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Abstract

The first detection of gravitational waves (GW) by the Laser Interferometer Gravitational wave

Detector (LIGO) ushered in a new era of cosmic exploration and with it came a plethora of new

ideas and theories. One such idea includes a proposal to use space-based optical lattice atomic clocks

as GW detectors. We propose a GW detector comprised of two free falling strontium-87 optical

lattice clocks locked together by a single optical baseline. The two clocks will measure Doppler

shifts induced in the two satellites by an incident GW in the transverse direction. Using a series of

dynamical decoupling (DD) control sequences, we outline a frequency-tunable, narrowband sensor

capable of detecting coherent GW sources such as binary inspirals and mergers of black holes and

neutron stars. Furthermore, the tunability of the DD sequences allow for the continuous observation

of such sources, bridging the gap between space-based detectors such as Laser Interferometer Space

Antenna (LISA) and ground-based detectors.

Another important area of research in astrophysics is the search for habitable exoplanets. However,

radial velocity (RV) searches for Earth-mass exoplanets in the habitable zone around Sun-like stars

are limited by the effects of stellar variability on the host star. In particular, suppression of convec-

tive blueshift and brightness inhomogeneities due to photospheric faculae/plage and starspots are

the dominant contribution to the variability of such stellar RVs. Gaussian process (GP) regression is

a powerful tool for modeling these quasi-periodic variations. We investigate the limits of this tech-

nique using 800 days of RVs from the solar telescope on the HARPS-N spectrograph. These data
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provide a well-sampled time series of stellar RV variations. Into this data set, we inject Keplerian

signals with periods between 100 and 500 days and amplitudes between 0.6 and 2.4 m s−1. We use

GP regression to fit the resulting RVs and determine the statistical significance of recovered periods

and amplitudes. We then generate synthetic RVs with the same covariance properties as the solar

data to determine a lower bound on the observational baseline necessary to detect low-mass planets

in Venus-like orbits around a Sun-like star. Our simulations show that discovering such planets us-

ing current-generation spectrographs and GP regression will require more than 12 years of densely

sampled RV observations. Furthermore, even with a perfect model of stellar variability, discovering

a true exo-Venus with current instruments would take over 15 years. Therefore, next-generation

spectrographs and better models of stellar variability are required for detection of such planets.

Because the Sun is not a point source, corrections must be made to the solar telescope RVs that are

not necessary for normal exoplanet searches. One such correction is the differential extinction that

the top and bottom halves of the Sun experience as they traverse through the Earth’s atmosphere.

As the top half of the Sun will traverse less of the atmosphere than the bottom half, it will experience

less atmospheric scattering and absorption and thus will appear brighter relative to the bottom

half. In addition, the rotation axis of the Sun is in general not ideally aligned and consequently

the red shifted hemisphere will experience a different amount of extinction than the blue shifted

hemisphere, resulting in a systematic RV shift that needs correction. We derive here the correction

needed as a function of wavelength and fit this expression to the solar telescope RV data. We

show that insufficient SNR exists to make a wavelength dependent correction. Thus we derive the

wavelength independent differential atmospheric extinction correction used in the GP regression

analysis described above.

Finally, we demonstrate the usefulness of statistical modeling in the world of precision measurements

using quantum defects in diamond. The field of integrated circuit (IC) security is interested in non-

invasive measurements of IC functionality. We employ the use of substitutional nitrogen-vacancy

(NV) defects in the diamond crystal lattice as a high sensitivity, high spatial resolution magnetic

field imager. This quantum diamond microscope (QDM) measures the magnetic fields emanating

from IC circuit activity and produces a high resolution magnetic field image over a wide field of
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view (4 by 4 mm). The device under test is chosen as a Xylinx, Artix-7 field programmable gate

array (FPGA), which is programmed to activate a user-controlled number of ring oscillators (RO).

We take over 1000 magnetic field images of varying numbers of ROs, and use machine learning to

automatically predict the number of ROs active given the resulting images. We first use principal

component analysis (PCA) as a dimensionality reduction tool, reducing the 105 pixels to just 9

PCA scores. These scores are then fed into a support vector machine (SVM) classifier to predict

the number of ROs for each image. We report a prediction accuracy of 89% overall with perfect

prediction for large numbers of ROs. We repeat this process for an FPGA that has had the plastic

casing etched away in order to place the diamond as close to the silicon die as possible. We show

that the improved spatial resolution of the magnetic fields leads to perfect prediction accuracy for

even single ROs. These results suggest the use of QDMs and machine learning as a promising way

forward in the field IC security.
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Preface

With the development of modern computing power came an era of rapid development in both sci-

ence and technology. Computers can now perform calculations that would have taken years in mere

seconds, allowing innovative creations such as the self-driving car. Consequently, scientific modeling

of various phenomena can be accomplished analytically when feasible and statistically when infeasi-

ble. This work aims to demonstrate the important union of both analytical and statistical modeling

of precision measurements in fields ranging from astrophysics to AMO physics to quantum sensing.

chapter 1 discusses a proposal to use optical lattice atomic clocks as gravitational wave (GW)

detectors complimentary to future space-based interferometric detectors. Included is an analytical

derivation of the fractional frequency shift experienced by the atomic clocks as a GW passes by in

the transverse direction of an arm of two clocks on board two free falling satellites. chapter 2

introduces the radial velocity (RV) method of exoplanet detection and the statistical modeling

technique of Gaussian process (GP) regression. Synthetic planetary signals are introduced into real

RV data taken of the Sun, and GP regression is used to investigate the power of this technique to

discover habitable planets like Earth in other solar systems. These solar RVs require corrections

because the top half of the Sun experiences less scattering and absorption in the Earth’s atmosphere

than the bottom half. chapter 3 derives this correction analytically and is used to fit the solar

RV data. chapter 4 explores the use of another statistical model in the area of integrated

circuit (IC) security. Images of magnetic fields emanating from ICs, acquired with a quantum

diamond microscope (QDM), are used to classify various operating states of the IC using machine

learning techniques such as principal component analysis and support vector machines.

Together, the examples in this work show the power of various modeling techniques in multiple

fields of fundamental and applied science.
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1

Gravitational wave detection with optical lattice
atomic clocks

1.1 Introduction

The first direct detections of gravitational waves (GWs) by the Laser Interferometer Gravitational-

Wave Observatory (LIGO) [1, 2] heralds the dawn of a new era of astrophysics. The culmination of

a century-long search [1–10], GW detection is now emerging as a new tool with which to study the

universe, illuminating previously invisible astrophysical phenomena. In parallel, the developments

of laser cooling and the laser frequency comb have given rise to optical atomic clocks with accuracies

and stabilities at the 10−18 level [11–15]. As clock precision continues to improve, there is growing

interest in the prospect of using optical atomic clocks for GW detection [10, 16, 17]. We outline a

proposal for a new GW detector based on Doppler shift measurements between two spacecraft con-

taining optical lattice atomic clocks linked over a single optical baseline. This detector offers broad

tunability of narrowband sensitivity in the mHz - Hz frequency range. As GW astronomy matures,

such a detector can therefore serve as a different type of observatory for gravitational waves that can

be complementary to existing concepts, much like there are applications for both large and narrow

field-of-view telescopes in electromagnetic astronomy. We analyze the prospects for GW detection

and characterization using our clock based scheme. We highlight new and complementary GW
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measurement capabilities provided by space-based optical atomic clocks, and discuss the prospects

for integrating our scheme with existing proposals.

While there is little doubt that LIGO and other terrestrial detectors will observe numerous additional

GW events in the coming years, terrestrial detectors are only sensitive to GWs with frequencies above

∼10 Hz, due to seismic and Newtonian noise [1, 3, 18, 19]. The desire to observe a wider range of

astrophysical phenomena over longer length and time scales has motivated proposals of larger scale,

space-based GW detectors [16–23]. There are a wide variety of existing and proposed techniques

[1–10, 24], all of which rely on the same GW effect, namely the periodic change in proper distance

between two points in space [25]. This effect results in modulation of the arrival times of photons

sent over an electromagnetic baseline, which corresponds to effective changes in relative position and

velocity. The differences between the various techniques lie in the detection methods, the physical

quantity that is being locally measured, and the susceptibility to different noise sources, making

particular schemes better suited for specific GW frequency ranges.

The existing and proposed space-based GW detectors can be broadly classified in two categories.

The first are optical interferometric detectors analogous to LIGO in space, such as the proposed

Laser Interferometer Space Antenna (LISA) [18] and Evolved-LISA (eLISA) [19], which would be

composed of three spacecraft forming either a two or three arm Michelson interferometer, with

roughly equal length arms to reduce susceptibility to laser frequency noise. These GW detectors

rely on large photon fluxes to split the optical interference fringe down to the required sensitivities,

and detect signals in a broad frequency band determined by the detector arm length and residual

acceleration noise of the satellites [18, 19].

The second class of space-based GW detectors rely on stable internal frequency references, such as

Doppler tracking of distant spacecraft [7–10]. These detectors search for changes in the frequency of

electromagnetic waves due to effective Doppler shifts arising from passing GWs. Doppler tracking

of spacecraft has been successfully employed to set the existing limits on milliHertz gravitational

wave events [7–10]. Because the sensitivities of this class of detector are generally limited by the

stability of the frequency reference rather than the photon flux [10, 26], there is a clear motivation
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Figure 1.1: Proposed gravitational wave classified in two categories. The first are optical interfero-
metric detector (not to scale). Our detector consists of two identical drag-free satellites, A and B,
separated from each other by a distance d along the x-axis. Each satellite contains a free-floating
reference mass, an ultra-stable laser, and a strontium optical lattice clock. A mirror is mounted
on the free mass and is used to define the standing wave of light forming the optical lattice and
confining the Sr atoms. Some of the laser light from satellite A (orange, dashed line) is sent to
satellite B. The light first passes through an acousto-optic modulator (AOM) driven at frequency
fA, which offsets the frequency of the light reaching photodiode 2B in satellite B and enables the
phase locking of laser B to laser A through heterodyne detection. Vibrations and thermal drifts
of the optics on each satellite can be corrected locally by feeding back on the beat notes at 2fA,B
on photodiodes 1A,B. Light from laser B (blue, dotted line) is sent back to satellite A to verify
the phase lock, to maintain pointing stability, and to enable operation in the reverse mode, with
laser A locked to laser B. A plus-polarized gravitational wave propagating along the z-axis induces
relative motion between the two free masses (see section 1.3), which can be detected using a clock
comparison measurement protocol. The satellite configuration and orbit shown here is intended only
for illustration of the basic concepts of our detector. A more sophisticated orbital pattern could
be employed to increase the rate of rotation and sweep the detector pattern over a larger region.
Additional satellites and optical links could also be used for improved sensitivity and localization
of GW sources.
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to improve the internal frequency references used for GW detection through the adoption of atomic

physics techniques, such as either atomic interferometry (AI) [20–23], or optical lattice atomic clocks,

as described here.

A GW detector composed of two satellites carrying optical lattice atomic clocks and sharing a single

laser over an optical link can measure shifts in the rate of optical phase change by comparing the laser

frequency to an atomic degree of freedom on both ends of the baseline. Such a detector is therefore

similar to the Doppler tracking method of GW detection [7–10, 17], in that it is sensitive to changes in

the apparent relative velocities of the reference masses, rather than changes in the apparent relative

distance. An important advantage of the atomic clock scheme over other Doppler tracking methods

is that one has full control over the frequency references. As a result, synchronized measurement

sequences can be applied at both ends of the baseline to cancel laser frequency noise [21, 27–30]: thus

the atomic clock technique requires only two spacecraft, not three, and the differential measurement

is entirely limited by the internal atomic transition, not the stability of the local oscillator used to

probe it [10–15]. Furthermore, dynamical decoupling (DD) control sequences can be applied to the

internal states of the atoms [31, 32], extending the range of GW frequencies to which the detector

can be maximally sensitive, from milliHertz to tens of Hertz, without requiring any physical changes

to the detector. This key feature provides a tunable, narrowband GW detector for tracking evolving

GW sources such as inspiraling black hole or neutron star binaries, and bridging the spectral gap

between space-borne and terrestrial optical interferometric GW detectors [1–3, 18, 19].

Due to the Doppler-based measurement scheme and high quality factor of atomic clock transi-

tions, the optical power requirements on the link between satellites differ from those of optical

interferometer GW detectors, as discussed below. In addition, quantum techniques such as atomic

spin-squeezing and entangled states [33–35] offer the potential for future improvements in sensitiv-

ity, detection bandwidth, and spectral range. Finally, because optical atomic clocks are currently

the most accurate frequency references [11–15], and can provide improved sensitivity to beyond-

Standard-Model phenomena that may couple to atomic properties such as mass, charge, and spin

[36–39], there is already considerable motivation to develop space-hardy optical clocks, and to inte-

grate them with other proposed GW detectors.
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1.2 Sensing gravitational waves using optical lattice atomic clocks

Our proposed GW detector, illustrated in Fig. 1.1, consists of two drag-free satellites in heliocentric

orbit (A and B), separated by a length d and connected over a single optical link using conventional

optical telescopes. Each satellite contains its own optical lattice atomic clock [11–13, 40], and its

own ultra-stable laser [41]. The laser in satellite B is kept phase locked to the light sent from satellite

A over the optical link, such that the two lasers function as a single ultra-stable clock laser shared

between the two satellites. In each satellite the lattice confining the clock atoms is created using the

standing wave formed by retro-reflecting a magic wavelength laser [11–13] off of a mirror mounted

on a free-floating reference mass, such that the atoms are strongly confined in the reference frame

of the free mass and are therefore in free-fall, despite their confinement. Drag-free masses have

been studied in great detail by the LISA collaboration, and this technology is currently undergoing

testing and verification in the LISA Pathfinder space mission [42, 43]. The phase of the clock lasers

in each satellite is kept referenced to the same mirror using interferometry [44] to cancel out any

relative motion of the lasers or optics with respect to the atoms. To cancel the radiation pressure

exerted on the free mass by the lattice and clock beams, a set of equal power, counter-propagating

lasers are incident on the opposite sides of the free masses. For a 1 kg mass and a 1 W lattice beam,

the remaining acceleration noise from the quantum radiation pressure shot noise of the lattice, clock,

and compensation beams is far below the GW detector noise floor at frequencies of interest [45].

Operation of the GW detector consists of a synchronous comparison between the two optical lattice

atomic clocks. The frequency of laser A is compared to the clock transition in the atoms in satellite A

using spectroscopic read-out, such as Ramsey spectroscopy. Synchronization signals are transmitted

to satellite B, so that an identical measurement is performed on the atoms in satellite B using laser

B, which is phase locked to laser A. Both Ramsey measurements are performed with the same

interrogation time T . The Ramsey phases accumulated by the atoms in each satellite are recorded,

and can then be compared over a standard communication channel. Because the satellites effectively

share a single laser and the two measurements are offset by the time required for the laser light

to travel from A to B, any laser frequency noise will be common mode for the two measurements,
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resulting in the same additional acquired phase in each clock, and will thus be rejected. This

method of laser frequency noise rejection has been previously utilized in optical atomic clocks to

cancel laser noise arising from the Dick effect, and thereby achieve the quantum projection noise

limit [27, 28, 30]; it has also recently been proposed for use in AI-based GW detectors [21].

A passing plus-polarized GW of strain amplitude h and frequency fGW, propagating along the z-

axis perpendicular to the optical link between the satellites, will periodically change the apparent

distance between the free masses A and B, as measured by the null geodesic of the optical link. If the

light sent from satellite A to B is used as reference clock light, its frequency will experience a Doppler

shift that indicates the GW induced effective relative motion of the two satellites. Hence the atoms

in satellite B will experience a local oscillator of a different optical frequency than the atoms in

satellite A, and will accumulate a different Ramsey phase. When the two clocks are compared, they

will appear to have “ticked” at different rates, with the maximum fractional frequency difference

between the two clocks given by

s ≡ δν

ν
= h

∣∣∣∣sin(πfGW
d

c

)∣∣∣∣ , (1.1)

where c is the speed of light (see section 1.3 for derivation). Note that s = h for the optimal

clock spacing d = λGW/2, where λGW = c/fGW is the GW wavelength. When compared to an

optical interferometric GW detector such as LISA [18, 19], with total optimized arm length d,

the fractional frequency difference s between two optimally spaced clocks will be equivalent to

the fractional change in differential arm length experienced by the optical interferometer. At GW

frequencies other than the optimal frequency the magnitude of the detectable signal is determined

by the inherent sensitivity of the specific setup, as captured by the detector’s transfer function

T (f) [10, 46] and susceptibility to noise. The noise floor of optical interferometric detectors is

fundamentally limited by white phase noise arising from photon shot noise [19], while the noise

floor of the clock detector is dominated by white frequency noise arising from atom projection

noise [47]. This fundamental physical difference motivates the present consideration of the former

as a detector of changes in phase, and the latter as a detector of changes in frequency, so that

the detector transfer functions can be directly compared. We emphasize that while both types
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of detector can in principle express their measurement in terms of either phase or frequency, the

respective fundamental physical noise floors and signal to noise ratios will be unchanged.

The transfer function Tφ(f) for optical interferometric GW detectors such as LISA is frequency

independent for GW frequencies below c/2d, but scales as Tφ(f) ∝ 1/f2GW at higher frequencies

where the photon transit time is longer than a half period of the GW [18, 19]. Because the 1 mHz -

1 Hz frequency range is of primary interest for space-based detectors [18–21], Tφ(f) sets a maximum

arm length for an optical interferometer on the order of ∼ 1 × 109 meters. In contrast, because

the clock GW detector compares the local laser frequency at the two satellites and is thus only

sensitive to the effective relative velocity of the satellites, the transfer function Tν(f) of the clock

GW detector scales as Tν(f) ∝ f2GW × Tφ(f) due to the time derivative relating position (phase)

to velocity (frequency). Therefore, Tν(f) ∝ f2GW for fGW < c/2d, but is frequency independent at

higher frequencies[10]. We are interested in GW frequencies of ∼mHz and above, thus we propose a

clock GW detector with a baseline length d = 5× 1010 m, setting the minimum frequency that can

be detected at the detector’s peak sensitivity to be c/2d ≈ 3 mHz. Note that a LISA-like baseline

length of 5× 109 meters could be used for the clock GW detector without sacrificing sensitivity at

GW frequencies above ∼30 mHz.

1.3 Derivation of the effective Doppler shift induced by a passing

gravitational wave

A passing gravitational wave (GW) induces periodic changes in the light travel time between emitter

and detector. In this section we derive the magnitude of this effect as a function of the GW

amplitude, the orientation between the satellites and the direction of propagation of the GW, and

the distance between the clocks. Similar analyses have been performed for proposed detectors that

utilize Doppler tracking [48] and pulsar timing [6]. Our detection scheme involves only a one-way

link as in the case of pulsar timing, but with full experimental control on both sites for the emission

and detection of the signal.
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Figure 1.2: A GW incident along the z-axis periodically changes the light travel distance between A and
B.

Weak gravitational fields are captured by a perturbed metric gµν = ηµν + hµν , where ηµν is the

Minkowski metric and |hµν | � 1 is a small perturbation. GWs are described in the transverse

traceless gauge by the metric:

gµν =



−1 0 0 0

0 1 + h+ h× 0

0 h× 1− h+ 0

0 0 0 1


, (1.2)

where h+(t − z/c) and h×(t − z/c) correspond to the two polarizations of the wave, which travels

in the z-direction. For simplicity we first calculate the effect for a plus-polarized plane wave with

h = h+ = |h|e−i2πf(t−z/c), where f is the frequency of the wave and |h| its amplitude (arbitrary

polarizations are restored with the substitution |h| → |h+| cos(2ψ) + |h×| sin(2ψ), where ψ is the

polarization angle). The line element for this metric is then

ds2 = −c2dt2 + (1 + h)dx2 + (1− h)dy2 + dz2. (1.3)

We now consider the situation depicted in Fig. 1.2, where a light signal is sent at time t from system
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A to system B, which is at a distance d in the x− z-plane. A light-like curve is defined by ds2 = 0.

Parameterizing the curve by r with x = r sin θ, y = 0 and z = r cos θ, the coordinates for the curve

become (to lowest order in h):

cdt =

(
1 +

1

2
h sin2 θ

)
dr. (1.4)

As the signal is emitted at coordinate time t and travels from A to B in a time t1 = t + d/c to

lowest order in h, it travels an apparent distance

DAB = c

∫ t1

t
dt′ =

∫ d

0

(
1 +

1

2
h(1− cos2 θ)

)
dr, (1.5)

where the GW is parameterized by h = h(t+ r/c− r cos θ/c). In terms of the indefinite integral of

the wave, H(t), the above expression becomes

DAB = c(t1 − t) = d+
c

2
(1 + cos θ)

[
H(t)−H

(
t+

d

c
(1− cos θ)

)]
(1.6)

In flat space the distance traveled by the light would just be given by d, but the presence of the

GW periodically changes the apparent length of the light path. In Doppler tracking techniques, the

signal is reflected back to A and measured there. Here, instead, we consider measurement directly

on B. The rate of change gives a Doppler shift of the signal σ ≡ ḊAB/c = ∆ν/ν, where ν is the

optical frequency:

s =
∆ν

ν
=

1 + cos θ

2

[
h(t)− h

(
t+

d

c
(1− cos θ)

)]
. (1.7)

This apparent Doppler shift is the signal to be detected. The effect is maximized for θ = π/2, i.e.

for the detector aligned perpendicularly to the GW, while the signal disappears for θ = 0, i.e. in the

direction of propagation of the GW. Similarly to interferometric detection schemes, the frequency

shift is due to transversal motion of test bodies as the GW is passing.

From equation (1.7), we can see that when using a single shared local oscillator to compare two
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clocks positioned a distance d apart in the plane (θ = π/2) of a passing GW of amplitude |h|

and wavelength λGW = c/f , the clocks will appear to “tick” at different rates, with the maximum

fractional frequency difference between the two clocks given by

smax = |h|
∣∣∣∣sin(π d

λGW

)∣∣∣∣ . (1.8)

Note that the detector is insensitive to GWs with wavelengths that match a multiple of the baseline

d.

1.4 Outlook

In order to attain the highest possible sensitivity we consider a next generation strontium-87 optical

lattice clock, as this clock has the narrowest demonstrated clock transition linewidth [11, 47]. With

expected improvements to these clocks we may achieve a minimum detectable fractional frequency

difference of smin = 1.1 × 10−20/
√
Hz which is sufficient for detection of narrowband coherent

sources such as compact binary inspirals. In order to maintain sensitivity at high frequencies, we

can use a dynamical decoupling (DD) sequence consisting of a Ramsey sequence combine with a

series or periodic π-pulses matched to the frequency of the GW [31, 32]. This effectively yields a

narrowband detector of GW that is tunable from the mHz to 10s of Hz regime. We can use this

tunable detection band to follow inspiral GW as they chirp from the frequency band in which Lisa is

sensitive all the way through to where ground-based detectors, such as LIGO, are sensitive. Once an

on-going GW event has been detected, the spacing of the p-pulses in the DD detection sequence can

be chirped along with the signal to remain optimally sensitive to the particular event throughout its

evolution. Thus, atomic clock GW detectors can serve as a complementary detector to space-based

optical interferometry methods, possibly operating in parallel to a space-based interferometer such

as LISA.
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2

Detection limits of low-mass, long-period
exoplanets using Gaussian processes and the

HARPS-N solar telescope

2.1 Introduction

State-of-the-art radial velocity (RV) searches for low-mass, long-period exoplanets are limited by

signals produced by stellar magnetic variability. An Earth-like or Venus-like planet in orbit around

a Sun-like star in its habitable zone induces a reflex RV signal on the order of 10 cm s−1. However,

the presence of acoustic oscillations, magnetoconvection, large-scale magnetic structures, and other

stellar processes induce RV perturbations that can exceed 1 m s−1 (see [49, 50] and references

therein). This stellar variability can conceal and even mimic planetary signals in RV surveys, and

has resulted in many false detections (e.g., the disproval of CoRoT-7d, [51]; GJ 581d and g, [52];

Alpha Centauri Bb, [53]). Furthermore, these stellar processes act on timescales between minutes

and months [54, 55]. For Sun-like stars, the dominant contributions to these intrinsically driven

RV perturbations are from the suppression of convective blueshift and brightness inhomogeneities

modulated at the rotation period [56, 57]. The wide range of timescales and non-trivial correlations

between these processes require a sophisticated statistical framework to decouple stellar activity

processes from planetary signals. [58] and [59] study these effects by recovering injected planets of
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known properties into real data.

We use state-of-the-art Gaussian process (GP) regression to account for the temporal correlations

of rotationally-modulated stellar activity [60, 61]. This GP regression is trained on solar data, as

measured by a purpose-built solar telescope feeding the HARPS-N spectrograph [62] operating at

the Telescopio Nazionale Galileo (TNG) in the Canary Islands [63, 64]. In section 2.2, we first

present the solar data and the GP regression along with the resulting fit on the daily-averaged solar

RVs. In section 2.3, we introduce synthetic planets of varying semi-amplitude and orbital period in

order to determine the sensitivity of the GP regression to temperate, low-mass planet searches. We

conclude in section 2.4 with an analysis of the baseline of RV observations and model assumptions

that are necessary for a true exo-Earth detection.

2.2 Methods

2.2.1 Data

We take 5 minute disk averaged exposures of the Sun using the solar telescope and the HARPS-

N spectrograph at the TNG, and use a baseline of around 800 days of near-continuous, daytime,

solar spectra [63, 64]. For each exposure, the HARPS-N Data Reduction Software (DRS) [65, 66]

computes the barycenter-corrected RV with 40 cm s−1 single exposure precision and the Mt. Wilson

S index [67], a measure of stellar magnetic activity derived from chromospheric re-emission in the

core of the singly-ionized Ca H and K line cores [68]. The resulting RVs are further reduced, as

described in [69], to remove the RV signatures of the solar system planets, effects of differential

extinction across the solar disk in the Earth’s atmosphere (see chapter 3), and other systematic

effects due to the Earth’s orbit around the Sun. To mimic the sampling of a typical stellar observing

schedule while preserving the exquisite signal-to-noise ratio (SNR) of the solar telescope [64], we

compute daily averaged values of each quantity including the RVs, the S index, and the corresponding

mean Julian date. While realistic stellar observing schedules would not allow for this level of

12



57200 57400 57600 57800 58000
MJD (days)

0.160

0.162

0.164

0.166

0.168
S 

in
de

x
Measured S index (s)
GP fit

-0.004 0 0.004
S index

0

1000

2000

3000

De
ns

ity

s S

Residuals

57200 57400 57600 57800 58000
MJD (days)

100

103

106

109

112

RV
 (m

 s
1 )

Measured RV (r)
GP Fit

5 0 5 10
RV (m s 1)

0.0

0.1

0.2

0.3

De
ns

ity
 (m

 s
1 )

1 r RV

Residuals

(a) (b)

(c) (d)

Figure 2.1: GP regression fits to ∼ 800 days of solar S index and RV data from the solar telescope
and HARPS-N. (a) S index (blue) and GP regression fit (orange). (b) Histogram of mean-subtracted
S index values (blue) and histogram of the residuals of the GP regression fit (red). (c) Daily average
RVs (blue) and GP regression fit (orange). The mean value represents the HARPS-N instrumental
offset and carries no physical meaning. (d) Histogram of mean-subtracted RVs (blue) and histogram
of the residuals of the GP regression fit (red). The RMS variation is reduced from 1.65 m s−1 to
1.14 m s−1. The relative size of the white noise compared to the correlated noise is higher in the
RVs than in the S index, emphasizing the need for a more sophisticated model to account for RV
variation.

averaging, which integrates over variability on the minutes and hours timescale, we wish to assess

the best-case scenario using an ultra-high SNR dataset.

2.2.2 Gaussian process kernel

Magnetic variability can be the dominant source of variance for stellar RVs of nearby, bright Sun-like

and low-mass stars, reaching levels surpassing 1 m s−1 [70, 71]. Intrinsic stellar variability introduces

correlations into the RV time series that are difficult to model deterministically. GP regressions have

emerged as a powerful statistical technique that relaxes the assumption of uncorrelated noise by

adding nonzero terms to the off diagonal of the data covariance matrix. Usually a kernel function is
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Figure 2.2: Marginalized distributions of the posterior distribution given by the MCMC samples.
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chosen to describe these covariances as a function of measurement separation time [51, 61, 72–74].

Since magnetic activity is well described by the S index and is modulated at the rotation period of

the star, we fit the S index to a GP with a quasi periodic (QP) covariance kernel function, kQP.

This kernel function is chosen heuristically to model the known properties of the magnetic activity,

yielding the correlation between two measurements at times ti and tj given by

kQP(ti, tj) = exp

(
−(ti − tj)2

2τ2
− 1

2η2
sin2

(
π(ti − tj)
Prot

))
(2.1)

where τ is related to the average lifetime of active regions on the Sun, η is related to the average

distribution of activity in the photosphere of the Sun, and Prot is approximately the synodic rotation

period of the Sun. [75] show this kernel function performs the best among three common GP kernel

functions. The GP regression also includes a white noise (WN) term to account for additional

uncorrelated noise sources such as instrumental effects. Amplitudes of both the correlated and

uncorrelated terms are allowed to vary, leading to a covariance matrix, KS, with components

KSij = σ2QP,SkQP(ti, tj) + σ2WN,SIij (2.2)

where σQP,S and σWN,S are the two amplitudes, and I is the identity matrix.

2.2.3 Fitting the S index

With a single, time-independent parameter representing the mean value of the S index, µS, the set

of fit parameters contains six variables:

θS = {µS, σQP,S, σWN,S, τ, η, Prot} (2.3)

and the GP likelihood function [72] is given by

L (θS|s, t) =
1√

det (2πKS)
exp

(
−1

2
∆sTK−1S ∆s

)
(2.4)
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where ∆s = s− µS and s is a vector containing the daily averaged S index at times t for all the S

index values shown in Fig. 2.1a. Each parameter is assigned a uniform prior probability with upper

and lower bounds encompassing realistic values, shown in Table 2.1. The posterior probability

distribution, pS (θS|s, t), is then proportional to L (θS|s, t) within the prior bounds and 0 otherwise.

We estimate the posterior distribution using an affine-invariant Markov chain Monte Carlo (MCMC)

method, implemented with the Python [76] packages NumPy [77], SciPy [78], emcee [79], and george

[80]. Following [79] 32 walkers are used to sample the parameter space, and are initialized with a

normal distribution around mean values from a maximum likelihood fit and known properties of the

Sun. These values are summarized in Table 2.1. The first 100 samples are discarded allowing the

walkers to converge to the posterior distribution before evaluating an additional 50,000 samples per

walker. To remove correlations between samples, they are thinned by keeping one out of every nS

samples for each walker, where nS = 21 is the average correlation length of the walkers as estimated

by the autocorrelation. This yields a total of 76,032 uncorrelated samples for each parameter.

The resulting parameter estimates, θ̂S, are displayed in the last column of Table 2.1 as the median

value of these uncorrelated samples. The error bars are reported as the 16% and 84% quantiles. The

values obtained are consistent with known solar properties. Of note is the active region lifetime,

τ , which is less than one rotation period despite lifetimes of photospheric faculae typically being

greater than six rotation periods. Variability of the distribution of faculae on the solar surface

is expected to drive this value down below the lifespan of an individual facular region. The GP

regression fit to the S index and a histogram of the residuals are shown in Fig. 2.1a,b. The variances

and covariances of the MCMC samples are shown graphically in the bottom left half of Fig. 2.2.

The largest correlations are the (η, σQP,S) and (η, σWN,S) pairs with statistically significant Pearson

correlation coefficients [81] of 0.49 and 0.42 respectively. This could indicate an unaccounted for

spatial dependence in the magnetic activity. Furthermore, significant correlations exist in the (η, τ)

and (η, Prot) pairs, potentially reflecting the migration of active regions from higher latitudes (and

thus longer rotation period) to lower latitudes (and thus shorter rotation period) over the 2.2 years

of data. Additionally, σQP,S increases slightly with τ , lending further evidence to a time dependence

in the fit parameters as τ will be longer for the on average larger, longer-lived active regions earlier
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in the solar magnetic cycle. These correlations suggest a more sophisticated model may more closely

represent the physical mechanisms in the photosphere of the Sun and thus capture more of the RV

variation due to activity. Further investigation of these correlations are left to future study.

2.2.4 Fitting the RVs

We assume that the magnetic activity driving the S index also affects the observed RVs with equiv-

alent correlated variability and thus may be described with equal GP regression parameters: τ , η,

and Prot. Unlike [73] who fit the S index and RVs simultaneously, we model the S index and RVs

consecutively. We fit the RVs using the same quasiperiodic kernel function of equation (2.1) with

the spot lifetime, τ , spot distribution, η, and the rotation period Prot fixed at the median value

from the S index fit. Because the effects of solar system planets have already been removed from

the RVs, we are left with only three fit parameters:

θRV = {µRV, σQP,RV, σWN,RV} (2.5)

and the likelihood function becomes

L (θRV|r, t) =
1√

det (2πKRV)
exp

(
−1

2
∆rTK−1RV∆r

)
(2.6)

where ∆r = r − µRV, r is a vector of the RVs at times t and KRV is populated with θRV by

substituting all ‘S’ subscripts with ‘R’ in equation (2.2). Priors are shown in Table 2.1.

The posterior probability, pRV (θRV|r, t), is proportional to the likelihood function within the bounds

of the prior and 0 otherwise. It is sampled using the same MCMC protocol as with the S index and

we observe a correlation length of nRV = 11. Retaining one of every nRV samples leads to a total

of 145,312 uncorrelated samples. The parameter estimates, θ̂RV, are summarized in Table 2.1 and

the resulting GP regression fit and residuals are shown in Fig. 2.1. The fit reduces the RMS scatter

in the data from 1.65 m s−1 to 1.14 m s−1, consistent with [82], [83], and other solar analyses (see
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Figure 2.3: Sensitivity maps of the recovered (a) semi-amplitude, Kpl, and (b) orbital period, Porb,
of synthesized planets using the GP regression with synthetic planetary signals injected into the 800
days of solar RVs. Color bars show the statistical significance (SS) of the recovered parameters as
defined in equation (2.11). The white lines in (a) show contours of 2σ, 3σ, . . . statistical significance
and the white lines in (b) show contours of 5σ, 10σ, 20σ, 30σ, and 50σ statistical significance. Each
“pixel” in either image represents one of the 210 simulated planets. The orbital period is generally
recovered with a high degree of confidence but the semi-amplitude is only recovered at the 5σ level
for planets with semi-amplitude above 1 m s−1.

section 2.5). The marginalized distributions are shown in Fig. 2.2 and again display a well behaved

posterior distribution. The only significant correlation exists between σQP,RV and σWN,RV and is

negative, which is expected as these parameters will trade off the amount of variation seen in the

RVs.

2.3 Sensitivity map

2.3.1 Synthetic planet model

To explore the limits of our GP regression for detecting low-mass, long-period exoplanets, we inject

synthetic planets with varying Keplerian parameters into the solar RVs. The general Doppler

induced radial velocity, vRV(t), of a host star by a companion planet is given by

vRV(t) = Kpl [cos(ω + ν(t|tp, Porb, e)) + e cos(ω)] (2.7)
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where Kpl is the semi-amplitude, ω is the argument of periastron, e is the eccentricity, tp is the time

of pericenter passage, Porb is the orbital period, and ν(t|tp, Porb, e) is the true anomaly [84]. As a

best case scenario, we restrict ourselves to circular orbits (i.e., e = 0), which simplifies the Doppler

shift to the sine function

vRV(t) = Kpl sin

(
2πt

Porb
+ φ

)
(2.8)

where φ is an arbitrary phase. A synthetic planet is then generated by choosing values for the semi-

amplitude, orbital period, and phase followed by adding vRV(t) to the vector of measured solar RVs,

r, observed at times t. The vector of RVs thus undergoes the transformation

r→ r + vRV(t). (2.9)

The GP regression now contains a mean function given by the addition of the overall mean value

of the RVs, µRV, along with the Keplerian parameters required to describe the injected circular

planetary orbit:

θRV = {Kpl, Porb, φ, µRV, σQP,RV, σWN,RV} (2.10)

and the likelihood function is still given by (2.6), with the exception that the vector of fit residuals

becomes ∆r = r − (µRV + vRV(t)) with t the vector of observation times and vRV the function

defined in Eq. 2.8.

2.3.2 Retrieval of injected signals

Using the techniques of the previous section, we construct a map of detection sensitivities for a

range of synthetic, low-mass, long-period planets. Our grid contains 210 injected planets with

semi-amplitudes from 0.6 m s−1 to 2.4 m s−1 in 0.2 m s−1 steps and orbital periods from 100

days to 500 days in 20 day steps. The phase of each planet is drawn from a uniform distribution,

φ ∼ U(−0.1, 0.1) radians, and the prior on the phase is uniform from −π to π radians. This is done

to avoid numerical instabilities associated with the phase occurring near the boundary of the prior.

The prior on the semi-amplitude allows only positive values less than 10 m s−1 and the prior on the
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orbital period is in the range (12Porb, 2Porb). For planets detected with a high degree of statistical

significance, the priors are uninformative and do not affect the results. However, for the lowest mass

planets with 1σ detections or less, the priors do constrain the results as described below. These

planets set the lower bound on the range of injected semi-amplitudes used in this analysis.

We draw MCMC samples, exploring the semi-amplitude and orbital period linearly, in the same

fashion as the previous section with the non-Keplerian parameter priors unchanged. We again

define the parameter estimates, θ̂RV, as the median value of the uncorrelated samples and the

corresponding lower and upper bounds, θ̂R, lower and θ̂R, upper, as the 16% and 84% quantiles. The

statistical significance, SSi, is defined as

SSi =

∣∣∣θ̂i∣∣∣
1
2

(
θ̂i, upper − θ̂i, lower

) (2.11)

where θi is a given parameter from the vector defined in Eq. (2.10). We plot the statistical

significance of the recovered orbital period and semi-amplitude of the 210 synthetic planets in

Fig. 2.3. The orbital period is determined with a high degree of statistical significance, though for

semi-amplitudes below 1 m s−1 this should be taken as an upper bound as the MCMC samples begin

to encounter the edges of the uniform prior. The semi-amplitude, however, is much less certain.

For a 5σ “discovery” threshold, planets with a semi-amplitude less than 1 m s−1 would require

more observations than the 800 days of solar telescope data used in this analysis. The structure of

the contours in Fig. 2.3(a) is likely due to our non-continuous observing schedule. In particular,

[85] find that activity-driven signals at orbital periods unrelated to either planetary orbital periods

or the stellar rotation period can arise from uneven sampling. Thus even the near-daily, long-

baseline observing schedule of the solar telescope decreases the semi-amplitude sensitivity [58]. We

find agreement within parameter uncertainties between the injected and extracted orbital periods

and semi-amplitudes, suggesting no systematic effects induced by the GP regression. In the next

section we explore the baseline of observations required to detect sub-m s−1 planets using completely

synthetic RVs.
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Figure 2.4: Generating synthetic RVs based on historical solar telescope observations. (a) Seasonal
variation of solar telescope and synthetic observations. Red histogram shows the fraction of days
with at least ten 5 minute exposures for 12 evenly spaced sections of a year (does not correspond
to calendar months). Blue histogram shows the analogous ratio of seasonal observations from dates
synthesized from the red histogram. (b) Histogram of RV observation times given as a fraction of a
day since noon UTC: blue - all 5 min solar telescope exposures, orange - daily averaged observation
times for days with at least ten 5 minute exposures, green - synthesized observation times using a
Gaussian kernel density estimate. (c) Statistical significance (SS), defined in equation (2.11), of the
recovered semi-amplitude, Kpl, using a GP regression for an “exo-Venus” (225 day orbital period)
as a function of baseline of data. Solid (circles) and dashed (triangles) curves show the SS for an
“exo-Venus” with semi-amplitudes of 1.0 m s−1 and 0.5 m s−1 respectively. Dashed-dotted (squares)
curve shows an upper bound for a semi-amplitude of 0.1 m s−1. Dashed grey line shows the 5σ
detection threshold. (d) SS for a 0.1 m s−1 “exo-Venus” with stellar variability perfectly removed
(i.e., only white noise). Solid and dashed curves show the SS for white noise amplitudes of 0.2 m s−1

and 0.8 m s−1 respectively. Error bars are shown as vertical lines and are too small to be seen for
baselines less than 15 years. Again, dashed grey line shows the 5σ detection threshold.
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2.4 Synthetic RVs

To study longer observing baselines than in the previous section, we synthesize not only Keple-

rian Doppler shifts, but also the solar RVs themselves. We thus extend the observing baseline to

determine the requirements for detecting a low-mass, long-period analog. A synthetic planet with

the orbital period of Venus (225 days) is injected with varying semi-amplitude. We use the orbital

period of Venus to avoid systematic biases associated with measuring any periodic signal at 365

days.

2.4.1 Observing schedule

The first step to synthesizing solar telescope data is to create a realistic observing schedule to

account for bad weather and telescope downtime. We assume a naive model where each calendar

month, m, is assigned an observation probability, pobs(m), which represents the fraction of days that

have observations in month m. These probabilities are estimated using historical solar telescope

data with the corresponding fraction of days with 10 or more observations. These probabilities are

shown in red in Fig. 2.4a.

For any given day d in month m, a uniform random number, r(d) ∼ U(0, 1), is drawn and compared

to pobs(m). If r(d) ≤ pobs(m), an observation occurs. This process is repeated for as many consecu-

tive days as needed. Using this process, we create a synthetic 30 year observing schedule mimicking

the solar telescope seasonal variations. The resulting synthetic observing schedule is shown in blue

in Fig. 2.4a.

2.4.2 Observation times

The second step for simulating data is to generate an observation time for each day with an ob-

servation. We begin by computing the mean observation time of all exposures in each day from
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historical solar telescope data, limiting only to days with at least 10 exposures. This distribution

of mean observation times is histogrammed and fit to a Gaussian kernel density estimate (KDE)

[86]. Synthetic observation times are drawn from this KDE. Fig. 2.4b shows the distribution of

mean telescope exposure times and the resulting observation times drawn from the KDE. These

observation times coupled with the observing days from the previous section completely determine

the observing schedule of the simulated data.

2.4.3 Synthesized RVs

Finally we synthesize the solar telescope RVs using a GP with the same kernel function given in

equation (2.2). The parameter values used to populate the covariance matrix are taken from the

GP regression fit of the solar data as given in Table 2.1. A random sample of RVs is then drawn

from the GP using these parameter values and the synthetic observation times generated in the

previous section. Because the solar telescope RVs only cover a fraction of the solar magnetic cycle

during solar minimum, we do not model this effect and thus the resulting synthetic RVs represent a

best case scenario for this model. Additionally, a Keplerian term given by equation (2.8) is added

with several test semi-amplitudes, an orbital period of 225 days, and a phase drawn randomly in

the interval (−0.1, 0.1) radians.

We then draw MCMC samples (see appendix A) and define the parameter estimates and lower and

upper bounds as before to determine the statistical significance of the recovered semi-amplitude for

baselines of data equal to 2, 4, 8, 16, and 24 years. We repeat this process for semi-amplitudes given

by 1, 0.5, and 0.1 m s−1. The resulting statistical significances are shown in Fig. 2.4c. The dashed-

dotted curve representing the 0.1 m s−1 planet represents an upper bound, with the prior probability

distribution on the semi-amplitude restricting its value to be positive. Even for a 0.5 m s−1 planet,

we determine that between 10 and 15 years of data are needed to reach the 5σ discovery threshold

using this GP regression and data similar to that of the HARPS-N solar telescope.

As shown above, a multi-decade temporal baseline is required to detect a temperate, low-mass
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planet orbiting a Sun-like star using this GP regression. Thus we next assume that we have a direct

measure of the magnetic variability of the target star and are able to perfectly remove the effects

of variability from the RVs, leaving only the planetary signals and white noise. We can then fit to

a sine curve with simple least squares methods. We expect the semi-amplitude uncertainty, σKpl ,

to scale with the measurement sensitivity, σRV, divided by the square-root of the number of RV

measurements, N [87]:

σK = σRV

√
2

N
. (2.12)

To confirm this scaling, we synthesize RV time series comprising simple white noise and a Keplerian

Doppler shift of Kpl = 10 cm s−1 for an injected planet with an orbital period of 225 days (i.e., an

exo-Venus). We generate this data for varying baselines and white noise levels of both 0.8 m s−1

and 0.2 m s−1. The statistical significance of the semi-amplitude, Kpl, from least squares fits to

these data sets are shown in Fig. 2.4d and are in good agreement with expectations set by Eq. 2.12.

We emphasize that we need to reduce the white noise to levels approaching 0.2 m s−1 to reach the

5σ detection threshold in only a few years for a true exo-Venus.

2.5 Discussion and outlook

The GP regression of Sec. 2.2 reduces the RMS variation of the solar RVs from 1.65 m s−1 to 1.14

m s−1. However, treating stellar variability with this GP regression still requires 10 to 15 years

of densely sampled RV observations to detect long-period, low-mass planets. This is much longer

than would be expected if the RVs contained purely uncorrelated white noise. This result is in line

with more physically-motivated techniques. For example, [82] used magnetograms and dopplergrams

from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO)

to derive activity-driven RV time series. By modeling the HARPS-N RVs using these activity time

series, they reduced the RV RMS from 1.65 m s−1 to 1.21 m s−1. [59] reduced the RV RMS to 0.85

m s−1 by modeling the RVs with a linear combination of the unsigned magnetic flux from HMI and

the total solar irradiance, using the FF ′ method [88]. Fitting our GP regression to the unsigned flux

may yield a smaller variation in the RV residuals, and this will be investigated in a future work. [89]

25



and [90] used logistic regression and gradient boosting on HARPS-N solar spectra to differentiate

activity sensitive and insensitive lines. Computing RVs from these sets of lines reduced the RV RMS

to 0.9 m s−1. Similarly, [83] applied the techniques of [91] to the HARPS-N solar RVs to estimate

magnetoconvective RV variations. This analysis, however, was unable to reduce the observed RMS

RVs.

That the GP regression — a statistical tool — performs similarly to these more physically-motivated

analyses demonstrates its power: rather than requiring high-resolution solar images or specially

tuned line lists, the GP regression assumes a correlation between the solar S index and observed

RVs. However, the fact that the GP analysis and these physically-motivated techniques arrive at the

same approximately 1 m s−1 RV uncertainty level indicates that something else — either another

physical process operating on a different timescale or an instrumental systematic — is limiting the

performance of these techniques. [59] discuss some physical effects missing from the current models,

to be addressed in future work. However for current data analysis models, the solar dataset used in

this work, with nearly 2.5 years of near-daily observations mostly in the decline phase of Cycle 24,

represents a best-case scenario; we can therefore only perform 5σ recoveries of long-period planets

with semi-amplitudes greater than 1 m s−1, consistent with the results of the recent community-wide

RV challenge of [60].

Our work using synthetic RVs indicates that more observations will not quickly overcome this limit:

As shown in Fig. 2.4, it will take 10-15 years to get 5σ on a 0.5 m s−1 RV signal with a 225 day

period (i.e., the orbital period of Venus), and at least 25 years for a 0.1 m s−1 RV signal. The last

panel of this figure also indicates that a perfect model of activity-driven correlated variations would

not in itself suffice for the rapid detection of an exo-Venus or an exo-Earth: even in the absence of

correlated noise, a current-generation spectrograph with a long term stability of about 0.8 m s−1

would need a 10-15 year observing baseline to reach a 5σ detection of an exo-Earth. Successful

exo-Earth discovery therefore requires both more sophisticated models of stellar variability and the

improved RV precision, long term stability, and dense observational sampling from a next-generation

spectrograph [92] such as ESPRESSO [93], NEID [94], EXPRES [95], HARPS3 [96], or G-CLEF [97]

on the GMT.
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In addition to applications in exoplanet searches, GPs are employed in many areas of astrophysics.

Notably the same GP model discussed in this chapter is employed in a proposal to map the local

galactic dark matter density by measuring the RV of a cluster of stars and comparing the radial

galactic acceleration to that of the Sun. Differences in acceleration that deviate from a model

excluding dark matter can help probe the distribution of dark matter in the Milky Way. Details

are provided in appendix B.
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3

Solar atmospheric differential extinction
corrections

3.1 Introduction

Over the course of a day, the sun will experience systematic RV shifts of about ∼1 m/s due to the

top and bottom of the solar disk experiencing different paths through the atmosphere. Furthermore,

because the top half and bottom half of the solar disk will have different redshifts due to the rotation

of the sun, we also expect to see a wavelength dependent differential atmospheric extinction. We

anticipate this effect could be as much as another 10 cm/s on top of the 1 m/s. This effect is thus

relevant to our ongoing search for noise sources in the solar RV data.

The amount of atmosphere a photon traverses is called airmass, labeled A. We define A = 1 as the

amount of atmosphere traversed from sea level straight up through the zenith to infinity. Thus in

general, an observer at sea level will see a celestial body with an airmass A ≥ 1. Note this means

an observer above sea level could observe a celestial body with A < 1.

As the photons traverse the atmosphere, they will be scattered and absorbed by the atmosphere. It

follows that a given object will be dimmer at greater airmass. An object will experience a dimming
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given by ∆m = mf − mi = k(λ)A where mi is the magnitude of the object in space above the

atmosphere, mf is the observed magnitude, and k(λ) is the extinction coefficient in magnitudes per

airmass. The extinction coefficient is a parameter that depends on the properties of the atmosphere

and the wavelength of the light.

We can see now the origin of atmospheric extinction. The top half of the solar disk will experience

a smaller airmass than the bottom half and thus will appear brighter. Unless the rotation axis of

the sun is aligned perfectly in the plane of the sky (which in general it will not), the rotation of the

sun will lead to a differential RV shift between the top and bottom halves of the solar disk. Given

normal observing conditions, this can lead to an RV shift up to ~ 1 m/s, which will need to be

corrected for.

The current correction procedure assumes k(λ) = k0. In other words, the wavelength dependence of

the extinction coefficient is not accounted for. The goal here is to study the wavelength dependence

of the extinction coefficient to determine the size of this effect and whether or not it needs to be

corrected for. If the RV shift is large enough, we can modify the current extinction correction

procedure to include a correction for this effect.

[98] shows that for observations in the optical and nearby wavelengths, there are three main contri-

butions to the wavelength dependence of the extinction coefficient:

1. Rayleigh scattering: this is well understood and modeled. (1/λ4 dependence)

2. Absorption from Ozone and Water: water is mostly irrelevant for the HARPS-N observation

band, but there is a significant ozone absorption band centered around 600 nm.

3. Aerosol scattering: this includes scattering off dust, salt, etc. This is the trickiest one to model

and varies wildly from night to night.

Ch. 6, Sc. 56 of [99] gives an estimate of each of each effect at various wavelengths. The result is

summarized in Fig. 3.1:
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Figure 3.1: Wavelength dependent extinction coefficient in the visible for various sources at sea
level (left) and at the same altitude as the TNG (right).

The Rayleigh and Aerosol scattering terms are reduced at the TNG because this site is almost

3km above sea level and thus the photons traverse a thinner atmosphere on average. The Ozone

absorption remains unchanged because the majority of the ozone is contained between 10 and 35

km above sea level, far above the TNG. This gives us an idea of what we should expect to see when

we measure the extinction coefficient at various wavelengths.

3.2 Derivation of differential extinction

3.2.1 Limb darkening

Let us begin assuming no atmospheric extinction. An effect called limb darkening causes the light

from the solar disk to appear dimmer as you move radially outward toward the edge (or limb) of

the disk. This arises from the fact that photons near the limb of the disk are emitted higher in the

photosphere of the sun where the temperature is cooler.
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Figure 3.2: Limb darkening diagram. Earth is in the direction of the arrow point away from A.
Credit: wikipedia

If the mean free path of photons in the photosphere is L, then on average photons that reach the

earth will have been emitted from this depth in the photosphere. Shown in Fig. 3.2, photons near

the edge of the disk as viewed from Earth must have been emitted higher in the photosphere. It is

cooler in the upper photosphere and thus the intensity will decrease due to blackbody radiation.

There are several models to describe this effect, but due to the complicated nature of the solar

photosphere, astronomers usually use a one parameter model that works sufficiently well:

I(r)/I0 = 1− u+ u
√

1− r2 (3.1)

where u is the limb darkening coefficient and r is the radial distance of the 2D solar disk as viewed

by on observer on Earth in units of the radius of the solar disk. For most purposes, this model with

a coefficient of u ≈ 0.6 works well.
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Figure 3.3: Rotation of the (x, y, z) frame to the (u, v, w) frame about the x-axis.

We may now incorporate this into our model of RV shifts in the solar data. We begin by placing

the 2D solar disk in the x− y plane such that the rotation axis of the sun is along ŷ, the observer is

along ẑ, and the origin is at the center of the disk. Units will be such that 1 is equal to the radius

of the disk. We can obtain the RV shift by integrating over the disk:

RVshift =
1

N

∫ 1

−1

∫ √1−y2

−
√

1−y2
vz(x, y)(1− u+ u

√
1− r2)dxdy (3.2)

where N = π(1− u/3) is a normalization constant obtained by integrated the limb darkening term

over the disk, and vz(x, y) is the z-component of the surface velocity of the sun at the point (x, y).

3.2.2 Radial velocity term

We now rotate the coordinate axes about the x axis by an angle θ, shown in Fig. 3.3. Moving back

and forth between the two frames will allow us to take into account the fact the north pole of the

Sun will not always be at the edge of the 2D disk. First, if the rotation matrix that describes the

rotation from the new (u, v, w) frame to the old (x,y,z) frame is R(θ) then we have
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~vold = R(θ)~vnew ⇒ vz,old = cos(θ)vw,new = dSNP vw,new (3.3)

where dSNP is the distance from the x axis to the solar north pole in the 2D disk in units of radius.

Now we just need to figure out vw,new. Let us first figure out the magnitude of the velocity. A point

on the surface of the Sun will be traveling in a circle with a radius given by the projection of its

position vector onto the u− w plane. Thus we have

|~v|2 = ω2
Sunr

2 = ω2
Sun(u2 + w2) (3.4)

where ωSun is the angular velocity of the Sun. Secondly we know that in the (u, v, w) frame, the

velocity will have no vv component as this is the axis of rotation. This gives us another condition:

|~v|2 = v2x + v2w (3.5)

Next we know the norm of the of the position vector is 1:

u2 + v2 + w2 = 1 (3.6)

And finally we know the dot product of the position vector and the velocity vector will be 0:

uvu + wvw = 0 (3.7)

This gives us a system of equations we can solve which gives vw,new = uωSun. Fortunately, since

our rotation was about the x axis, we know x = u. This gives us the final result

33



vz(x, y) = xdSNPReqωSun (3.8)

where we have converted from our units of solar radius to distance by multiplying by the equatorial

radius of the Sun Req.

3.2.3 Atmospheric extinction

Photons passing through the atmosphere will experience a change in magnitude linear in the airmass

A with a proportionality constant given by the extinction coefficient k(λ). This can be expressed

in terms of intensity as

I(A)/I0 = e−(ln(10)/2.5)k(λ)A (3.9)

The constant in front of the extinction coefficient arises from the definition of magnitudes in as-

tronomy. Magnitude is defined such that a change in magnitude of 5 is a change in intensity of 2

orders of magnitude. We can get an approximation of the change in intensity from the top to the

bottom of the solar disk by taking the derivative:

dI(A)/I(A) = − ln(10)

2.5
k(λ)dA (3.10)

Now we need to compute the change in airmass across the solar disk dA. The simplest approximation

for airmass is the plane-parallel approximation shown graphically in Fig. 3.4.

Here we assume the sky is a flat plane above the observer. The airmass is the ratio of the distance

the photon travels through to atmosphere to the height of the atmosphere. The angle between the
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Figure 3.4: Plane parallel approximation for computing airmass.

two is known as the zenith distance and is labeled z in Fig. 3.4. In this approximation it is easy

to see the airmass is given by A = sec(z). This approximation breaks down for fairly small zenith

distances though and thus we will adopt the model by [100]:

A = (cos(z) + 0.025e−11 cos(z))−1 (3.11)

This approximation provides a good estimate for z < π/2, more than sufficient for solar RV data.

Now we need to incorporate this into our equation for the RV shift. In general the north pole of the

Sun will not align with the great circle connecting the center of the solar disk to the zenith, shown

in Fig. 3.5. We can apply a constant slope change in intensity along the direction of changing

airmass given by

− dI(A)/2 =
ln(10)

5
k(λ)dA (3.12)
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Figure 3.5: Diagram showing the misalignment of the rotation of the Sun with the great circle
connecting the horizon and zenith.

We will thus get an RV shift given by

RVshift = (dSNPReqωSun/N)

∫ 1

−1

∫ √1−y2

−
√

1−y2
f(x, y|u, λ, dA, φ)dxdy (3.13)

where

f(x, y|u, λ, dA, φ) = x[1− u+ u
√

1− x2 − y2][1 +
ln(10)

5
k(λ)dA(−x sin(φ) + y cos(φ))] (3.14)

and N is the same normalization constant defined in Eg. 3.2. Evaluating this integral gives the

final result:
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RVshift = ln(10)dSNPReqωSunk(λ)dA(15− 7u) sin(φ)/[100(u− 3)] (3.15)

3.2.4 Calculation of the angle φ

To start off it is important to know that the positions of astronomical objects are usually described

in Equatorial coordinates, given by Right Ascension and Declination (RA, dec) = (α, δ). Imagine

extending the Earth’s equator and north pole out into the celestial sphere. RA and Dec are then

analogous to longitude and latitude respectively. The JPL Horizons Ephemeris Web Interface

provides the RA and Dec of any celestial body in the solar system at a given date and time from

any position on Earth.

But here, what we care about is the altitude, a, of the sun, which is the angle the center of the sun

and the horizon make with the observer. We can use a transformation of coordinates:

sin(a) = sin(δ) sin(φ0) + cos(δ) cos(φ0) cos(GMST− λ0 − α) (3.16)

where φ0 and λ0 are the observer’s latitude and longitude respectively. GMST is Greenwich Mean

Sidereal Time. It defined by the international astronomical union as:

GMST = 24110.54841 + 8640184.812866T + 0.093104T 2 − 0.0000062T 3 (3.17)

where T is the number of Julian centuries since noon on Jan. 1, 2000:

T = (JD− 2451545.0)/36525 (3.18)
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JD is the Julian Date (i.e., the number of days since noon on Jan. 1, 4713 B.C.). Now we can

compute the parallactic angle, η, which is the angle the zenith and the north celestial pole make

with the center of the sun. This is given by

sin(η) = sin(GMST− λ0 − α) cos(φ0)/ cos(a) (3.19)

And finally the angle of interest is just

φ = η −NPA (3.20)

where NPA is the north pole angle, another quantity that may be queried with the JPL Horizons

Ephemeris Web Interface. This is the angle the solar north pole and the celestial north pole make

with the center of the solar disk.

Thus if we are given a time of observation, JD, and the position of the observer on Earth, (φ0, λ0),

we can query Horizons for the (α, δ) coordinates of the sun and the NPA. We then have a systematic

way of computing φ. We can also query Horizons for the quantity dSNP , the distance of the solar

north pole to the center of the sun on the 2D disk in units of solar radius. We now have everything

we need to calculate the RV bias correction in Eq. 3.15.

3.3 Fitting the RV data

If we fit the solar telescope RV data to Eq. 3.15 we get the result shown in Fig. 3.6. We can say the

fit agrees with the expected result, but the 95% confidence interval is large so it seems bold to make

such a statement. The fit does agree well in the region where we have an abundance of SNR (500

nm < λ < 600 nm). But for λ < 500 nm we have poor agreement as we have very little SNR in this
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Figure 3.6: Fit of the wavelength dependent extinction coefficient to the solar telescope RV data.
The expected value is shown in red while the fit is shown in blue. The blue shaded region shows
the 95% confidence interval.

regime. There are additional problems with this fit, however. When we investigate the residuals,

several potential problems arise. First, the residuals are far from Gaussian as shown in Fig. 3.7.

Another problem with this fit is that the result is nonphysical. Fig. 3.8 shows the individual

components of the wavelength dependent extinction coefficient fit. The Rayleigh scattering term is

consistent with zero and should be the dominant term. Furthermore, the ozone term is less than

zero which would imply the light gets more intense as it passes through the Earth’s atmosphere.

For these reasons, the fit cannot be trusted. We believe the lack of SNR in the short wavelength

regime is responsible for these problems.

3.4 Daily extinction correction used in the RV data

Because the wavelength dependent extinction cannot be corrected for, we correct the RV data with

a wavelength independent extinction which we derive here with additional terms not covered in

section 3.2.
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Figure 3.7: RV residuals for the wavelength dependent extinction coefficient fit. The residuals are
non Gaussian as shown by the red curve.

Figure 3.8: Individual components of the extinction coefficient fit. The Rayleigh scattering term is
shown in blue and is consistent with zero. The ozone term is shown in red and less than zero. The
dust scattering term is shown in green.
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The daily mean extinction coefficient defines the vertical extinction gradient across the diameter of

the solar disk as a function of airmass. This gradient affects the measured solar radial velocity (RV)

whenever the solar rotation axis is inclined relative to the vertical direction. This generally leads

to a spurious redshift in the morning, when the approaching hemisphere of the Sun is lower in the

sky than the receding hemisphere. The effect was first identified and corrected by [101], and has

subsequently been modeled by the BiSON team [102]. The analytic approach we adopt here was

developed independently of, and is slightly different from, these previous studies, but the results

obtained are essentially identical.

The difference in airmass X between the upper and lower limbs of the Sun is

δX = Xupper −Xlower (3.21)

where X = sec(z)[1−0.0012(sec2(z)−1)] [103]. The zenith angles zlower,upper = z�± sin−1(R�/d�)

depend on the zenith angle z� of the solar center, the solar radius R� and the Earth-Sun distance

d� at the time of observation.

The corresponding difference in magnitudes of atmospheric extinction is δm60 = k60δX/2 across

the solar radius. We define a fractional difference in brightness ε ' δm60 ln(10)/2.5, with ε = 0 at

the center of the solar disc.

The angle between the solar rotation pole and the local vertical is φ = PA − q, where PA is the

position angle of the solar rotation axis relative to the north celestial pole at the time of observation.

The parallactic angle q is the angle subtended at the Sun by the celestial pole and the zenith, giving

sin(q) = sin(H) cos(β)/ sin(z�) (3.22)

cos(q) =

√
1− sin2(q), (3.23)

where H is the solar hour angle and β is the latitude of the observer.
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For a linear limb-darkening law with limb darkening coefficient u, the form of the rotation profile

in the absence of differential extinction is [104]:

f(x) =

∫ √1−x2
−
√
1−x2

(1− u+ uµ(x, y)) dy, (3.24)

where the brightness is I(x, y) = 1−u+uµ(x, y) and the foreshortening cosine µ(x, y) ≡
√

1− x2 − y2.

The orthogonal Cartesian coordinates x and y are in the directions of increasing solar rotation

velocity and the solar north pole respectively in the plane of the sky. For solid-body rotation with

equatorial velocity veq, the brightness-weighted correction to the solar RV is

δvr = veq

∫ 1
−1 xf(x)dx∫ 1
−1 f(x)dx

. (3.25)

In the absence of differential extinction across the rotation profile, the integrand in the numerator

of Eq. 3.25 is an odd function, so the brightness-weighted velocity offset is zero.

We modify the calculation of the limb-darkened rotation profile to include such a density gradient,

parameterized by the fractional extinction difference ε across the solar radius. A brightness gradient

of uniform slope ε in x and y at an angle φ to the local vertical modifies the rotation profile in Eq. 3.25

to a new form:

g(x, φ) =

∫ √1−x2
−
√
1−x2

I(x, y)[1 + ε(−x sin(φ) + y cos(φ))] dy. (3.26)

The sign of the x sin(φ) term should be negative if φ is positive west of the meridian.

The velocity bias δvr introduced by the extinction gradient thus depends on veq, u, φ, and ε according

to

δvr =

∫ 1
−1 xg(x, φ)dx∫ 1
−1 g(x, φ)dx

veq

=
(7u− 15)ε sin(φ)

20(3− u)
veq. (3.27)
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So far we have assumed that the solar photosphere rotates as a solid body, ignoring the effects

of differential rotation, axial inclination and centre-to-limb variations in convective blueshift. [105]

modeled the effects of these modifications to the solar rotation profile on the solar RV in the presence

of an extinction gradient. Following their example, we can include differential rotation in our model

by allowing the apparent rotational angular frequency ωobs to vary as a function of heliographic

latitude b. This alters Eq. 3.25 such that the intrinsic solar equatorial rotation speed veq is replaced

by R�ωrot(x, y). We adopt the sidereal differential rotation law of [106] as a function of heliographic

latitude b, defining

ωrot(sin(b)) = A+B sin2(b) + C sin4(b), (3.28)

with A = 2.972× 10−6 rad s−1, B = −0.484× 10−6 rad s−1 and C = −0.361× 10−6 rad s−1. When

the solar rotation axis is inclined at angle i to the line of sight, a point at location (x, y) on the

visible solar hemisphere has

sin(b) = y sin(i) +
√

1− x2 − y2 cos(i). (3.29)

The integration for vrot becomes

δvrot =

∫ 1
−1 xh(x, φ)dx∫ 1
−1 g(x, φ)dx

R� sin(i) (3.30)

where

h(x, φ) =

∫ √1−x2
−
√
1−x2

I(x, y) ωrot(x, y) [1 + ε(−x sin(φ) + y cos(φ))] dy. (3.31)

To take the Earth’s instantaneous orbital motion and the centre-to-limb variation in convective RV

into account, we must include additional terms:

δvr =

∫ 1
−1(xh(x, φ)R� sin(i) + c(x, φ))dx∫ 1

−1 g(x, φ)dx
−
∫ 1
−1 xg(x, ψ)dx∫ 1
−1 g(x, ψ)dx

R� ωorb. (3.32)

Here ψ is the position angle between ecliptic north and the local vertical at the Sun’s location. It

always differs from φ by less than the 7-degree tilt of the solar rotation axis relative to the ecliptic.
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The position angle of ecliptic north relative to celestial north at the Sun is given by

sin PAecl = sin ε cosα (3.33)

where ε is the 23.4-degree obliquity of the ecliptic and α is the solar RA at the time of observation.

By analogy with the position angle of the solar rotation pole, ψ = PAecl−q where q is the parallactic

angle. The integration is specified separately in Eq. 3.32 in a Cartesian coordinate system in which

y is oriented toward the ecliptic north pole and x is in the direction of Earth’s orbital motion. The

solution has the same form as Eq. 3.27 with veq replaced by −R� ωorb.

The convective contribution is

c(x, φ) =

∫ √1−x2
−
√
1−x2

I(x, y) vconv(µ(x, y)) [1 + ε(−x sin(φ) + y cos(φ))] dy. (3.34)

Both I(x, y) and vconv(µ(x, y)) are azimuthally-symmetric functions of radius only. The contribution

of c(x, φ) to δvr in Eq. 3.32 is therefore independent of ε and φ, being a constant that depends on the

radial variations in limb darkening and convective velocity only. We therefore treat the effect of the

centre-to-limb variation in convective velocity as a time-invariant offset to the velocity zero-point,

and evaluate the integrals in Eqs. 3.30 and 3.32 to obtain

δvr = ε sin(φ)R� sin(i)

(
A(7u− 15)

20(3− u)

+
B(19u− 35 + cos2(i)(3u− 35))

280(3− u)

+
C(187u− 315− cos2(i)(630− 118u)− 105 cos4(i)(u− 1))

6720(3− u)

)
− (7u− 15)ε sin(ψ)

20(3− u)
R�ωorb (3.35)

The velocity correction for differential extinction varies almost linearly with airmass, and has an

amplitude of 2 to 3 m s−1 in an uninterrupted day’s observations. As cos(i) varies through the year,

the values of δvr depart by only 1 or 2 mm s−1 from the solid-body rotation values obtained using

a sidereal rotation rate ωsid = 2.875× 10−6 rad s−1. The inclination dependence involves only even
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powers of cos(i), and does not change sign when the Earth crosses the solar equator.
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4

Magnetic field fingerprinting of integrated
circuit activity with a quantum diamond

microscope

4.1 Introduction

Securing integrated circuits against manufacturing flaws, hardware attacks, and software attacks is of

vital importance to the semiconductor industry [107]. Hardware attacks often modify the physical

layout of an integrated circuit, thereby changing its function. This type of attack can occur at

any stage of the globalized semiconductor supply chain, and can range from insertion of malicious

Trojan circuitry during the design and fabrication stages [108], to modification or counterfeiting

during packaging and distribution stages [109]. Horizontal integration of the industry has led to

contracting of integrated circuit fabrication, packaging, and testing to offshore facilities, resulting

in a reduction of secure oversight and quality control [110]. Additional growth of the secondhand

electronics market has led to a drastic increase in counterfeit integrated circuits [111]. Detection of

integrated circuit tampering or counterfeiting has consequently become essential to ensure hardware

can be trusted. Similar issues affect quality control of unintended manufacturing flaws.

Magnetic field emanations from integrated circuits afford a powerful means for non-destructive phys-
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Figure 4.1: (a) Schematic of the Quantum Diamond Microscope (QDM) experimental setup with
insets showing the diamond in contact with intact and decapsulated FPGAs. The diamond is
positioned such that the NV layer is in direct contact with the FPGA, as indicated by the red
layer in the insets. (b) Diamond crystal lattice with the nitrogen (red) vacancy (grey) defect. Lab
frame coordinates (X,Y ,Z) and NV frame coordinates for a single defect (x,y,z) are shown. (c) The
ground state energy level diagram for an NV with fine structure and Zeeman splitting. (d) Example
ODMR spectral data for an applied bias field of (BX ,BY ,BZ) = (2.0 1.6 0.7) mT, showing resonance
frequencies of f±,i with i = 1, 2, 3, 4 indicating each of the four NV axes. Hyperfine interactions
between the NV− electrons and the spin-1 14N nucleus result in splitting of each NV resonance into
three lines.
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ical testing. Magnetic fields are generated by current densities in integrated circuits resulting from

power and clock distribution networks, input/output lines, word and bit lines, and switching tran-

sistors. These currents are present in all operating logic and memory chips and can be leveraged

for studying the operational behavior of an integrated circuit during task execution. In general,

the resulting integrated circuit magnetic fields pass through many standard integrated circuit ma-

terials, and will vary spatially and temporally in ways that correlate with both integrated circuit

architecture and operational state. Thus, combined high-resolution and wide-field-of-view mapping

of magnetic fields may yield simultaneous structural and functional information, and may be suit-

able for identification of malicious circuitry or Trojans [112, 113], counterfeit detection [114], fault

detection [115–117], and manufacturing flaws [118]. However, leveraging magnetic field emanations

is challenging due to the tremendous complexity of circuits integrating billions of transistors of

minimum feature sizes down to tens of nanometers, with interconnects distributed across multiple

levels of metallization [119]. Multi-layered metal interconnects and three-dimensional stacking give

rise to complex magnetic field patterns that are difficult to invert; and large stand-off distances of

magnetometers reduce amplitudes of magnetic fields and spatial resolution [120].

We demonstrate how these challenges can be approached using a Quantum Diamond Microscope

(QDM) [121–123] augmented with machine-learning classification techniques. With the QDM, we

perform simultaneous wide field-of-view, high spatial resolution, vector magnetic field imaging of

an operational field-programmable gate array (FPGA). FPGAs are configurable integrated circuits

that are commonly used for diverse electronics applications. Systematic and controlled variation

of the circuit activity in the FPGA generates complex magnetic field patterns, which we image

with the QDM. The QDM employs a dense surface layer of fluorescent nitrogen-vacancy (NV)

quantum defects in a macroscopic diamond substrate placed on the integrated circuit under ambient

conditions. The electronic spins associated with NV defects have well-established sensitivity to

magnetic fields [124–126].

We use the QDM to image magnetic fields from both decapsulated (decapped) and through-package

(intact) FPGAs under operational conditions using continuous wave (CW) optically detected mag-

netic resonance (ODMR) NV spectroscopy. For the decapped FPGA, our measurements yield
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magnetic field maps that are distinguishable between operational states over approximately a 4 mm

× 4 mm field-of-view with a 20 nT noise floor, and ∼ 10 µm magnetic field spatial resolution,

limited by the thickness of the NV surface layer in the diamond and the distance to the nearest

metal layer. For the intact FPGA, the QDM measurements provide magnetic field maps with a

similar field-of-view, 2 nT noise floor, and ∼ 500 µm magnetic field spatial resolution, limited by the

stand-off distance between the NV layer and the FPGA current sources. In particular, we find that

operational states of the intact FPGA are distinguishable in the QDM images, even with the dimin-

ished magnetic field amplitude and spatial resolution that arise from the large stand-off between the

diamond and the integrated circuit die. We use machine learning methods to demonstrate FPGA

operational state classification via magnetic field pattern correlation for both decapped and intact

FPGA QDM images. This result provides an initial demonstration of functional integrated circuit

characterization via magnetic field fingerprinting. Future work is required to determine whether

and how this approach will be useful in areas such as integrated circuit security and failure analysis.

To date, the QDM’s unique combination of magnetic field sensitivity, spatial resolution, field-of-

view, and ease of use has allowed it to be used to measure microscopic current and magnetization

distributions from a wide variety of sources in both the physical and life sciences [127–133]. Com-

plementary to scanning techniques for characterizing integrated circuit magnetic field emanations,

which include wire loops [134], probe antennas [135], magnetic force microscopy [117], SQUID mag-

netometers [113], and vapor cell magnetometers [136], the QDM employs a non-scanning imaging

modality [121] that provides simultaneous high-resolution (micron-scale) and wide-field (millimeter-

scale) vector magnetic imaging, while operating under ambient conditions. This capability allows

for monitoring of transient behavior over sequential measurements of a magnetic field, providing

a means to study correlations in signal patterns that can evolve more quickly than a single-sensor

scan time. In addition, the QDM’s simultaneous magnetic imaging modality is not subject to the

reconstruction errors and drift that can arise from a scanned probe. With these distinctive advan-

tages, the QDM technique is a promising approach for non-destructive physical testing of integrated

circuits.
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4.2 Experimental design

4.2.1 QDM experimental setup

A schematic of the QDM is shown in Fig. 4.1(a). The magnetic field sensor consists of a 4 mm

× 4 mm × 0.5 mm diamond substrate with a 13 µm surface layer of NV centers. The diamond

is placed directly on the integrated circuit with the NV layer in contact with the integrated cir-

cuit surface. The diamond is grown by Element Six Ltd. to have an isotopically pure NV layer

consisting of [12C] ∼ 99.999%, [14N] ∼ 27 ppm, and [NV-] ∼ 2 ppm. Light from a 532 nm, CW

laser (Lighthouse Photonics Sprout-H-10W) optically addresses the NV layer with beam power of

about 500 mW uniformly distributed over the 4 mm × 4 mm NV layer. A flat-top beam shaping

element (Eksma Optics GTH-5-250-4-VIS) and a cylindrical lens (Thorlabs LJ1558RM-A) create a

rectangular beam profile (6 mm × 6 mm) incident on the top face of the diamond at a sufficiently

shallow angle of incidence (4◦) relative to the top diamond surface to illuminate the entire NV

layer. NV fluorescence is collected with a low magnification objective (Olympus UPlanFL N 4x

0.13 NA) to interrogate a large field-of-view of about 3.7 mm × 3.7 mm. The fluorescence is filtered

with a 633 nm longpass filter (Semrock LP02-633RU-25) and imaged onto a CMOS camera (Basler

acA1920-155um). Resulting CW ODMR data is transferred to a computer where it is processed

and analyzed with custom software utilizing LabVIEW and MATLAB.

A pair of 5 cm diameter SmCo permanent magnets (Super Magnet Man) is placed on opposing sides

of the diamond to apply a uniform bias magnetic field (bias field) of B0 = (BX , BY , BZ) = (2.0,

1.6, 0.7) mT to separate the resonances of the different NV axes (see Fig. 4.1(d)). X, Y , Z are the

laboratory frame Cartesian coordinates with the X-Y plane defined as the surface of the diamond in

Fig. 4.1(b). B0 induces a ±geµBB0 · n Zeeman splitting of the spin triplet NV m = 1 and m = −1

ground states along each of four tetrahedrally defined NV symmetry axes, n, with Landé g-factor

ge, and Bohr magneton µB. The hyperfine interaction between the NV and the 14N isotope nuclear

spin (I=1) results in an additional triplet level splitting. The four symmetry axes of the NV, shown

in Fig. 4.1(b), are leveraged for vector magnetic field imaging using B0 projection onto all four NV
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axes [137]. The ground state energy level diagram of a single NV axis is depicted in Fig. 4.1(c),

neglecting hyperfine structure.

A 6 mm diameter copper wire loop made from 320 µm diameter magnet wire delivers 1 W of

GHz-frequency microwave fields (TPI-1001-B and amplified with a Mini-Circuits ZHL-16W-43S+

amplifier) to drive the NV electronic spin transitions, ms = 0 ↔ −1 or ms = 0 ↔ +1, denoted

by f−,i and f+,i, respectively, see Fig. 4.1(c). The microwave power chosen is sufficiently low to

not effect the observed normal function of the integrated circuit. The microwave field is modulated

on and off through the use of a solid-state switch (ZASWA-2-50DRA+) controlled by a DAQ (NI-

USB 6259) and synchronized with the frame acquisition of the camera to correct for laser intensity

fluctuations and drift.

The intensity of optically induced NV fluorescence decreases for microwave fields on resonance with

one of the spin transition energies. This decrease results from the m = ±1 spin-selectivity of

the non-optical, intersystem crossing (ISC) mediated decay pathway for optically excited NVs [138].

The resonance frequencies between NV ground-state sublevels are determined from the ground-state

Hamiltonian

H/h = (D(T ) +Mz)S
2
z + γ (BxSx +BySy +BzSz) +Mx

(
S2
y − S2

x

)
+My (SxSy + SySx) (4.1)

for the projection of B0 along a single NV axis, where h is Planck’s constant, D(T ) ≈ 2870 MHz is

the temperature dependent zero field splitting, T is the temperature, Sk are the dimensionless spin-1

Pauli operators, γ = 2.803× 104 MHz/T is the NV gyromagnetic ratio, Bk are the components of

B0 in the NV frame, andMk are crystal stress terms [139]. Electric field terms contribute minimally

and are neglected [140–142]. Cartesian coordinates k = x, y, z are defined in the NV frame with z

along the selected NV axis, see Fig. 4.1(b). The contribution of the hyperfine interaction between

the NV and 14N nuclear spin is treated as a constant, 2.158 MHz energy level splitting and is not

shown explicitly in Eqn. 4.1. Sweeping the frequency of the applied microwave fields across the

range of resonant frequencies and collecting the NV fluorescence results in an optically detected

magnetic resonance (ODMR) spectrum. Fig. 4.1(d) depicts the resulting ODMR measurements for
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a bias field alignment where each NV axis experiences a different projection of the bias magnetic

field.

Continuous-wave (CW) ODMR is used to image static FPGA magnetic fields. CW ODMR leverages

continuous application of the laser and microwave field. This approach yields wide field-of-view

images with high spatial resolution and good magnetic field sensitivity, while minimally perturbing

the sample under study [121, 122]. A diamond with sufficiently low Mz inhomogeneity across the

field-of-view is used to minimize degradation of performance [139]. Further suppression of strain

contributions is achieved with application of the static bias field, B0. Thus, the Mx and My terms

in Eqn. 4.1 are negligible [139, 143]. The ground state Hamiltonian along a single NV axis reduces

to

H/h ≈ (D(T ) +Mz)S
2
z + γBzSz + γBxSx + γBySy, (4.2)

and is used to determine the CW ODMR resonance frequencies for each pixel in a QDM image, and

thereby to determine the magnetic field image from the sample FPGA.

4.2.2 Integrated circuit preparation, control, and layout

The Xilinx 7-series Artix FPGA (XC7A100T-1CSG324C) shown in Fig. 4.2(a) and 4.2(b) is selected

for this study due to its versatility, general availability, and affordability. This FPGA is a 15 mm

× 15 mm wirebonded chip, fabricated in the TSMC 28 nm technology node, that has a ∼ 6.5 mm

× 10 mm silicon die with eight clock regions. Digilent Nexys A7 development boards are used to

operate and configure the Artix-7 FPGA. Two chips were used: one intact Artix 7 and decapsulated

(decapped) Artix 7 that was prepared using a Nisene JetEtch Pro CuProtect decapsulator.

The large current draw and controllable location and size of ring oscillators make them ideal func-

tional units for this study [144, 145]. Patterns of ring oscillators are implemented using the Xilinx

Vivado Design Suite® to create distinguishable current distributions on the FPGAs for measure-
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Figure 4.2: (a) Intact Xilinx 7-series Artix FPGA with die location and dimensions indicated in red
(b) X-ray image of the FPGA package determining the position and size of die outlined in red (c) A
high resolution image of the decapsulated FPGA with the fixed diamond measurement field-of-view
indicated with a blue box, and the location of ring oscillator clusters indicated by red boxes labeled
R1 - R4. (d) Scanning electron microscope (SEM) image of the FPGA cross-section showing the
500 µm stand-off distance between the chip die and the top layer. (e) Close-up of the SEM focusing
on the metal layers of die. The thickness of the passivation layer is 5 µm and sets the minimum
stand-off distance for the decapsulated measurements. (Figure credit: Matthew J. Turner)
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ment by the QDM. Clusters of three-inverter ring oscillators are synthesized, placed, and routed to

four different predefined clock regions on the FPGA, with clear spatial separation and spanning a

majority of the die surface as shown in Fig. 4.2(c). A cross section of the die is shown in Figs. 4.2(d)

and 4.2(e). The clusters consist of variable numbers of ring oscillators allowing for incremental

increase or decrease of the current draw at the different locations on the FPGA. The active states of

the FPGA are defined by ring oscillator clusters implemented in one of the predefined regions, and

the idle state is defined as the FPGA powered on with no implemented ring oscillators. These active

and idle states of the FPGA are used to create a lock-in type measurement of the chip activity.

The ordering of states during a series of measurements are randomized to reduce susceptibility to

systematic noise sources.

4.2.3 Experimental protocol and data analysis

CW ODMR measurements are taken with the FPGA in both active and idle states. The duration

of each measurement is ∼ 5 min per NV axis for each state. Such extended measurements are

insensitive to transient effects on time scales shorter than the measurement; and sensitive to envi-

ronmental drifts on the time-scale of the measurement. Magnetic field contributions from the ring

oscillators are determined by subtracting the measured idle-state ODMR frequencies from the mea-

sured active-state ODMR frequencies, yielding the overall magnetic field due to the ring oscillators

alone. For such measurements, the NV ground-state Hamiltonian is given by:

H/h ≈
(
D +

∂D

∂T
∆T +Mz

)
S2
z + γ(Bz + ∆Bz)Sz + γ(Bx + ∆Bx)Sx + γ(By + ∆By)Sy (4.3)

Here, terms with ∆ originate from the FPGA active states and ∂D/∂T ≈ −74 kHz/◦C [146].

Following these definitions and treating the off-axis magnetic fields as perturbative, the idle and

active-state resonant frequencies for the upper (f+) and lower (f−) transitions of a single NV axis

(i) are given by [143]
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f±,i,Idle ≈ (D +Mz) +
3γ2

2D

(
B2
x +B2

y

)
± γBz (4.4)

and

f±,i,Active ≈
(
D +

∂D

∂T
∆T +Mz

)
+

3γ2
[
(Bx + ∆Bx)2 + (By + ∆By)

2
]

2
(
D + ∂D

∂T ∆T +Mz

) ± γ(Bz + ∆Bz). (4.5)

The desired FPGA state-dependent magnetic field projection on each NV axis, ∆Bz,i, and the

change in local temperature, ∆T , are given by

∆Bz,i =
1

2γ
(∆f+,i −∆f−,i) ,

∆T =
1

2∂D∂T
(∆f+,i + ∆f−,i) ,

(4.6)

where ∆f±,i = f±,i,Active−f±,i,Idle. The off-axis magnetic fields of the sample are suppressed by the

zero-field splitting; thus terms dependent on ∆Bx and ∆By are sufficiently small to be neglected in

Eqn. 4.6. Terms dependent on Bx, By, Bz, D, andMz are canceled by subtracting the idle resonance

frequencies from the active state resonance frequencies. Determining the resonance frequencies from

all four NV orientations for vector measurements, labeled by i = 1, 2, 3, 4 in Fig. 4.1(d), enables

solving for the vector magnetic field in the lab frame

∆BX =

√
3

2
√

2
(∆Bz,2 + ∆Bz,4) ,

∆BY =

√
3

2
√

2
(∆Bz,1 + ∆Bz,3) ,

∆BZ =

√
3

4
[(∆Bz,1 −∆Bz,3)− (∆Bz,4 −∆Bz,2)] ,

(4.7)

where X, Y , Z are recalled to be the laboratory frame shown in Fig. 4.1(b).

The ODMR lineshape for NV ensembles is well described by a Lorentzian lineshape [143, 147].
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Figure 4.3: Representative QDM images of single runs of activity states with small numbers of RO
that are used as inputs for the machine learning classification. The differences in the decapsulated
chip states are observable through inspection, but the intact chip state differences are more subtle.

ODMR spectra for vector measurements of a 14N diamond sample contain 24 resonance features,

Fig. 4.1(d) (3 hyperfine features × 2 electronic spin transitions × 4 NV axes). The resonance

frequencies of Eqn. 4.6 are extracted from the data by fitting all the Lorentzian parameters for

every pixel in the field-of-view [122]. Furthermore, the contrast and linewidth of the resonances

are determined, giving additional state dependent information which can additionally be used for

probing high frequency magnetic fields [148]. GPU-based fitting algorithms [149] speed up this

computationally intensive fitting and enable rapid analysis of a large number of measurements.

4.3 Data for low number active RO states

Representative QDM images taken from a series of measurements for single acquisitions of low

numbers of ROs are given in Figure 4.3 for decapsulated and intact chips. Long term drift and

large background fields are corrected for by subtracting off the nearest idle (0 RO) state in the

measurement series. The measured states of the decapsulated chip are relatively easy to classify by

visual inspection, consistent with the perfect accuracy in classification presented in Tbl. 4.1. The

differences between states are more subtle in the intact data for low number of active ROs and will

require machine learning to classify the different states as described in the following sections.
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4.4 Machine learning analysis

Forward modeling of the current distributions and resulting magnetic fields for the different ring

oscillator states programmed on the FPGA is an intractable problem without complete knowledge

of the wire layout and current paths. However, automated machine learning algorithms can be

applied to the QDM data to discriminate between and ultimately classify the different operating

states. Ideally, a magnetic field image is used as input to an machine learning algorithm, and

the functional state, defined as the number of active ring oscillators in this initial demonstration,

is determined as the output. In practice, this problem is approached with a limited data set of

magnetic field images for each FPGA state; and a dimensionality reduction algorithm is employed

before applying a classification technique using the Python[76] package scikit-learn[150].

4.4.1 Data preprocessing

QDM data undergoes a series of preprocessing steps in preparation for dimensionality reduction and

classification. Only images with Region 1 active are used so that the number of ring oscillators is

predicted by the classification scheme. The number of ring oscillators activated for any given image

is one of 0, 1, 5, 10, 50, 100, or 200. The data set consists of 40 QDM images per ring oscillator state

for the decapsulated chip and 32 images per ring oscillator state for the intact chip. These M ×N

images are subsequently binned such that the decapsulated images contain 600×606 pixels and the

intact images contain 300× 303 pixels, while covering the same field-of-view. Measurements of the

idle state (0 ring oscillators) are randomly taken during data collection to account for long term

drifts. These idle state measurements are subtracted from active state images nearest in time. The

intact and decapsulated data sets are split into training and test sets so that the prediction accuracy

of the trained model can be estimated on data that the training procedure has not encountered.

The splits are 75%/25% for the decapsulated images and 64%/36% for the intact images.
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Figure 4.4: Principal component analysis (PCA) and support vector machine (SVM) classification
of QDM images. Region 1 is active with 0, 1, 5, 10, 50, 100, or 200 ring oscillators. (a) Example
principal component basis vectors plotted as images for both decapsulated (decap) and intact data
sets. PC1 and PC2 are shown to exemplify principal components that resemble magnetic field
images and thus will be useful in chip state classification. PC4 is shown as an example principal
component that captures activity state independent variations and thus will not be useful in chip
state classification. (b) The PCA score for PC1, S1,j , is plotted against the score for PC2, S2,j , for
each magnetic field image, Bj , as a demonstration of state distinguishability . This distinguishabil-
ity is evidenced by the separation of colors representing differing numbers of active ring oscillators.
Insets magnify the scores for small numbers of ring oscillators, and show greater fidelity of state
separation in the decapsulated data set compared to the intact data set. (c) Table of SVM predic-
tions on the test set for the intact images. For each unique value of active ring oscillators, there are
12 images in the test set. Rows indicate the fraction of images predicted for each of the possible
chip states. All but one prediction (indicated by the red boxes in (b) and (c)) lie on or near the
main diagonal demonstrating the high predictive power of the SVM classifier. The corresponding
table for the decapsulated data set is not shown, as the main diagonal would contain 1’s and the
off diagonals would contain 0’s due to the perfect separability of each state (see Table 4.1).
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Figure 4.5: (a) The fraction of variance explained by the nth principal component (PC) in the
decapsulated dataset (green dots) and the intact dataset (blue triangles). (b) The cumulative
fraction of variance explained by the first n PCs as a function of n (colors and markers are same as
above). For both datasets, > 99% of the variance is explained by the first 9 PCs.

4.4.2 QDM image dimensionality reduction

Each magnetic field image is composed of ∼ 105 pixels and thus occupy a high dimensional space

for classification. Principal component analysis [151, 152] (PCA) is therefore used to reduce the

dimensionality of the classification problem. PCA is a well-established technique that determines

the highest variability axes of a high-dimensional data set. PCA amounts to an eigenanalysis where

the eigenvectors, called principal components, correspond to the axes of interest; and the eigenvalues

relate to the amount of data variance along the respective principal components.

PCA is applied separately to the data sets of the decapsulated chip and the intact chip with the

scikit-learn class decomposition.PCA() and yields principal components such as those plotted

in Fig. 4.4(a). Spatial patterns evident in the principal components are also present in the mag-

netic field images of Fig. 4.3, confirming that these features are physically significant and important

for distinguishing between different samples. There exist as many principal components as dimen-

sions in the data set; however, only the first several principal components capture non-noise based

information. Figure 4.5(a) shows the fraction of variance explained by the nth PC in both the decap-
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sulated and intact datasets for the first 40 PCs. The first PC explains nearly all the variance in the

magnetic field images, after which the explained variance drops off rapidly, ultimately depending

only on noise and other RO state-independent information. Figure 4.5(b) shows the cumulative

variance fraction for the first n PCs as a function of n. For the intact dataset, the first PC alone

accounts for > 99% of the variance in the magnetic field images. For the decapsulated dataset, the

first n = 9 PCs account for > 99% of the variance. The first n = 9 PC scores for each image are

therefore used to capture all of the non-noise based information.

The scores of these first 9 principal components are used to effectively reduce the dimensionality of

the magnetic field images from ∼ 105 pixels to 9 scores. The principal component scores, Si,j , are

determined by taking the dot product of the ith principal component, defined as Wi, with the jth

image, Bj , and normalized by the total number of pixels. This gives

Si,j =
1

MN

M∑
m=1

N∑
n=1

W i
m,nB

j
m,n (4.8)

for the first 9 principal components. Fig. 4.4(b) shows examples of the PCA scores: the score for

PC1 is plotted against the score for PC2 for each magnetic field image of both the decapsulated

and intact data (additional score plots are shown Fig. 4.6). The plot is color coded by number

of active ring oscillators showing that these two scores are useful in distinguishing the number of

active ring oscillators on the FPGA for both decapsulated and intact measurements. Classification

of the active number of ring oscillators is accomplished by using the first 9 PCA scores as input to

a support vector machine (SVM) classifier algorithm. The spread of data points along a fixed slope

for each state in Fig. 4.4(b) is consistent with small offsets between different image acquisitions.

To further elucidate the relative importance of the first 9 PCs, Fig. 4.7 shows all of the first 9

PCs used in the chip state classification for both the decapsulated and intact datasets. A relative

classification importance (defined below in section 4.4.3) is also calculated for each PC. The first

two PCs of both datasets most strongly resemble the magnetic field images. As such, these PCs can

naively be assumed to be the most useful for state classification, which agrees with these PCs having

the highest importance factor. Additional PCs that visually capture state-independent information
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Figure 4.6: (a) Pairs of PC scores plotted against each other for PCs 1 through 5 in the decapsulated
(decap) dataset. Units are nT / pixel and active number of ring oscillators (ROs) is color coded
according to the legend. (b) The analogous plot for the intact dataset. Unlike Fig. 4.4(b), these
plots are not on an equal aspect ratio and thus the slopes of groups of points carry less meaning.
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Figure 4.7: The relative importance for support vector machine (SVM) classification of each of
the 9 principal components (PCs) used in both the decapsulated and intact datasets. The PCs
that contain the most state dependent information have the most importance. Conversely, the PCs
containing state independent information have the least importance.

accordingly have low importance. For example, PC 4 in the decapsulated dataset nicely captures

the solder balls present in all magnetic field images, and PCs 6 through 9 capture activity in the

upper left corner that is also present in all images.

In the intact dataset, PCs 4 through 9 appear noisy; however, PCs 7 and 9 both have a slightly

elevated importance. The source of this importance is unknown, but given the small fields produced

by the ROs on top of a larger background field, it is not surprising that PCs explaining a smaller

fraction of data variance carry a higher importance in classification. The overall trend of decreasing

importance with PC further strengthens the assertion that 9 PC scores suffice to classify each

dataset.
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Figure 4.8: A simple SVM model (used only as a pedagogical example) with N = 2 dimensions
(x1 and x2) and M = 3 classes (A, B, and C). Three lines represent the K = 3 hyperplane
decision boundaries for each class comparison. The red star represents a new data point in need of
classification. It will get two votes for A and one vote for B and thus will get a classification of A.

4.4.3 Integrated circuit activity state classification

A support vector machine [153] (SVM) is the supervised classification technique used to classify

the magnetic field images, leveraging their key features characterized by the PCA scores. SVMs

are a set of algorithms that seek to classify samples by creating a boundary between categories of

a training data set that maximizes the gap separating those categories. Samples from a test set

are then classified in relation to this boundary. A linear SVM seek to create a boundary between

two classes, y ∈ {−1, 1}, of an N dimensional dataset by finding the N − 1 dimensional hyperplane

that maximizes the orthogonal distance from both classes. Any hyperplane is defined by its normal

vector and a constant offset. For the optimal hyperplane boundary defined by the SVM classifier,

we denote its normal vector as w and its constant offset as b. Any point, x, lying in this hyperplane

will satisfy the equation

w · x− b = 0 (4.9)
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The SVM classification, y′, of an arbitrary point, x′, will then be determined by whether this point

lies above or below this plane, written mathematically as

y′(x′) = sgn(w · x′ − b) (4.10)

We can interpret the normal vector,w, as a weighting vector for each dimension in theN dimensional

space and thus define a relative classification importance, Ij , of the jth dimension as

Ij =
|wj |∑N
j=1 |wj |

(4.11)

In the case of M classes (where M > 2), a one-versus-one classification scheme is implemented,

whereby each class is compared with every other class. This yields K = 1
2M(M − 1) hyperplane

boundaries, each with a normal vector, wk, and a constant, bk, for k = 1, 2, . . . ,K. A simple

pedagogical example (not used for QDM data analysis) with N = 2 dimensions (x1 and x2) and

M = 3 classes (A, B, and C) is shown in Figure 4.8. N = 2 gives lines for the hyperplanes, and

M = 3 gives K = 3 decision boundary lines. The red star represents a hypothetical new data point

in need of classification. It will get classified as A twice and B once. The red star will consequently

receive a final classification of A.

The relative classification importance of the jth dimension for the kth one-versus-one comparison is

defined as

Ikj =
|wk,j |∑N
j=1 |wk,j |

(4.12)

The overall relative classification importance of the jth dimension will then be given by

Ij =

∑K
k=1 I

k
j∑N

j=1

∑K
k=1 I

k
j

(4.13)

Equation 4.13 is used to calculate the relative importances of the 9 PCs shown in Fig. 4.7.
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The scikit-learn class svm.SVC() is used as a multi-dimension, multi-category classifier for the

QDM data. The categories for classification are the chip states given by the number of ring oscil-

lators. The dimensionality is given by the 9 PCA scores recorded for each image. PCA scores are

fit to the known FPGA states with a linear SVM model and a regularization parameter of C = 6.

When a training dataset contains outliers or is not linearly separable, the linear SVM classifier will

struggle or even fail to find a hyperplane that will generalize well to predictions on the test set. To

address this problem, implementations of SVM such as the scikit-learn class svm.SVC() used in

this analysis will allow for some training samples to be misclassified in order to generalize well to

the test set. The degree to which this is allowed is controlled by a regularization parameter, C.

More precisely, a higher value of C attempts to correctly classify every training sample while a lower

value of C will allow for more misclassifications of the training data. The regularization parameter

thus represents a delicate balance between obtaining a good fit to the training set and generalizing

well to the test set.

In order to determine the optimal value of C, we employ a 10-fold cross validation (CV) procedure.

The training set is divided into 10 equal parts (folds). The first fold is used as a validation set

and the remaining 9 folds are used as a new training set. A value of C is chosen and the PCA +

SVM model is fit using the new training set. The model is then evaluated on the validation set

and the accuracy is recorded. This process is repeated until each of the 10 folds have been used as

the validation set. The CV accuracy for this value of C is then recorded as the average of the 10

validation accuracies. We repeat the entire process while varying C. Finally, we select the value of

C that maximizes the CV accuracy and refit the model using all 10 folds as the training set. The

test set containing as yet unseen data is then used to estimate the model accuracy by evaluating

the final fitted model to this dataset.

The decapsulated dataset is easily separated by SVM and thus does not require CV of the regu-

larization parameter. On the contrary, the intact dataset is not as easily separated and thus does

require CV; figure 4.9 shows the results of this procedure. The discretization of the accuracies

results from the relatively small training/validation sets (i.e. each jump in accuracy corresponds to
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Figure 4.9: Cross validation of the SVM regularization hyperparameter, C. A 21 point moving
average is included to aid the eye. The optimal value is selected at C = 6.

Number of ROs (Region 1) Total0 1 5 10 50 100 200
Decapsulated 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Intact 0.83 0.75 0.83 0.83 1.00 1.00 1.00 0.89

Table 4.1: Chip state prediction accuracy on the test dataset (ROs = ring oscillators).

one more correct prediction in the validation set). A 21 point moving average is included to smooth

out the CV prediction accuracy. It is evident from this curve that the optimal value of C occurs at

about C = 6 and hence this value is chosen for the final model in the intact dataset.

4.4.4 Classification results

The full machine learning model, including preprocessing, PCA, and SVM, is fit using the training

set and subsequently evaluated on the test set, for both decapped and intact FPGA data. The

machine learning model efficacy, summarized in Table 4.1, is determined by the accuracy of the test

set evaluations. FPGA activity states are well separated in PCA-space for the decapsulated data

set. Predictions on the test set consequently yield perfect accuracy, even for small numbers of ring

oscillators, consistent with expectations.

Results for intact data set are similarly well separated for large numbers of ring oscillators, resulting
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in perfect prediction accuracy for ≥50 ring oscillators. However, FPGA activity states are not fully

separated for <50 ring oscillators, resulting in imperfect predictions. Nonetheless, the trained

machine learning model achieves ∼ 80% accuracy for each of 0, 1, 5, and 10 ring oscillator active

states. Fig. 4.4(c) additionally shows that incorrect predictions are nearly always close to the

correct state. For example, the model predicts 5 ring oscillators correctly in 83% of test cases, with

misclassifications of 0 or 1 ring oscillator otherwise. The red box in Fig. 4.4(c) indicates a single

case for which the classifier incorrectly predicts 50 ring oscillators for a 0 ring oscillator state. An

arrow and analogous red box in Fig. 4.4(b) shows that the PCA score for this state is an outlier in

the data.

The positive classification results presented in Fig. 4.4 give an initial demonstration of the capa-

bility of combined QDM and machine learning techniques to identify integrated circuit activity via

non-invasive magnetic field imaging. The present results using ring oscillators are also potentially

translatable to approaches that use the power side channel for chip activity analysis [154–156]. An

extended dataset was taken to further elucidate the benefit of a large number of measurements per

state on the prediction accuracy. Furthermore, in the extended dataset, the definition of state for

the purpose of classification was expanded to include both number of ring oscillators and region

activated. This dataset was also used to determine the impact of measurement stand-off distance

on the ability to discriminate between spatially separated activity on the integrated circuit. The

extended dataset was analyzed with the state classification criteria defined to include the spatial

location of the active region in addition to the number of ring oscillators per region. For a simulated

measurement stand-off distance of ∆z = 500µm, similar to that between the NV layer and FPGA

current sources in the intact chip, a classification accuracy of > 98% is achieved on the extended

dataset using 100 samples per state. This result indicates that a high degree of spatial state clas-

sification is possible in addition to local power classification using a large number of samples per

state. Large data sets combined with more powerful machine learning methods have promise to

enable classification of a wide array of chip activity in the context of hardware security and fault

detection.

67



4.5 Extended dataset

An extended dataset of magnetic field images was collected in addition to the data presented above.

This extended dataset further elucidates the impact of the number of measurements per state on

the prediction accuracy, as well as the impact of measurement stand-off distance on the ability to

discriminate between spatially separated activity on the integrated circuit. Two proximal regions,

defined as Region 5 and Region 6, were used to further test spatial discrimination capabilities of

PCA and SVM. The data consist of 100 measurements taken per state on the decapsulated chip for

12 different states. The states were composed of clusters of 0, 2, 4, or 6 ring oscillators that are

activated in Region 5, or Region 6, or simultaneously in both Region 5 and Region 6.

The effect of measuring at different stand-off distances is simulated using upward continuation [120]

to calculate the expected magnetic field at a large stand-off distance, ∆z. Figure 4.10 shows the

average of the 100 measurements for 3 of the 12 different states and projections at ∆z = 0 µm

(decapsulated dataset), 50 µm, 250 µm, 500 µm (analog to an intact chip), and 1000 µm.

Distinct spatial patterns are evident for the activation of 2 ring oscillators in region 5 and region

6. Specifically, a greater number of oscillations in the magnetic field polarity are present in region

6 compared to region 5. This difference is the result of different routing of power distribution

in the top metal layer. Upward continuation of the data results in a decrease the magnetic field

amplitude that occurs more rapidly in region 6 as a function of stand-off distance than in region

5. This difference is expected due to the cancellation of the large number of oscillating fields from

neighboring wires in region 6. Even at ∆z = 1000 µm, there is clear spatial desirability between all

of the states, which is further quantified with PCA and SVM analysis.

The PCA + SVM analysis presented in the main text is performed on the extended dataset. How-

ever, in the case of the extended dataset, state classification is determined by the spatial location

of the active region in addition to number of ROs per region. Thus a correct classification for the

purposes of model accuracy consists of correctly identifying both the active region(s) as well as the
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Figure 4.10: Subset of the extended QDM magnetic field dataset with 2 ring oscillators (ROs)
active in region 5, region 6, or region 5 and region 6 simultaneously. The top row is high SNR
data of 100 measurements taken from the decapsulated chip. Subsequent rows show the calculated
magnetic image at different stand-off distances of ∆z = 50 µm, 250 µm, 500 µm, and 1000 µm.
The ∆z = 500 µm row is the closest approximation of measurements taken of an intact chip.
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is plotted as a function of the size of the dataset for both the training and test sets. A stand-off
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predicted region and active region are the same.
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number of active ring oscillators per active state; i.e. a state is defined as [active region, number

of active ROs]. Accuracy is defined as the fraction of states correctly classified. The robustness of

the dataset is tested by estimating the model accuracy as a function of the dataset size, shown in

Figure 4.11(a). The upward continued dataset with ∆z = 500µm is used and the size of the dataset

is varied from 10 samples per state to 100 samples per state. A train-test split of 64%/36% is used

to mimic the analysis of the original intact dataset. The training set has 100% accuracy when the

number of samples per state is less than 60, but dips slightly below 100% for larger datasets. This

is expected since the algorithm complexity is fixed but the absolute deviations in the data increase

with sample size. Despite the increased error rate in the training set for larger samples per state, the

larger datasets allow the model to learn the underlying structures of the dataset and consequently

generalize better to unseen data. Thus the accuracy increases from 75% at 10 samples per state to

97% with 100 samples per state. Beyond 30 to 40 samples per state, the accuracy begins to level

off, suggesting that 100 samples per state is enough data to get the maximum benefit from the PCA

+ SVM model.

The analysis is performed at various stand-off distances to test the predictive power of the model

at varying levels of signal degradation. The difference between the intact chip and the decapsulated

chip is about 500µm of package material and thus ∆z = 500µm is the best estimate for an analogous

dataset taken from an intact chip. Figure 4.11(b) shows the model accuracy as a function of stand-off

distance when the entire dataset is used (100 samples per state). As expected, perfect classification

is achieved for small stand-off distances and monotonically decreases in accuracy with increasing

stand-off distance. Importantly, for ∆z = 500µm, > 98% accuracy is achieved on the test set,

implying that an analogous intact dataset would have a high degree of spatial state classification in

addition to local power classification.

Finally, to further elucidate the ability to perform spatial classification, the state by state predication

rates are shown in Figure 4.11(c). Results with 32 samples per state are shown to mimic the original

dataset. A stand-off distance of ∆z = 1000µm is chosen to show that prediction errors occur in

accordance with expectations. Figure 4.11(c) presents the fraction of images with a given state that

were predicted to be each possible state. Most predictions lie on the main diagonal as the overall
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accuracy is about 89%. The red boxes show states from one region that were predicted to be in the

same region. The majority of misclassifications are expected to lie in these red boxes. This is clearly

the case, especially for region 6. In this region, 2 ring oscillators are misclassified as either 0 ring

oscillators or 4 ring oscillators from the same region. 4 ring oscillators are misclassified as either 2

or 6 ring oscillators, and 6 ring oscillators are misclassified as 4 ring oscillators. The fact that this

region has the highest error rate is consistent with expectation because the features in this region

become less distinguishable as stand-off distance increases. Most of the remaining misclassifications

are between region 5 and regions 5+6, which is expected since these regions look visually similar as

seen in Figure 4.10.
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A

MCMC samples

This appendix contains plots of the MCMC samples drawn for the synthesized exoplanets shown

in Fig. 2.4c. Each figure contains three trials for a 225 day period planet with a given baseline of

data and semi-amplitude. We take 3 trials because sometimes the MCMC samples do not converge

to the posterior distribution. Each row represents one of the five parameters fit with the Gaussian

process (GP). The x-axis of each plot represents the MCMC sample number ranging from 1 to 1000.

Each plot contains several colors, where each color represents the samples drawn from each walker

in the MCMC, as described in [79].
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Figure A.1: MCMC samples for a synthetic 225 day planet with a semi-amplitude of 1 m/s. The
data is synthesized with a baseline of 2 years.
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Figure A.2: MCMC samples for a synthetic 225 day planet with a semi-amplitude of 1 m/s. The
data is synthesized with a baseline of 4 years.
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Figure A.3: MCMC samples for a synthetic 225 day planet with a semi-amplitude of 1 m/s. The
data is synthesized with a baseline of 8 years.
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Figure A.4: MCMC samples for a synthetic 225 day planet with a semi-amplitude of 1 m/s. The
data is synthesized with a baseline of 16 years.
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Figure A.5: MCMC samples for a synthetic 225 day planet with a semi-amplitude of 1 m/s. The
data is synthesized with a baseline of 24 years.

79



Figure A.6: MCMC samples for a synthetic 225 day planet with a semi-amplitude of 0.5 m/s. The
data is synthesized with a baseline of 2 years.
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Figure A.7: MCMC samples for a synthetic 225 day planet with a semi-amplitude of 0.5 m/s. The
data is synthesized with a baseline of 4 years.
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Figure A.8: MCMC samples for a synthetic 225 day planet with a semi-amplitude of 0.5 m/s. The
data is synthesized with a baseline of 8 years.
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Figure A.9: MCMC samples for a synthetic 225 day planet with a semi-amplitude of 0.5 m/s. The
data is synthesized with a baseline of 16 years.
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Figure A.10: MCMC samples for a synthetic 225 day planet with a semi-amplitude of 0.5 m/s. The
data is synthesized with a baseline of 24 years.
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Figure A.11: MCMC samples for a synthetic 225 day planet with a semi-amplitude of 0.1 m/s. The
data is synthesized with a baseline of 2 years.
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Figure A.12: MCMC samples for a synthetic 225 day planet with a semi-amplitude of 0.1 m/s. The
data is synthesized with a baseline of 4 years.
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Figure A.13: MCMC samples for a synthetic 225 day planet with a semi-amplitude of 0.1 m/s. The
data is synthesized with a baseline of 8 years.
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Figure A.14: MCMC samples for a synthetic 225 day planet with a semi-amplitude of 0.1 m/s. The
data is synthesized with a baseline of 16 years.
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Figure A.15: MCMC samples for a synthetic 225 day planet with a semi-amplitude of 0.1 m/s. The
data is synthesized with a baseline of 24 years.
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B

Probing local dark matter density using stellar
accelerations

In this appendix a summary is provided of the work in [157]. D. F. Phillips and R. L. Walsworth

conceived the idea. M. Buschmann and B. R. Safdi performed the dark matter theory. A. Ravi

created the simulation and analysis of future work. N. Langellier performed the analysis of the

correlated noise dataset.

B.1 Introduction

Understanding the nature and distribution of dark matter is one of the most important issues in

modern physics [158]. Current estimates of the local dark matter density rely on indirect measure-

ments with large errors [159]. Here we propose a direct measure of the local dark matter density

by observing the acceleration of clusters of stars in the Milky Way galaxy. In the absence of dark

matter, the local acceleration of each star may be calculated as a function of its distance from the

center of the Milky Way, r. Two stars with differing values of r will thus experience a difference in

local radial acceleration. Shown in Figure B.1 is a diagram depicting the Earth located r0 from the

galactic center with a velocity v0 and acceleration a0. A cluster of stars ∆r towards the galactic
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Galactic Center
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Figure B.1: Geometry for observing stellar accelerations in the Milky Way. The solar system is at
a distance r0 from the Galactic Center (origin), has a rotational velocity v0 and feels an acceleration
a0 due to the Milky Way gravitational potential. Stars further inward feel a stronger acceleration.
From Earth, we can observe the radial velocity of stars ∆r away. By measuring small changes
in these velocities over time, we directly determine stellar accelerations and hence the Milky Way
gravitational potential. The diagram above is not to scale and angles are exaggerated for effect.
Figure credit: A. Ravi.

center will feel a difference in acceleration ∆ar. If we choose ∆r = 3 kpc, the acceleration difference

is ∆ar = 1.5× 10−8 cm/s2, which over the course of 10 years corresponds to a change in velocity of

about 5 cm/s. This number is conveniently close to the 10 cm/s target radial velocity (RV) semi-

amplitude of an Earth like planet discussed in chapter 2. Because 10 years is such a short fraction

of the orbital period of a star about the galactic center, this change in velocity will appear as linear.

Furthermore, these stars will experience the same noise properties also discussed in chapter 2. Thus

we can monitor the RV of a collection stars 3 kpc towards the galactic center over a decade and

fit this time series with same Gaussian process (GP) model used in exoplanet searches. The only

addition will be a linear drift term to measure the radial acceleration of each star. If the mean

difference in acceleration is statistically significantly different from expected value in the absence of

dark matter, we can obtain a direct measure of the local dark matter density. Details can be found

in [157].
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B.2 Results

In a series of numerical experiments, we attempt to recover an injected ∼ 5 cm/s/decade acceleration

signal from a large ensemble of synthesized vtotal time series for N simulated primary stars.

First, to assess what is possible with present-day state-of-the-art instruments and analysis tech-

niques, we set the Gaussian white noise standard deviation σWN to 60 cm/s and add correlated

noise with amplitudes ranging from 50 cm/s to 250 cm/s on a given star (the range of noise levels

observed in the Sun [160]). In order to fit the more complicated noise model, we employ a Gaussian

process (GP) regression with a quasiperiodic kernel function [51, 72, 161]. The GP regression is also

able to simultaneously fit the Keplerian components of the time series (i.e., those associated with

planets and stellar companions). With the GP fit (N = 75,044 stars) we obtain a mean (standard

error of the mean σ given in parentheses) of 1.42(0.24)×10−8 cm/s2. In contrast, a simple linear fit

(N = 72,425 stars) to the time series yields a mean acceleration of 2.00(0.58)×10−8 cm/s2. Thus

the GP fit reduces the uncertainty by more than a factor of 2 compared to the linear fit, recovers

the injected stellar acceleration signal of 1.5× 10−8 cm/s2 within 1σ and is ≈ 6σ away from a null

result. The probability density functions for the fitted accelerations are shown in Figure B.2(a).

We can vary the observed number of stars N to determine what is required for a statistically

significant detection. For our purposes, a detection at the level nσ is defined as the mean lying nσ

away from zero. Figure B.2(b) shows σ as a function of N . Unfortunately, nearly 2 × 104 stars

are required for a 3σ detection (σ ≈ 0.5 × 10−8 cm/s2). This is a prohibitively large sample size

given realistic quantities of observation time. However, we reiterate that N represents the number

of stars in an initial sample before target selection.

As in the case of Earth-like exoplanet detection, current telescope hardware and analysis techniques

do not allow for the detection of differences in stellar accelerations suitable for dark matter density

mapping. We find here as well that next generation telescopes in addition to better models of

stellar activity will allow for these accelerations to be measured with a high degree of statistical
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Figure B.2: (a) Probability density function (PDF) of fitted stellar accelerations for ∼ 7.5 × 104

stars using Gaussian processes (GP) (blue) and a simple linear fit (orange). 60 cm/s of white noise
and quasiperiodic correlated noise ranging from 50 cm/s to 250 cm/s is added to each time series.
(b) Standard error of the mean (SEM) vs. number of stars observed. A 3σ detection (dotted gray
line) is obtained after about 2× 104 stars for the GP fit.
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Figure B.3: Probability density function (PDF) of fitted stellar accelerations for 103 stars, using
a simple linear fit and filtering using periodogram power. The only source of noise included is 10
cm/s white noise. The dotted black curve is a Gaussian fit to the histogram (a guide to the eye).
The injected acceleration signal of 1.5 × 10−8 cm/s2 is shown as a blue dotted line. Figure credit:
A. Ravi.

significance. Figure B.3 shows a histogram of linear fits to 1,000 RV time series with a white noise

level of σWN = 10 cm/s and no correlated noise. Using these data, we obtain a mean acceleration

of 1.46(0.21)×10−8 cm/s2, which is a 7σ difference from a null result. This analysis shows promise

for local dark matter density mapping with next generation telescopes.

B.3 Time series analysis using Gaussian processes

In order to test the feasibility of a stellar acceleration survey campaign with present-day technology

and analysis techniques, realistic RV time series are generated with correlated noise and a Gaussian

process (GP) regression is employed [51, 72, 161] to model these data. A GP assumes the data are

normally distributed with mean µ and covariance matrix K. This allows for a simultaneous fit of

any deterministic physics with a model of the correlated noise.

For this analysis, the mean function models both the stellar acceleration and M Keplerian signals
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(stellar companions and planets):

µ(ti) = ∆arti + voff +

M∑
j=1

Aj sin

(
2πti
Tj

+ φj

)
, (B.1)

where the relative stellar acceleration is ∆ar and the offset velocity is voff. Each orbiting body

is assumed to have zero eccentricity so Aj , Tj , and φj are the RV amplitude, orbital period, and

orbital phase offset for the jth orbiting body, respectively. The number of Keplerian signals, M , is

chosen by assuming we would have knowledge of some (but not necessarily all) orbiting bodies for

a given star. For our fits, we look at each orbiting body injected into the simulation and include

it in Eq. (B.1) if the RV amplitude is greater than 1 m/s and the orbital period is less than 104

days. This corresponds to an optimistic cutoff where an orbiting body at the limit of state of the

art techniques (∼ 1 m/s) has an orbital period almost three times the observing campaign length.

Such a body would have a change in RV over the observing campaign comparable to the injected

instrumental white noise (∼ 60 cm/s). Keeping all orbiting bodies that meet these criteria provide

a best case scenario wherein the feasibility of this analysis is easily tested.

The covariance matrix K is populated using the quasiperiodic kernel function given in Eq. (2.1)

with an additive white noise term on the main diagonal:

Ki,j(ti, tj) = σ2QPkQP(ti, tj) + σ2WNδ(ti, tj) (B.2)

The GP model thus contains a total of 7 + 3M fit parameters,

θGP = 〈∆ar, voff, {Aj}, {Tj}, {φj}, σQP, τ, η, Prot, σWN〉 (B.3)

with a likelihood function given by

L (θGP|v, t) =
1√
|2πK|

e−
1
2
(v−µ)TK−1(v−µ), (B.4)
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where v is a vector of the measured RVs at times t, and µ and K are functions of t and θGP as

described in Equations (B.1) and (B.2). The relative stellar acceleration, ∆ar, is given a Gaussian

prior with a mean equal to the injected stellar acceleration signal and a standard deviation of 30

times the mean, i.e.,

P (∆ar) ∼ N
(

1.5× 10−8 cm/s2, 45× 10−8 cm/s2
)
. (B.5)

This prior is chosen to include the expected value of the relative stellar acceleration and reasonable

deviations about this value while rejecting accelerations from long-period orbiting bodies that are

degenerate with the stellar acceleration signal on the timescale of a decade. The remaining model

parameters are allowed to vary freely.

The maximum a posteriori is taken as the parameter estimate, θ̂GP. Minimization of the negative

log posterior yields the desired result:

θ̂GP = argminθGP
[− lnL (θGP|v, t)− lnP (∆ar)] . (B.6)

Minimization is performed using the quasi-Newton method of Broyden, Fletcher, Goldfarb, and

Shanno [162]. Initial guesses for the model parameters, θGP,0, were chosen assuming we would have

knowledge of their true values, θGP, true. The values were normally distributed about their true

value with a standard deviation of about 3% of the mean, i.e.,

P (θGP,0) ∼ N
(
θGP, true,

1

30
θGP, true

)
. (B.7)

The Python [76] packages NumPy [77], SciPy [78], and George [80] were used for this analysis.
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