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Dark matter comprises the bulk of the matter in the Universe, but its particle nature and cosmological
origin remain mysterious. Knowledge of the dark matter density distribution in the Milky Way Galaxy is
crucial both to our understanding of the standard cosmological model and for grounding direct and indirect
searches for the particles comprising dark matter. Current measurements of Galactic dark matter content
rely on model assumptions to infer the forces acting upon stars from the distribution of observed velocities.
Here, we propose to apply the precision radial velocity method, optimized in recent years for exoplanet
astronomy, to measure the change in the velocity of stars over time, thereby providing a direct probe of the
local gravitational potential in the Galaxy. Using numerical simulations, we develop a realistic strategy to
observe the differential accelerations of stars in our Galactic neighborhood with next-generation telescopes,
at the level of 10−8 cm=s2. Our simulations show that detecting accelerations at this level with an ensemble
of 103 stars requires the effect of stellar noise on radial velocity measurements to be reduced to <10 cm=s.
The measured stellar accelerations may then be used to extract the local dark matter density and
morphological parameters of the density profile.
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Introduction.—Understanding the nature of dark matter
(DM) [1] is oneof themost pressing issues inmodernphysics.
Many particle DM models, such as those employing weakly
interacting massive particles and axions, predict unique
laboratory and astrophysical signatures, which are being
searched for in a variety of experiments and observatories
[2]. However, knowledge of the local DM density is crucial
for interpreting the results of these efforts. Unfortunately,
current methods for determining the local properties of DM
(i.e., within our region of the Galaxy) are indirect and subject
to large systematic uncertainties [3]. In addition to aiding
searches for particle DM, better certainty of the local DM
distribution may provide key insights into the history of
the Milky Way (MW). In this work, we propose a new
approach—direct measurements of stellar accelerations—
to determine the local DM density and morphological
parameters in the MW. Our technique circumvents many
of the systematic issues faced by existing methods.
Currently, the DM density in the MW is inferred from

either the Galactic rotation curve, measured via Doppler
shifts, or the dispersion of local stellar velocities in the
vertical direction about the Galactic midplane [3–7],
measured using astrometry. However, implicit in both of
these analyses is the assumption of equilibrium, i.e., that
dynamics have reached steady state. In particular, the
velocity distribution does not directly probe the gravita-
tional potential and thus the DM distribution: only the
equilibrium velocity distribution is determined by the

potential. Given the presence of density waves in the
MW, for example, those causing the local north-south
asymmetry recently studied in Ref. [8] using Gaia, as well
as other out-of-equilibrium processes, such as the contin-
uing interactions of the Galaxy with massive satellites, the
equilibrium assumption used in traditional determinations
of the local DM density is open to question. Stellar
accelerations, on the other hand, are directly determined
by the forces acting on a star, and thus the gravitational
potential, with no modeling assumptions. Having such a
direct probe would allow, in principle, for an unbiased
mapping of the gravitational potential of the MW. This
approach opens up, for example, the possibility of search-
ing for low-mass DM subhalos, which are predicted in the
standard cosmological framework but are absent in certain
DM models such as warm DM and fuzzy DM [9].
Stellar accelerations may also be used to probe both the

spatial morphology of the density profile of the bulk DM
halo and the Galactic disk, in addition to possible DM
subhalos (see Refs. [10–15] for related but more indirect
proposals). The radial density profile in particular plays a
key role in interpreting searches for DM annihilation [16],
while the halo shape is influenced by baryonic feedback
and potentially DM self-interactions [17].
In this Letter, we show how precision radial velocity

(RV) measurements of the accelerations of individual stars
in our Galactic neighborhood can be used to measure the
local DM density and constrain the spatial morphology of
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the DM density distribution. To our knowledge, a similar
idea has only been suggested once before, in the context of
testing modified Newtonian gravity with MW globular
clusters [18,19]. We highlight the work of Silverwood and
Easther [20], contemporaneous to our own, in which they
also propose using stellar accelerations to map the Galactic
gravitational field, and provide a complementary analysis.
We propose to use the precision RV method, honed in

the search for extrasolar planets [21], to measure directly
the change over time of the velocities of an ensemble of
individual stars—and thus the forces acting upon those
stars. Since the Sun is also accelerating in the gravitational
potential of the MW, measurements must be performed on
stars sufficiently distant from the Sun—either closer to or
farther from the Galactic Center (GC)—for a difference in
acceleration to be observed. Given the rotational velocity
of the Sun about the GC, vcircðr0Þ≡ v0 ≈ 220 km=s [22],
and our galactocentric distance r0 ≈ 8 kpc [22], the local
centripetal acceleration is arðr0Þ≡ a0 ≈ 2 × 10−8 cm=s2.
This situation is depicted in Fig. 1.
Theoretical framework.—The Poisson equation directly

relates stellar acceleration gradients, which we propose to
measure using the RV method, to the energy density ρ:
∇ · a ¼ −4πGρ, where G is Newton’s constant. Suppose
we measure the radial acceleration gradients for stars
towards the GC, as pictured in Fig. 1. Note that our
proposed observing region will be intentionally slightly
misaligned from the GC (vertically and horizontally) to
avoid extinction in the Galactic midplane and overcrowding
of stars. To a good approximation, pointing in this manner
primarily gives us a measure of ∂ar=∂r, where ar is the
component of the acceleration in the radial direction. We

assume azimuthal symmetry and discuss errors from con-
tamination by vertical gradients later in this section.
Radial gradients of the acceleration are primarily

determined by the local DM density. Using the Poisson
equation, we may relate the radial gradients of ar to the
local DM density, finding

ρDM ≈
1

4πG

�
2ðA − BÞ2 − ∂ar

∂r
�
; ð1Þ

where A ¼ 15.3� 0.4 km s−1 kpc−1 and B ¼ −11.9�
0.4 km s−1 kpc−1 are the Oort constants [23]. Note that
the combination of Oort constants in Eq. (1) is related to the
circular velocity and distance from the GC by A − B ¼
v0=r0. The relation in Eq. (1) would be exactly true were
it not for the contribution of the Galactic disk, which
contributes energy density locally. However, even though
the local energy density due to the disk is expected to
dominate that of the DM by approximately a factor of 10
[3], we find that completely neglecting the disk leads to
only a 30% error in measuring the DM density using
Eq. (1). At higher precision, the contribution from the disk
can be modeled, as we discuss below.
First, it is instructive to understand Eq. (1) in the context

of a spherical DM density profile. In this case, we may
write the DM contribution to the acceleration as arðrÞ ¼
−GMðrÞ=r2, where MðrÞ is the DM mass enclosed within
the radius r. Note that the contribution to the Oort constants
from the spherical potential is 2ðA − BÞ2 ¼ 2GMðrÞ=r3,
while the derivative gives a0ðrÞ¼2GMðrÞ=r3−GM0ðrÞ=r2.
Defining the local DM density as ρDM and r0 as the
distance from the Sun to the GC, we then find that the
right-hand side of Eq. (1) trivially reduces to ρDM since
M0ðr0Þ ¼ 4πr20ρDM.
Now let us repeat the exercise above for the disk density

profile in order to calculate the contribution to Eq. (1) from
the disk, which should in principle be subtracted at high
enough precision. For a thin disk with surface density Σdisk,
and assuming that we are in the plane of the disk, the
calculation proceeds as for the spherical density profile
except that M0

diskðrÞ ¼ 2πrΣdisk, with MdiskðrÞ being the
mass enclosed within the radius r due to the disk. We then
see that the disk leads to a fictitious contribution to ρDM, as
inferred from Eq. (1) and which we refer to as ρfictDM, given
by ρfictDM ¼ Σdisk=ð2r0Þ. The local disk surface density is
measured to be Σdisk ≈ 50 M⊙= pc2 [3,7], with approxi-
mately and conservatively 20% uncertainty, and also
r0 ≈ 8 kpc. Here M⊙ is the mass of the Sun. This implies
that ρfictDM¼ð3.1�0.6Þ×10−3M⊙= pc3. Current estimates
put the local DM density at ρDM ≈ 0.01 M⊙=pc3 [3],
meaning that ρfictDM=ρDM ≈ 0.3.
The relative uncertainty in the DM density is magnified

compared to the relative uncertainty in ∂ar=∂r because of
the cancellation that occurs in Eq. (1). Writing δa0r as the

Galactic Center

Earth

FIG. 1. Geometry for observing stellar accelerations in the
Milky Way. The solar system is at a distance r0 from the Galactic
Center (origin), has a rotational velocity v0, and feels an accel-
eration a0 due to the Milky Way gravitational potential. Stars
further inward feel a stronger acceleration. From Earth, we can
observe the radial velocity of stars Δr away. By measuring small
changes in these velocities over time, we directly determine stellar
accelerations and, hence, the Milky Way gravitational potential.
The diagram is not to scale and angles are exaggerated for effect.
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uncertainty in ∂ar=∂r and δρDM as the uncertainty in the
DM density, we find

δρDM
ρDM

≈
δa0r
a0r

ðA − BÞ2
2πGρDM

≈ 2.7
δa0r
a0r

: ð2Þ

Note that while we do not explore this possibility in
detail in this work, the local DM density may also be
measured by using vertical acceleration measurements of
stars in the local neighborhood but at sufficiently high
vertical displacement from the disk z, such that the
dominant vertical acceleration is from DM and not the
disk. Note, however, the vertical acceleration from DM is
sub-dominant compared to the radial acceleration by the
factor z=r0. Additionally, morphological parameters for
the DM density profile, such as the local slope, may be
determined from higher precision acceleration measure-
ments. We leave projections for how well such parameters
could be determined to future work.
Observational considerations.—If we select stars 3 kpc

away (beyond the star field observed by the Kepler
spacecraft [24] but potentially observable with the Giant
Magellan Telescope [25]), the fractional change in accel-
eration compared to the local acceleration should be
approximately 0.75, i.e., Δar ¼ 1.5 × 10−8 cm=s2. In more
convenient units, this is 0.5 cm s−1 yr−1. Over 10 years, one
would then expect a typical stellar velocity change due to
the MW gravitational potential of approximately 5 cm=s,
which is similar to the RV amplitude associated with an
Earth-like exoplanet in the habitable zone around a Sun-
like star [26]. We note that next-generation instruments
designed for RV studies of exoplanets, including
ESPRESSO [27] and G-CLEF [25], are expecting to
achieve 10 cm=s or better RV precision and long-term
stability in order to pursue such exoplanet astronomy.
At a target signal-to-noise ratio of 100, the faintness of

stars sets the exposure times to approximately 12 min per
star with a 30-m telescope at Δr ¼ 1 kpc or with a future
100-m telescope at Δr ¼ 3 kpc. Including the length of
nights as well as star visibility leads to ∼104=N observa-
tions per star per year with a single telescope for a N-star
survey where each night is time-shared between various
targets [28].
Necessary for measuring small stellar accelerations is

extremely stable calibration of the spectrograph used to
determine the RVs over several years. The ideal tool for this
task is a laser frequency comb optimized for calibrating
spectrographs. These specialized instruments, known as
“astrocombs” [50–55], may be referenced to GPS-disci-
plined atomic clocks. Thus, spectrograph wavelength
solutions are easily trustworthy over a decade, and even
measurements from multiple comb-calibrated observatories
can be combined into a single dataset if the same reference
clock is used for the astrocombs at all observatories.

An additional effect which needs to be considered is the
contribution to radial velocities from the motion of stars in
the plane of the sky, the so-called perspective acceleration.
This effect can be removed using high-precision astromet-
ric surveys such as Gaia [56]. As pointed out by
Silverwood and Easther [20], this effect can be subtracted
out at the ∼1% level by choosing stars below a transverse
velocity threshold of ∼55 km/s, and such stars are quite
abundant in the Gaia catalog.
Simulation scheme.—To determine whether sufficiently

sensitive stellar acceleration measurements are possible,
given other sources of Doppler shift “systematics” (e.g.,
stellar companions, planets, stellar noise), we simulate a
measurement campaign with synthetic RV time series from
a population of stars including all the above effects and a
realistic observing schedule. We then analyze the time
series to try to recover an injected acceleration signal of
order few cm/s over a decade.
An observing schedule is generated for a total measure-

ment campaign of 10 years [28]. The observing schedule
is applied to the generation of N time series (103 or larger
in this Letter), representing N candidate stars in an initial
sample. Though the telescope time associated with the
observing schedule used in this work exceeds the limits
posed by the exposure times calculated in the previous
section for a single telescope, we use it to aid understanding
of confounding effects in the search for the acceleration
signal. It is important to note that fewer than N stars will
actually be followed in a real campaign because many stars
will be poor targets for detecting an acceleration signal
(due to reasons discussed below). The full campaign would
then consist of a target selection phase (where one prunes
the list of candidate targets) lasting a few years followed by
approximately a decade of observations devoted exclu-
sively to measuring the acceleration signal.
Each star in the simulation is assigned a number of stellar

companions and planets. The multiplicity and orbital
parameters of these orbiting bodies are determined using
known statistical distributions [28]. The total RV for a
given primary star is

vtotalðtÞ ¼ vaccelðtÞ þ vcompðtÞ þ vplanðtÞ þ vnoiseðtÞ; ð3Þ

where vaccelðtÞ ¼ Δart according to the acceleration change
Δar at target distance Δr away, due to the MW gravitational
potential. The three terms following vaccel arise from stellar
companions, planets, and noise [28]. Since the survey
volume is relatively small [28] and Δr¼3 kpc, we take
Δar¼1.5×10−8 cm=s2 (∼5 cms−1decade−1) for all stars.
Figure 2 shows a typical example of each of the
components plotted separately as time series; note the
scale of the various effects. In this particular example,
vtotal would be dominated by vcomp. The ideal case
(occurring about 10% of the time) is a star with no
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stellar companions or planets. This leaves us with only
the MW acceleration plus noise.
Results.—In a series of numerical experiments, we

attempt to recover an injected ∼5 cm s−1 decade−1 accel-
eration signal from a large ensemble of synthesized vtotal
time series for N simulated primary stars.
First, to assess what is possible with present-day state-of-

the-art instruments and analysis techniques, we set the
Gaussian white noise standard deviation σWN to 60 cm=s
and add correlated noise with amplitudes ranging from 50
to 250 cm=s on a given star (the range of noise levels
observed in the Sun [29]). In order to fit the more
complicated noise model, we employ a Gaussian process
(GP) regression [28] with a quasiperiodic kernel function
[30–32]. The GP regression is also able to simultaneously
fit the Keplerian components of the time series (i.e.,
those associated with planets and stellar companions).
With the GP fit (N ¼ 75044 stars) we obtain a mean
(standard error of the mean σ given in parentheses) of
1.42ð0.24Þ × 10−8 cm=s2. In contrast, a simple linear fit
(N ¼ 72425 stars) to the time series yields a mean accel-
eration of 2.00ð0.58Þ × 10−8 cm=s2. Thus the GP fit
reduces the uncertainty by more than a factor of 2 compared
to the linear fit, recovers the injected stellar acceleration
signal of 1.5 × 10−8 cm=s2 within 1σ, and is ≈6σ away
from a null result. The probability density functions for the
fitted accelerations are shown in Fig. 3(a).
We can vary the observed number of starsN to determine

what is required for a statistically significant detection. For
our purposes, a detection at the level nσ is defined as the
mean lying nσ away from zero. Figure 3(b) shows σ as a
function of N. Unfortunately, nearly 2 × 104 stars are

required for a 3σ detection (σ ≈ 0.5 × 10−8 cm=s2). This
is a prohibitively large sample size given realistic quantities
of observation time. However, we reiterate that N repre-
sents the number of stars in an initial sample before target
selection.
Next, we study the case where vnoise contains only

Gaussian white noise with σWN ¼ 10 cm=s. This is a
futuristic scenario we envision where data processing
techniques developed in exoplanet astronomy have
matured to the point of being able to effectively filter
out the effects of correlated stellar noise. At present, this is
an unsolved problem, but it is being worked on very
actively [21,33,57]. Once stellar noise is removed, we reach
the instrumental noise limit.
For this dataset of N ¼ 103 stars, we use a linear fit for

each time series (i.e., fit only the acceleration component)
and construct a histogram of the fitted slopes. To avoid
broadening the histogram with Keplerian signals, we
employ Lomb-Scargle periodograms [26] to identify
Keplerian signals and reject time series containing planets
and stellar companions (without a priori knowledge of their
existence).
Setting a threshold on the maximum allowed periodo-

gram power close to the maximum observed from a pure
noise signal rejects significant Keplerian signals. Our
threshold allows 277 stars to be examined, including
all 132 lone stars (i.e., free of orbiting bodies) in the
sample. Figure 4 shows the result of such an analysis.
Using this subset, we obtain a mean acceleration of
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FIG. 2. Example of a synthesized RV time series for a single
primary star, showing the four contributing mechanisms consid-
ered in our analysis. The effects of (a) the acceleration due to the
MilkyWay gravitational potential, (b) stellar companions, (c) plan-
ets (multiple planets in this case), and (d) “noise” including stellar
activity and instrumental effects are depicted. Red dots are the
observed nights and gray dots represent all nights.

(a)

(b)

FIG. 3. (a) Probability density function (PDF) of fitted stellar
accelerations for ∼7.5 × 104 stars using Gaussian processes (GP)
(blue) and a simple linear fit (orange). 60 cm=s of white noise and
quasiperiodic correlated noise ranging from 50 to 250 cm=s is
added to each time series. (b) Standard error of the mean (SEM)
vs number of stars observed. A 3σ detection (dotted gray line) is
obtained after about 2 × 104 stars for the GP fit.
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1.46ð0.21Þ × 10−8 cm=s2. This result is consistent with the
injected stellar acceleration signal of 1.5 × 10−8 cm=s2 and
≈7σ away from a null result. Note that an acceleration
measurement with 14% uncertainty implies, using Eq. (2),
a local DM density measurement with 38% uncertainty.
We also test the dependence of the acceleration sensi-

tivity with planet occurrence by doubling the mean number
of planets per star, keeping all other parameters fixed.
This also doubles, on average, the number of long-period
(>10 yr) planets, which are difficult to remove without
sufficient coverage of the orbital period. With the added
planets it takes roughly 4 times as many stars to reach the
same detection significance.
Instead of rejecting companions via periodograms,

they can be used to help fit Keplerian signals. This could
enable reaching the same precision in the result with far less
telescope time. In the future, we plan to simulate the target
selection program in more detail, keeping track of the
time overhead associated with following poor targets, and
also do a study of the stellar acceleration precision vs
number of observations, as telescope time is an expensive
resource.
Conclusion.—In this Letter, we put forth the idea of

using precision RV measurements to quantify the local DM
density. More specifically, we propose to track the velocity
of stars over time to extract their accelerations, thereby
directly probing the local gravitational potential and fore-
going the equilibrium assumption used with static mea-
surements of stellar velocities. The exquisite RV precision
and stability achievable with astrocomb wavelength cali-
brators and exoplanet spectrographs, combined with next-
generation large telescopes, should make it feasible to
measure stellar accelerations directly at the necessary level
of 10−8 cm=s2. Importantly, detecting accelerations at this
level with an ensemble of 103 stars requires the reduction
of the effect of stellar noise on RV measurements to
<10 cm=s. In the future, measurements over a wide range
of pointing directions could allow construction of a map of
the gravitational potential of the Galaxy.

We conclude by emphasizing two key points. First,
though the technical challenges are daunting for a large
observing campaign to map stellar accelerations and con-
strain dark matter models, we believe such a program will
become feasible in the next decade. Second, the dataset that
would result from this effort, providing precision RVs from
∼103 stars, would be rich and valuable for other areas of
astrophysics: e.g., many long-period exoplanets and stellar
companions would likely be detected and characterized in
the process. It is our hope that the exciting prospects for
exoplanet and stellar astronomy as well as dark matter
physics will encourage others to consider the stellar
acceleration idea and pursue it further.
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