〈σy〉 over the θ path, and using equation (5.8),

(5.13), we can extract the Chern number.

Now, we measured transition of Chern number by sweeping ∆2/∆1 (Figure 5-11.

As the quantum degeneracy point moves from inside (∆2/∆1 = 0) to outside (∆2/∆1

= -2) the Hamiltonian parameter sphere, we observed transition of Chern number

from 1 to 0. However, the transition in our measurement happens to be a smooth

change rather than a discrete jump and there are several reasons for this. First,

topological transition ideally is quantized in the limit of Tramp → ∞, for a perfectly

coherent, non-dephasing qubit. Because of a finite T ∗2 time of the NV spin, the

transition is broadened and the perfect quantization is destroyed. This broadening

can be expressed as following

δ

(
∆2

∆1

)
≈ 2π

∆1T ∗2
= 0.16 (5.34)
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Figure 5-10: Spin tomography measurements by sweeping ∆2/∆1. a, Simula-
tion (left) and measurement (right) of 2D spin state tomography 〈σz〉 by sweeping θ
from 0 to π and ∆2/∆1 from -2 to 0. b, Simulation (left) and measurement (right) of
2D spin state tomography 〈σy〉 by sweeping θ from 0 to π and ∆2/∆1 from -2 to 0.
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Figure 5-11: Chern number transition by varying ∆2/∆1. Blue dots are the
measurement, and red solid line is a numerically calculated Chern number with hy-
perfine splitting effect implemented. We observed transition of the Chern number
from 1 to 0 as ∆2/∆1 changed from 0 to -2. Black dotted line is theoretically ex-
pected discrete transition of the Chern number. Tramp was fixed to 400 ns. Each blue
dots with Chern number C1 is calculated by measuring 〈σy〉 with θ sweep at given
∆2/∆1. Uncertainty was calculated from the uncertainty of Ω1.
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Figure 5-12: Topological transition slope dependence on Tramp. a, 2D simu-
lation of Berry curvature calculation by sweeping θ from 0 to π and Tramp from 200
to 3200 ns. White dashed line is when Tramp = 400ns. As Tramp is increased, signal
becomes oscillating faster with lower amplitudes, where the measurement gets chal-
lenging with limited SNR. This is the reason why we chose Tramp in the measurement.
b, Simulation of the Chern number at topological case by sweeping Tramp from 200
to 3200 ns. As Tramp is increased, C1 of topological approaches closer to perfect 1.
Nevertheless, at Tramp = 400 ns, we get C1 ≈ 1. c, Simulated transition slope as
we change Tramp from 200 to 3200 ns. Black dashed line indicates discrete transition
expected from the theory. As we increase Tramp, transition slope also increases.

This value is less than the width of what we observed in the measurement, which infers

that the transition width in fact is limited by fast Tramp time. We used Tramp = 400 ns,

in which the 〈σy〉 signal could be measured with good signal-to-noise ratio. For more

discrete transition measurement, we could increase our Tramp = 1µ s, however, SNR for

such measurement is poor so that more time-averaging is inevitable (Figure 5-12 a).

We ran a simulation of topological transition of C1 by varying Tramp, and confirmed

that more discrete transition happens for longer Tramp (Figure 5-12 c). From the

measurement, we extracted transition slope to be m∼0.92, which is comparable to

the measurement from SCQ groups measurement, m∼1.25 [108], where they used

Tramp = 500 ns.

Secondly, NV spin has a hyperfine couplings of hf = 2.16MHz (14N) from its host

nitrogen nuclear spin (I = 1), which lifts the quantum degeneracy into 3 resonances.

For given hf , Ω1 = 10MHz sweep in not large enough to induce a sharp transition.

Interestingly, this lifted degeneracy can be used to investigate the topology of coupled

spins system, which will be discussed in details in next section.
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5.6 Measurement of Chern number of Interacting

Qubit System

5.6.1 Topological Transition in Coupled Two Qubit System

Study of topological transition of interacting qubits is an interesting topic because

the Hamiltonian of interacting qubit system can be mathematically projected into the

Hamiltonian of complex condense matter systems. For example, coupled two qubit

Hamiltonian can be projected into the Haldane model of the graphene [77, 107, 108].

It is known to be challenging to change the each components of the Haldane Hamil-

tonian to observe change of topology in graphene. However, changing Hamiltonian

parameters with qubits can be simply done by varying microwave parameters, and

this makes coupled qubit system as a quantum simulator. In this work, we won’t get

into the details of projecting coupled qubit system into complex model in condense

matter system, but rather focus on observing interesting phenomenological dynamics

of topological transition in coupled qubit systems. For the discussion on coupled two

qubit system, Hamiltonian of the system can be expressed as [108]

H2Q = −1

2
[Hz(σ

z
1 + σz2) +H0σ

z
1 + g(σx1σ

x
2 + σy1σ

y
2)] (5.35)

where g is a coupling strength between two spins. Since the total spin in z axis is

conserved, first there are two obvious eigenstates: with energies E↑↑/↓↓ = ±(Hz +

H0/2). When the sztot=0, then the 44 Hamiltonian reduces to 22 matrix with the

eigenenergies of E↑↓/↓↑ = ±
√
H2

0/4 + g2. Now, The ground state energy levels of

these two sectors are degenerate when |Hz +H0/2| =
√
H2

0/4 + g2, which means that

the effective degeneracy points of the given Hamiltonian are

Hdeg
z =

−H0 ±
√
H2

0 + 4g2

2
(5.36)

In P. Roushan et.al. showed that controlling the coupling constant, g is equivalent

to controlling the separation between two degeneracy points along the Hz axis (the

132



detuning axis, ∆, in our Hamiltonian parameter space). Therefore, response of a

qubit when varying g with fixed Hr (radius of parameter sweep sphere) is topologically

invariant to varying Hr (in our previous measurements, ∆1) with fixed g.

To summarize, topological transition for interacting two qubit system is topolog-

ically equivalent to a single qubit with lifted two degeneracies. For NV spin with

14N host nuclear spin, hyperfine coupling lifts the ground state degeneracy into three

states. Therefore, in principle, single NV spin qubit with three hyperfine states can

measure topological properties of three interacting qubit system.

To confirm this idea, we ran a proof-of-principle simulation which numerically

calculates topological phase transition of two coupled spin qubits, using NV spin

with 15N host nuclear spin (I = 1/2) which has two hyperfine states (hf = 3MHz). In

the interacting two qubit picture, this is mathematically equivalent to the case when

the coupling strength g = 1.5MHz. With fixed g, we swept Hr(∆1) = 0.3 to 3 MHz

and H0(∆2) = 0 to 3 MHz with adiabaticity parameter A (Equation (5.33)) fixed to

6, and calculated the Chern number.

From the simulation result, we could reproduce the same results as in [108] where

they used two coupled qubits and varied the coupling strength g to measure the

topological phase diagram. Small discrepancy came from the nonlinear dependence

of g and H0 in the equation (5.36).

5.6.2 Topological Transition in Coupled Three Qubit System

After simulating coupled two qubit system with spin qubit with two degeneracy

points, now we can move on to measure the topological phase diagram of three qubit

coupled system, by using a single NV spin qubit with three hyperfine ground states.

In Hamiltonian parameter space, this can be represented as three distinguished de-

generacy points separated by the hyperfine splitting of hf = 2.16MHz, along z-axis

(detuning ∆ axis). In this system, there are two control parameters; H0 (∆2) : offset

frequency detuning, Hr (Ω1 = ∆1) : parameter sphere sweep radius. Separation of

degeneracy points is fixed to g = hf . Importantly, sweeping Hr allows us to have the

same topological dynamics as controlling g between three coupled spin qubits.
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Figure 5-13: 2D simulation of Chern number transition with 2 degeneracies.
Numerically calculated Chern number transition with two degeneracies separated by
3 MHz in Hz axis. Transition from A to B to C indicates increasing the radius of
parameter sphere (∆1), where the sphere gradually encloses both degeneracies. In
this case, Chern number shifts from 0 to 1 to almost 2. This is equivalent to reducing
the coupling strength g in two interacting qubit system. Transition from D to E
to F indicates moving the center of parameter sphere relative to degeneracies (∆2),
where the sphere gradually looses one of the degeneracies. In this case, Chern number
shifts from 2 to 1. This is equivalent to shifting H0 with fixed g in two interacting
qubit system.
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2D topological phase diagram was constructed by sweeping H0 (∆2) = 0 to 5MHz,

Hr (∆1) = 0.5 to 5 MHz with hf = 2.16 MHz (Figure 5-14 a). For the proof-of-

principle measurement, we performed Chern number measurements by varying ∆2 =

0 to 5MHz with ∆1 = 0.5, 1.1, 1.75, 2.2, 3, 4 and 5 MHz (Figure 5-14 b). Here, to

fix the adiabaticity parameter A = 3, we varied Tramp as ∆1 is changed (Equation

(5.33)). Also, full spin population from all three degeneracies add up to 1 (because

we are using a single qubit) in the measurement, and we project this to 3, which is a

full spin population for three qubit coupled system.

When ∆1 = 0.5 MHz, the radius of parameter sphere is smaller than hf . For each

degeneracies, we measured similar Chern number transition to what we measured

in previous section (C1 transition from 1 to 0). When ∆1 = 5 MHz, the radius of

parameter sphere is much larger than hf , and it could wrap all three degeneracies

(Figure 5-14 a). Therefore, we measure the Chern number transition, C1 from 1 to

3. For 0.5 MHz < ∆1 < 5 MHz, transition steps of C1 = 0,1,2,3 were observed, and

each cross sectional measurement of the 2D topological phase diagram matched with

the numerical simulation. We couldn’t find any interesting Hamiltonian in condense

matter system where it can be projected into three coupled qubit Hamiltonian, which

is out of the scope of this work.
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Figure 5-14: 2D topological phase diagram with 3 degeneracies. a, Numeri-
cally calculated Chern number transition with three degeneracies separated by 2.16
MHz in Hz axis. Transition from A to B to C indicates increasing the radius of
parameter sphere (∆1), where the sphere gradually encloses all three degeneracies. In
this case, Chern number shifts from 1 to 2 to almost 3. This is equivalent to reducing
the coupling strength g in three interacting qubit system. Transition from D to E
to F indicates moving the center of parameter sphere relative to degeneracies (∆2),
where the sphere gradually looses two of the degeneracies. In this case, Chern number
shifts from 3 to 2 to 1. This is equivalent to shifting H0 with fixed g in three interact-
ing qubit system. b, Measured (blue dots with lines) and simulated (red solid lines)
Chern number transition plot by sweeping ∆2 from 0 to 5 MHz, for fixed ∆1. These
measurements correspond to the cross sections (white dashed line) in 2D topological
phase diagram in a. Uncertainty in the measurement is given by the uncertainty of
Ω1 = ∆1.
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5.7 Summary and Outlook

Using the NV center as a spin qubit, we measured Chern number transition from 0

to 1 and transition between 0 to 3 by using the lifted degeneracies due to hyperfine

splittings. Due to its simple control scheme of the qubit state in room temperature,

NV spin can be a strong candidate to simulate the topology of quantum systems.

Furthermore, scalability of NV spins towards non-trivial number of ensembles will

allow us to simulate more exotic topological systems.
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Chapter 6

Outlook

In this thesis, I used two different control schemes, dynamic phase and geometric phase

control, to perform novel quantum measurements to be applied for quantum sensing,

in particular magnetic field sensing, and for quantum information science, such as

observing change of interaction dynamics between two spins under a dressing field

and demonstrating a simple quantum simulation. In this last chapter, let me discuss

about further directions of employing these schemes to other interesting quantum

measurements.

Quantum Metrology

Magnetic Field Sensing with Entangled State

In quantum magnetometry, improving the sensitivity to sense small fields in condensed

matter system [112] or in biological systems [18, 99] is one of the main directions

of research. There has been many technical improvements to increase the sensitivity

of quantum magnetometer such as collecting more photon signals from ensemble of

NV spins [113], increasing the coherence time of NV spin by suppressing noise from

the bath [72], or increasing the number of NV sensor spins subject to the sample

magnetic field [114]. Despite all these technical and engineering advances, however,

the sensitivity is ultimately limited by the fundamental Standard Quantum Limit

139



(SQL). To push sensitivity below the SQL, there has been many proposals to create

non-classical state of spins [115, 116] to beat the sensitivity scaling of η ∼ 1/
√
n and

to approach Heisenberg scaling of η ∼ 1/n, where n is the number of quantum sensor

spins. Creating such non-classical state using NV ensemble spins in diamond still

remains as a deep challenge, because of limited understanding on high [N] density

samples, however, we can try to utilize two NV spin system (discussed in Chapter

3) to create an entangled state to be applied for magnetic field sensing. For this,

same quantization axis two NV spins can be used to create maximally entangled

Bell state. Generating Bell state using a pulse sequence in [23], we expect to have

improved magnetometry sensitivity of twice compared to the sensitivity of a single

NV magnetometer. In general, lifetime of the Bell state is shorter than the coherence

time of a single NV, therefore extending entangled state lifetime will be an important

topic to study. In AC magnetometry using the Bell state, short coherence time will

limit the spectral resolution, however, we can circumvent this problem by combining

entanglement state generation with Synchronized Readout scheme, where we can

achieve high sensitivity with high spectral resolution for nano-scale AC magnetic

field sensing.

Measurement of Quantum Work in Periodically Driven Flo-

quet System

In P. Weinberg et.al., they show that the Chern number is related to work done on

the system during the adiabatic cycle [117]. This result shows that the work done on

the system during one adiabatic cycle is quantized in units of the driving frequency,

Ω, which can be thought as a Floquet energy pump similar to the Thouless pump in

equilibrium systems [118]. By carefully thinking about the connection to the Chern

number measurement in Chapter 5, we might be able to experimentally demonstrate

the quantized energy pump utilizing NV spins and surrounding nuclear spins.
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Quantum Information Application

Realization of Quantum Register

NV center in diamond is a hybrid system of electronic spins and nuclear spins, where

you can create a complete set of quantum register; We can transfer information

through electronic spins and store the information in nuclear spins. Using two NV

spin system as the simplest quantum register has already been demonstrated [23].

However, there is no reliable way to scale up the number of strongly coupled NV

spins yet. This is because creating NV spin at a desirable position with high precision

is a huge technical challenge. Nevertheless, realizing chain of NV spins with similar

coupling strengths between spins is an active field of research [119, 120].

Once we realize such system, it becomes important to selectively control each

spins without disturbing other spins. This selective addressability can be achieved

by applying strong magnetic field gradient [56, 57] along the quantization axis of

NV spins. Previous work has demonstrated strength of field gradient up to ∼ 0.2

G/nm [57]. However, to be able to selectively control two same axis NV spins with

spatial separation of 5nm with fidelity higher than 95%, one wants to create ∼ 1.0

G/nm, which gives spectral separation of ∼ 14 MHz between two spins. This requires

some smart engineering of placing coils on the surface of a diamond via E-beam

lithography.

One possible direction as a stepping stone for realizing quantum register is to

search for hybrid system of NV spins strongly coupled to g = 2 electronic spins on

the surface of diamond. Depth of molecular implanted two NV spins are shallow,

therefore, there is a good chance to find strongly coupled NV spin and g = 2 surface

dark spin system [121]. Using this system, we can try to create non-classical state such

as GHZ (Greenberger-Horne-Zeilinger) state or transfer polarization (information)

along the chain of spins using the Hartman-Hahn cross polarization protocol. More

rigorous study on fidelity of non-classical state generation vs. local environmental

noise will be also interesting topic to study.

141



Study of Many-Body Physics under Controllable Disorder

Once material engineering allows us to create dense ensemble NV sample where the

dominant interaction becomes NV-NV interaction, then we can try to measure some

change in many-body dynamics of NV ensemble spins by varying the disorder pa-

rameter through dressing scheme (Chapter 3). Here, we can use one class of NV

with quantization axis aligned to the bias magnetic field as system spins, and use

off-axis NV classes as sources of disorder fields. Dressing into different basis on the

off-axis NV class will allow us to tune the disorder where we can fully suppress or

continuously sweep the disorder as a control parameter.
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Appendix A

Single NV Confocal Setup

Optical Setup

Excitation Path

Measurement with single NV centers is conducted using a home-built confocal scan-

ning laser microscope. First, let me explain green laser path to create excitation

path. An acousto-optic modulator (Isomet Corporation) operated at 80 MHz allows

time-gating of a 400 mW, 532 nm diode-pumped solid state laser (Changchun New

Industries). We align telescope lens, with f = 200 mm, to shrink the beam size passing

through AOM. Calculated beam waist are wo = 40µm and w = 64µm at the AOM

crystal. 1st order diffracted laser power from AOM is about 66% compare to the input

power. Measured isolation is ∼7.5×10−5. This beam is then focused and coupled to

single-mode fiber with a mode-field-diameter of ∼5 µm (Thorlab), then delivered to

an oil-immersion objective (100×, 1.3 NA, Nikon CFI Plan Fluor) focuses the green

laser pulses onto an NV center. All this excitation optics are placed on an optical

breadboard on top of lead foam, to isolate mechanical noise from the table. (Figure

A-1
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Figure A-1: Optical excitation path.
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Figure A-2: Optical detection path schematics.

Detection Path

Diamond sample is fixed on a three-axis motorized stage (Micos GmbH) which can

move in three dimensions by 10 cm. Fiber coupled green laser goes through a dichroic

filter (Semrock LP02-633RS-25), excites NV through objective, and NV red fluores-

cence passes through back to the same objective, and then onto a silicon avalanche

photodetector (Perkin Elmer SPCM-ARQH-12). To make confocal, we place a pin-

hole (diameter 75µm) with f = 150 mm telescope, and remove 20 % of light due

to unfocused light. After careful alignment, we measure PSF(X,Y) ∼ 250 nm with

PSF(Z) ∼ 2µm with single NV FL count of ∼ 120 kcps with background of ∼ 20 kcps

at 1/4 of optical saturation. The NV spin initialization and readout pulses are 3 µs

and 0.5 µs, respectively. The change of fluorescence signal is calculated from ∆FL

= FL+ - FL−, where FL± are the fluorescence counts obtained after spin projection

using a microwave π/2-pulse along the ±x-axis, respectively. For each measurement,

the fluorescence count FL when the spin is in the ms = 0 state is also measured as

a reference. The temperature of the confocal scanning laser microscope is monitored

by a 10k thermistor (Thorlabs) and stabilized to within 0.05 oC using a 15 W heater

controlled with a PID algorithm.
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Figure A-3: Microwave delivery schematics.

Microwave Setup

A signal generator (SG, Agilent E4428C) provides the carrier microwave signal with

frequency ωLO/2π ∼ 3 GHz. The microwave pulses are generated by an arbitrary

waveform generator (AWG, Tektronix AWG 5014C) and sent to the I/Q channels of

the IQ mixer (Marki IQ 1545 LMP). Phase control was done by AWG. The output

signal from the IQ mixer is amplified (Mini-circuits ZHL-16W-43-S+), and combined

(if there are multiple driving frequencies for two NV control), and sent through a

gold coplanar waveguide (10µm gap, 1µm height) fabricated on a glass cover-slip by

photo-lithography. To reduce phase jitter noise, an in-laboratory Rubidium clock

(Stanford Research Systems FS725) phase-locks the signal generator and AWG at 10

MHz
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Appendix B

Double Quantum Rabi Nutation

Introduction

When we drive NV spin’s |+1〉, |−1〉 transition simultaneously, depending on the

resonance condition, we get different modulations in double quantum (DQ) Rabi

oscillations. This chapter will go through the analytical derivations, and do some

example numerical simulations using realistic parameters.

Analytical Calculation

Hamiltonian

Under the doubly rotating frame of |+1〉 and |−1〉 transitions, system Hamiltonian

can be simplified as below,

H = −δ|+ 1̃〉〈+1̃|+ δ| − 1̃〉〈−1̃| − Ω

2

[
|+ 1̃〉〈0|+ | − 1̃〉〈0|+ |0〉〈+1̃|+ |0〉〈−1̃|

]
(B.1)

where,

|+ 1̃〉 = eiω+t|+ 1〉, | − 1̃〉 = eiω−t| − 1〉 (B.2)
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Now, to express in terms of the DQ basis of bright state |B〉 and dark state |D〉,

|+ 1̃〉 =
1√
2

[
|B〉+ |D〉

]
, | − 1̃〉 =

1√
2

[
|B〉 − |D〉

]
(B.3)

system Hamiltonian can be rewritten as,

H = −δ|B〉〈D| − δ|D〉〈B| − Ω√
2

[
|B〉〈0|+ |0〉〈B|

]
(B.4)

State of the NV spin goes under the time evolution, therefore

Ψ(t) = CB(t)|B〉+ C0(t)|0〉+ CD(t)|D〉 (B.5)

Under the time dependent Schrödinger equation,

HΨ(t) = −
(
δ +

Ω√
2

)
|B〉 − Ω√

2
|0〉 − δ|D〉 = i∂tψ (B.6)

Time evolution of the state coefficients are

ĊB(t) = iδCD(t) +
iΩ√

2
C0(t), Ċ0(t) =

iΩ√
2
CB(t), ĊD(t) = iδCB(t) (B.7)

On Resonance Case

When there is no detuning in Rabi drive, then the state evolution equations are

ĊB(t) =
iΩ√

2
C0(t), Ċ0(t) =

iΩ√
2
CB(t), ĊD(t) = 0 (B.8)

and this results in DQ Rabi oscillation between |0〉 and |B〉

ΩDQR =
√

2ω (B.9)
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No Driving Case

When there is no Rabi drive, Ω is zero, then the state evolution equations are

ĊB(t) = iδCD(t), Ċ0(t) = 0, ĊD(t) = iδCB(t) (B.10)

and this results in DQ state oscillation between |B〉 and |D〉

ΩDQS = 2δ (B.11)

Off Resonance Case

When there is a detuning in Rabi drive, then the state evolution equations are

ĊB(t) = iδCD(t) +
iΩ√

2
C0(t), Ċ0(t) =

iΩ√
2
CB(t), ĊD(t) = iδCB(t) (B.12)

We can calculate the time evolution of the state by solving the above differential

equations.

Numerical Calculation on Off-Resonant case

Now, let’s numerically calculate the state evolution for off-resonant DQ Rabi. For the

case of 14N, there always is a detuning factor due to the hyperfine splitting, which

is about 2.16 MHz. If we assume that our Rabi frequency is 10 MHz, then for on

resonance drive, DQ Rabi we get is 14.15 MHz, as simulated in Figure B-1.

Now, for hyperfine detuned state, there are modulation on DQ Rabi. For 2.16

MHz detuning with 10 MHz Rabi driving power, we get 7.4 MHz modulation on the

Rabi oscillation, which is simulated in Figure B-2.
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Figure B-1: DQ Rabi 10 MHz on resonance drive. DQ Rabi frequency is at 14.15
MHz

Figure B-2: DQ Rabi 10 MHz, 2.16 MHz detuned drive. DQ Rabi frequency is at
14.8 MHz with 7.4 MHz modulation
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Appendix C

Double Ion Implanted Sample

Creation of two NV pair is done by molecular ion implanted technique (Innovion corp),

with the implantation dosage of ∼6 keV and density of 1× 109 cm−3 on isotopically

pure (99.99% 12C) diamond substrate. After the implantation, it is annealed in the

oven with 800 o for 8 hours and at 1000 oC for 10 hours. Quick statistical measurement

of FL measurement reveals conversion ratio between single to double NV to be ∼ 5

%

From [67], 6 keV ion implantation expects to create pairs with average separation

of ∼ 6 nm, and this corresponds to ∼ 0.2 MHz of coupling strength between two NV

spins. From the DEER measurement, we measured variation of coupling strength

ranging from 0.050 MHz up to 0.8 MHz.
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Figure C-1: NV FL statistics.
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Appendix D

Motional Narrowing in spin−1/2

Let us look at two-body spin−1/2 toy model to examine how dynamic spin driving

of one of the two coupled spins changes effective dipolar coupling strength. Full

Hamiltonian of the system is given as

H(t) =
γBA

2
σzA +

ν

4
σzA ⊗ σzB +

γBB

2
σzB +

Ω

2
cos(ωt)σxB, (D.1)

where σi are Pauli matrices for spin−1/2.

σx =

0 1

1 0

 σy =

0 −i

i 0

 σz =

1 0

0 −1

 (D.2)

γ is a gyromagnetic ratio, ν is strength of the dipolar coupling, Ω is Rabi frequency,

ω is frequency of microwave field, and finally, BA and BB are external bias magnetic

field on spin A and spin B, respectively. Spin B is driven along the σx axis and

Ramsey spectroscopy is done with a sensing spin, spin A. When we go to doubly

rotating frame on both spin A and B, the Hamiltonian in this frame is

H̃ = UH(t)U † − iU dU
†

dt
(D.3)
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where U = exp[i ((γBA − δωA)σzA + ωσzB) t/2] and δω is a detuning in Ramsey spec-

troscopy. The doubly rotating frame Hamiltonian is further calculated as

H̃ =
δωA

2
σzA +

ν

4
σzA ⊗ σzB +

(γBB − ω)

2
σzB +

Ω

2

eiωt + e−iωt

2
(σ+

Be
iωt + σ−Be

−iωt), (D.4)

where

σ+ =

1 0

0 0

 σ− =

0 0

0 1

 (D.5)

By choosing ω = γBB and applying rotating-wave approximation, we have

H̃ =
δωA

2
σzA +

ν

4
σzA ⊗ σzB +

Ω

4
σxB (D.6)

Hence the von Neumann equation in doubly rotating frame is

d ρ̃(t)

dt
= −i[H̃, ρ̃(t)] (D.7)

Since H̃ is a time independent Hamiltonian, ρ̃(t+ dt) = e−iH̃dtρ(t)eiH̃dt.

Calculating eigenvectors and eigenvalues for the Hamiltonian H̃, we get

|ξ〉+ =
ν +
√
ν2 + Ω2

Ω
|̃↑↑〉+ |̃↑↓〉 λξ+ =

1

2
δωA +

√
ν2 + Ω2

4

|ξ〉− = −ν −
√
ν2 + Ω2

Ω
|̃↓↑〉+ |̃↓↓〉 λξ− = −1

2
δωA +

√
ν2 + Ω2

4

|η〉+ =
ν −
√
ν2 + Ω2

Ω
|̃↑↑〉+ |̃↑↓〉 λη+ =

1

2
δωA −

√
ν2 + Ω2

4
(D.8)

|η〉− = −ν +
√
ν2 + Ω2

Ω
|̃↓↑〉+ |̃↓↓〉 λη− = −1

2
δωA −

√
ν2 + Ω2

4

where |̃↑↑〉, |̃↑↓〉, |̃↓↑〉, |̃↓↓〉 are two spin−1/2 basis in doubly rotating frame. Among

these eigenstates, we want eigenenergy differences when the first spin, spin A, being
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flipped, |↑〉 ↔ |↓〉. These transitions are

|ξ〉+ ↔ |ξ〉− : δωA

|η〉+ ↔ |η〉− : δωA

|ξ〉+ ↔ |η〉− : δωA +

√
ν2 + Ω2

2
(D.9)

|ξ〉− ↔ |η〉+ : δωA −
√
ν2 + Ω2

2

Ramsey sequence is a powerful spectroscopic tool to measure the eigenstates and

eigenvalues of given Hamiltonian, in the basis of spin σz. Under the Ramsey spec-

troscopy sequence on spin A, we can also derive the same result as above.We first

prepare spins in initial density matrix, ρ̃(0) = |↓〉A 〈↓|A⊗ (Pd |↓〉B 〈↓|B +Pu |↑〉B 〈↑|B)

and apply π/2 rotation, Ũ
(π
2

)x
A pulse on spin A, let the system evolve with the Hamil-

tonian H̃ for time t, apply Ũ
(±π

2
)x

A pulse, and finally measure the probability of spin

A being in a |↓〉A. Assuming that the Ũ
(±π

2
)x

A pulses are applied instantaneously, i.e.,

the system does not evolve with H̃ during π/2 pulses, observed probability P
|↓〉
A is

expressed as

P
|↓〉
A = Tr

[(
σzA + 1A

2
⊗ 1B

)
Ũ

(−π
2

)x
A e−iH̃tŨ

+(π
2

)x
A ρ(0)Ũ

†(+π
2

)x
A eiH̃tŨ

†(−π
2

)x
A

]
(D.10)

=
1

2
+

cos(δωAt) (Ω2 + ν2 cos (αt)) + (Pd − Pu)ν
√

Ω2 + ν2 sin(δωAt) sin (αt)

2(Ω2 + ν2)

(D.11)

where α =
√

Ω2 + ν2/2. To understand the meaning of this analytic expression, we

take Pd = Pu = 1/2, i.e., take the initial state of spin B to be in a maximally mixed

state, as an example. Then

P
|↓〉
A =

1

2
+

Ω2 cos(δωAt) + ν2 (cos ((δωA + α)t) + cos ((δωA − α)t)) /2

2(Ω2 + ν2)
(D.12)

This implies that there are three resonance frequencies : δωA with an amplitude of

Ω2/2(Ω2 + ν2), δωA±
√

Ω2 + ν2/2 with amplitude of ν2/4(Ω2 + ν2). This result is the
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same as what we calculated as transition resonances between Eigenstates in above

equations. Notice that when Ω = 0 and ν = 0, then P
|↓〉
A = (1 + cos(δωAt))/2, which

retrieves Ramsey spectroscopy for a single spin.

As we increase the driving Rabi frequency of spin B, Ω, Ramsey FFT δωA peak

grows, and the right (left) peak amplitude shrinks and gets pushed further away from

δωA peak. Moreover, for Ω� ν, only δωA peak remains with full amplitude, in which

driving field on spin B fully suppresses dipolar coupling on spin A and recovers the

Ramsey spectroscopy for a single spin. Let us say that we want to suppress the dipolar

coupling as much as X% compared to non-driven full dipolar coupled Hamiltonian.

Then the Rabi frequency, Ω, should be Ω ≥ 10ν/
√

100−X. For example, to suppress

X = 90% with ν = 500 kHz, Rabi frequency should be at least Ω = 1.58 MHz. Since

Rabi frequency is a function of given dipolar coupling strength, Ramsey spectroscopy

combined with spin bath driving could be used to study the average dipolar coupling

between sensor spins and bath spins to extract information on bath spin density.
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Appendix E

Calculation of Non-Adiabatic

Response of a Qubit

The goal is to derive the most important equation in the Floquet Chern number

measurement.

〈Fφ〉 = −〈∂φH〉 = 〈ψ0|Fφ |ψ0〉 − vθBθφ +O(v2) (E.1)

The first term is a constant and the second term is the product of parameter ramp

speed vθ and the Berry curvature Bθφ. This equation can be understood in analogy

with the Lorentz force in electromagnetism [108].

Adiabatic Perturbation Theory

Let us start from the parameter-dependent Hamiltonian

H(λ) (E.2)

The parameter λ(t) is time-dependent and varied at a rate of vλ=dλ/dt. The Schrödinger

equation is

i∂t |ψ〉 = H(t) |ψ〉 (E.3)
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We use an instantaneous basis

|ψ(t)〉 =
∑
n

an(t) |n(t)〉 (E.4)

which satisfies the following eigenvalue equation

H(t) |n(t)〉 = εn(t) |n(t)〉 (E.5)

Note that the basis is also time dependent. The Schrödinger equation is rewritten as

i∂tam(t) + i
∑
n

an(t) 〈m(t)| ∂t |n(t)〉 = εm(t)am(t) (E.6)

We apply a gauge transformation and make the right hand side zero to solve this

equation

an(t)→ a′n(t) = an(t) exp[−iΘn(t)], Θn(t) =

∫ t

ti

εn(τ)dτ (E.7)

The Schrödinger equation transforms as

ȧn(t) = −
∑
n

am(t) 〈n| ∂t |m〉 exp[i(Θn(t)−Θm(t)] (E.8)

By integrating both hand sides

an(t) = −
∫ t

ti

dt′
∑
m

am(t′) 〈n| ∂t′ |m〉 ei(Θn(t′)−Θm(t′)) (E.9)

For later convenience, we will put the n = m term into the exponent. We define a

Berry connection

An = −i 〈n| ∂t |n〉 (E.10)

This term can always be incorporated into the exponent as a Berry phase by a unitary

transformation Θn → Θ′n = Θn + γn, where γn =
∫
dtA. From now, we just drop the
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prime sign for simplicity.

an(t) = −
∫ t

ti

dt′
∑
m 6=n

am(t′) 〈n| ∂t′ |m〉 ei(Θn(t′)−Θm(t′)) (E.11)

Two-Level System

Now we consider a two-level system. We are primarily interested in the transition

amplitude from the ground state to the excited state of the final Hamiltonian

an(t) = −
∫ t

ti

dt′
∑
m 6=n

a0(t′) 〈n| ∂t′ |0〉 ei(Θn(t′)−Θ0(t′)) (E.12)

The stationary phase approximation gives

an(t) ' i
〈n| ∂t′ |0〉
(εn − ε0)

ei(Θn(t′)−Θ0(t′))|tfti (E.13)

We can go to the parameter space by t→ λ, ∂t → vλ∂λ.

an(t) ' ivλ
〈n| ∂λ |0〉
(εn − ε0)

ei(Θn−Θ0|λfλi = −ivλ
〈n| ∂λH |0〉
(εn − ε0)2

e−i(Θn−Θ0)|λfλi (E.14)

Note that Θn includes both the dynamical and the Berry phase

Θn(λ) =

∫ λf

λ

dλ′
[
εn
vλ
− iAn

]
(E.15)

This phase can be dropped if the initial state has a large gap or if the protocol is

designed in such a way that the initial evolution is adiabatic

an(t) ' −ivλ
〈n| ∂λH |0〉
(εn − ε0)2

|λf (E.16)

The generalized force along the µ-direction is therefore given by

Fµ = 〈ψ| − ∂µH |ψ〉 ' 〈0| − ∂µH |0〉+ iC (E.17)
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where the first term simply gives a constant F0µ, and the second term is

C = vλ
∑
n 6=0

〈0| ∂µH |n〉 〈n| ∂λH |0〉 − 〈0| ∂λH |n〉 〈n| ∂µH |0〉
(εn − ε0)2

(E.18)

Now we prove that the second term is equivalent to the Berry curvature. We start

from the first half. First, we can use the following relation.

〈0| ∂µH |n〉 〈n| ∂λH |0〉
(εn − ε0)

= 〈0| ∂µ |n〉 〈n| ∂λ |0〉 (E.19)

Then, the integration by parts gives,

〈0| ∂µ |n〉 〈n| ∂λ |0〉 = ∂µ(〈0| |n〉 〈n| ∂λ |0〉)− (∂µ 〈0|) |n〉 〈n| ∂λ |0〉 − 〈0|n〉∂µ(〈n| ∂λ |0〉)

(E.20)

By using an identity, 1=
∑

n |n〉 〈n| =
∑

n6=0 |n〉 〈n|+ |0〉 〈0|, and the orthogonal con-

dition 〈n| |0〉 = 0(n 6= 0), the first part of C can be rewritten as

∑
n6=0

〈0| ∂µ |n〉 〈n| ∂λ |0〉 = −(∂µ 〈0|)(∂λ |0〉) + (∂µ 〈0|) |0〉 〈0| ∂λ |0〉 (E.21)

The second half of C is obtained by swapping µ and λ.

∑
n6=0

〈0| ∂λ |n〉 〈n| ∂µ |0〉 = −(∂λ 〈0|)(∂µ |0〉) + (∂λ 〈0|) |0〉 〈0| ∂µ |0〉 (E.22)

When we combine these two, we obtain the following result

C = (∂µ 〈0|)(∂λ |0〉) + (∂µ 〈0|) |0〉 〈0| ∂λ |0〉 − (∂λ 〈0|)(∂µ |0〉) + (∂λ 〈0|) |0〉 〈0| ∂µ |0〉

= ∂µ(〈0| ∂λ |0〉)− ∂λ(〈0| ∂µ |0〉)

= ∂µAλ − ∂λAµ = Bµλ (E.23)
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where B denotes . Finally, we obtain the Lorentz force equation that we wanted.

Fµ = F0µ + vλBµλ (E.24)
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