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ABSTRACT

Radial velocity (RV) searches for Earth-mass exoplanets in the habitable zone around Sun-like stars are lim-
ited by the effects of stellar variability on the host star. In particular, suppression of convective blueshift and
brightness inhomogeneities due to photospheric faculae/plage and starspots are the dominant contribution to the
variability of such stellar RVs. Gaussian process (GP) regression is a powerful tool for modeling these quasi-
periodic variations. We investigate the limits of this technique using 800 days of RVs from the solar telescope
on the HARPS-N spectrograph. These data provide a well-sampled time series of stellar RV variations. Into this
data set, we inject Keplerian signals with periods between 100 and 500 days and amplitudes between 0.6 and
2.4 m s−1. We use GP regression to fit the resulting RVs and determine the statistical significance of recovered
periods and amplitudes. We then generate synthetic RVs with the same covariance properties as the solar data to
determine a lower bound on the observational baseline necessary to detect low-mass planets in Venus-like orbits
around a Sun-like star. Our simulations show that discovering such planets using current-generation spectro-
graphs using GP regression will require more than 12 years of densely sampled RV observations. Furthermore,
even with a perfect model of stellar variability, discovering a true exo-Venus with current instruments would
take over 15 years. Therefore, next-generation spectrographs and better models of stellar variability are required
for detection of such planets.

Keywords: exoplanets — techniques: radial velocities, Gaussian processes — Sun: activity — planets and
satellites: detection
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1. INTRODUCTION

State-of-the-art radial velocity (RV) searches for low-mass,
long-period exoplanets are limited by signals produced by
stellar magnetic variability. An Earth-like planet in orbit
around a Sun-like star in its habitable zone induces a re-
flex RV signal on the order of 10 cm s−1. However, the
presence of acoustic oscillations, magnetoconvection, large-
scale magnetic structures, and other stellar processes induce
RV perturbations that can exceed 1 m s−1 (see Cegla, H. M.
(2019); Fischer, D. A. et al. (2016) and references therein).
This stellar variability can conceal and even mimic plane-
tary signals in RV surveys, and has resulted in many false
detections (e.g., the disproval of CoRoT-7d, Haywood, R. D.
et al. (2014); GJ 581d and g, Robertson, P. et al. (2014); Al-
pha Centauri Bb, Rajpaul, V. et al. (2016)). Furthermore,
these stellar processes act on timescales between minutes and
months (Kjeldsen, H. & Bedding, T. R. 1995; Giles, H. et al.
2017). For Sun-like stars, the dominant contributions to these
intrinsically driven RV perturbations are from the suppres-
sion of convective blueshift and brightness inhomogeneities
modulated at the rotation period (Meunier, N. et al. 2010; Du-
musque, X. et al. 2014). The wide range of timescales and
non-trivial correlations between these processes require a so-
phisticated statistical framework to decouple stellar activity
processes from planetary signals. Hall, R. D. et al. (2018)
and Haywood, R. D. et al. (2020) study these effects by re-
covering injected planets of known properties into real data.

In this work, we use state-of-the-art Gaussian process
(GP) regression to account for the temporal correlations of
rotationally-modulated stellar activity (Dumusque, X. et al.
2017; Damasso, M. et al. 2019). This GP regression is trained
on solar data, as measured by a purpose-built solar telescope
feeding the HARPS-N spectrograph (Cosentino, R. et al.
2014) operating at the Telescopio Nazionale Galileo (TNG)
in the Canary Islands (Dumusque, X. et al. 2015; Phillips,
D. F. et al. 2016). In section 2, we first present the solar
data and the GP regression along with the resulting fit on the
daily-averaged solar RVs. In section 3, we introduce syn-
thetic planets of varying semi-amplitude and orbital period
in order to determine the sensitivity of the GP regression to
temperate, low-mass planet searches. We conclude in section
4 with an analysis of the baseline of RV observations and
model assumptions that are necessary for a true exo-Earth
detection.

∗ Corresponding Author: nlangellier@gmail.com
† NASA Sagan Fellow
‡ CHEOPS Fellow, SNSF NCCR-PlanetS

UKRI Future Leaders Fellow

2. METHODS

2.1. Data

We take 5 minute disk averaged exposures of the Sun us-
ing the solar telescope and the HARPS-N spectrograph at
the TNG, and use a baseline of around 800 days of near-
continuous, daytime, solar spectra (Dumusque, X. et al.
2015; Phillips, D. F. et al. 2016). For each exposure,
the HARPS-N Data Reduction Software (DRS) (Baranne,
A. et al. 1996; Sosnowska, D. et al. 2012) computes the
barycenter-corrected RV with 40 cm s−1 single exposure pre-
cision and the Mt. Wilson S index (Wilson, O. C. 1968), a
measure of stellar magnetic activity derived from chromo-
spheric re-emission in the core of the singly-ionized Ca H
and K line cores (Linksy, J. L. & Avrett, E. H. 1970). The
resulting RVs are further reduced, as described in Collier
Cameron, A et al. (2019), to remove the RV signatures of the
solar system planets, effects of differential extinction across
the solar disk in the Earth’s atmosphere, and other systematic
effects due to the Earth’s orbit around the Sun. To mimic the
sampling of a typical stellar observing schedule while pre-
serving the exquisite signal-to-noise ratio (SNR) of the solar
telescope (Phillips, D. F. et al. 2016), we compute daily av-
eraged values of each quantity including the RVs, the S in-
dex, and the corresponding mean Julian date. While realistic
stellar observing schedules would not allow for this level of
averaging, which integrates over variability on the minutes
and hours timescale, we wish to assess the best-case scenario
using an ultra-high SNR dataset.

2.2. Gaussian Process Kernel

Magnetic variability can be the dominant source of vari-
ance for stellar RVs of nearby, bright Sun-like and low-mass
stars, reaching levels surpassing 1 m s−1 (Isaacson, H. & Fis-
cher, D. 2010; Motalebi, F. et al. 2015). Intrinsic stellar vari-
ability introduces correlations into the RV time series that
are difficult to model deterministically. GP regressions have
emerged as a powerful statistical technique that relaxes the
assumption of uncorrelated noise by adding nonzero terms
to the off diagonal of the data covariance matrix. Usually a
kernel function is chosen to describe these covariances as a
function of measurement separation time (Rasmussen, C. E.
& Williams, C. K. I. 2006; Haywood, R. D. et al. 2014; Raj-
paul, V. et al. 2015; Faria, J. P. et al. 2016; Damasso, M. et al.
2019).

Since magnetic activity is well described by the S index
and is modulated at the rotation period of the star, we fit the
S index to a GP with a quasi periodic (QP) covariance kernel
function, kQP. This kernel function is chosen heuristically to
model the known properties of the magnetic activity, yielding
the correlation between two measurements at times ti and t j
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Figure 1. GP regression fits to ∼ 800 days of solar S index and RV data from the solar telescope and HARPS-N. (a) S index (blue) and GP
regression fit (orange). (b) Histogram of mean-subtracted S index values (blue) and histogram of the residuals of the GP regression fit (red). (c)
Daily average RVs (blue) and GP regression fit (orange). The mean value represents the HARPS-N instrumental offset and carries no physical
meaning. (d) Histogram of mean-subtracted RVs (blue) and histogram of the residuals of the GP regression fit (red). The RMS variation is
reduced from 1.65 m s−1 to 1.14 m s−1. The relative size of the white noise compared to the correlated noise is higher in the RVs than in the S
index, emphasizing the need for a more sophisticated model to account for RV variation.

given by

kQP(ti, t j) = exp
(

−
(ti − t j)2

2τ 2 −
1

2η2 sin2
(
π(ti − t j)

Prot

))
(1)

where τ is related to the average lifetime of active regions
on the Sun, η is related to the average distribution of activ-
ity in the photosphere of the Sun, and Prot is approximately
the synodic rotation period of the Sun. Grunblatt, S. K. et al.
(2015) show this kernel function performs the best among
three common GP kernel functions. The GP regression also
includes a white noise (WN) term to account for additional
uncorrelated noise sources such as instrumental effects. Am-
plitudes of both the correlated and uncorrelated terms are al-
lowed to vary, leading to a covariance matrix, KS, with com-
ponents

KSi j = σ2
QP,SkQP(ti, t j) +σ2

WN,SIi j (2)

where σQP,S and σWN,S are the two amplitudes, and I is the
identity matrix.

2.3. Fitting the S Index

With a single, time-independent parameter representing
the mean value of the S index, µS, the set of fit parameters

contains six variables:

θS = {µS, σQP,S, σWN,S, τ , η, Prot} (3)

and the GP likelihood function (Rasmussen, C. E. &
Williams, C. K. I. 2006) is given by

L
(
θS|s, t

)
=

1√
det (2πKS)

exp
(

−
1
2

∆sTK−1
S ∆s

)
(4)

where ∆s = s −µS and s is a vector containing the daily av-
eraged S index at times t for all the S index values shown
in Fig. 1a. Each parameter is assigned a uniform prior prob-
ability with upper and lower bounds encompassing realistic
values, shown in Table 1. The posterior probability distribu-
tion, pS

(
θS|s, t

)
, is then proportional to L

(
θS|s, t

)
within the

prior bounds and 0 otherwise.
We estimate the posterior distribution using an affine-

invariant Markov chain Monte Carlo (MCMC) method, im-
plemented with the Python (van Rossum, G. 1995) packages
NumPy (Oliphant, T. 2006), SciPy (Jones, E. et al. 2001),
emcee (Foreman-Mackey, D. et al. 2013), and george
(Ambikasaran, S. et al. 2014). Following Foreman-Mackey,
D. et al. (2013) 32 walkers are used to sample the parameter
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Figure 2. Marginalized distributions of the posterior distribution given by the MCMC samples. The lower left triangle shows samples (and
contour lines) from the S index fit and the upper right triangle shows samples (and contour lines) from the RV fit. Each parameter is unimodal
and only slight correlations exist between parameters. Thus both posterior distributions are well behaved.

space, and are initialized with a normal distribution around
mean values from a maximum likelihood fit and known prop-
erties of the Sun. These values are summarized in Table 1.
The first 100 samples are discarded allowing the walkers to
converge to the posterior distribution before evaluating an ad-
ditional 50,000 samples per walker. To remove correlations
between samples, they are thinned by keeping one out of ev-
ery nS samples for each walker, where nS = 21 is the average
correlation length of the walkers as estimated by the autocor-
relation. This yields a total of 76,032 uncorrelated samples
for each parameter.

The resulting parameter estimates, θ̂S, are displayed in the
last column of Table 1 as the median value of these uncor-
related samples. The error bars are reported as the 16%
and 84% quantiles. The values obtained are consistent with
known solar properties. Of note is the active region lifetime,
τ , which is less than one rotation period despite lifetimes of
photospheric faculae typically being greater than six rotation
periods. Variability of the distribution of faculae on the solar
surface is expected to drive this value down below the lifes-
pan of an individual facular region. The GP regression fit
to the S index and a histogram of the residuals are shown in
Fig. 1a,b. The variances and covariances of the MCMC sam-
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Fit Parameter Units Prior MCMC Initial Guess Fit Value

θS (S index fit parameters)

µS U(0.15,0.17) mean(s) = 0.1626 0.1627+0.0002
−0.0002

σQP,S U(10−5,10−1) std(s) = 1.83×10−3 1.43+0.10
−0.09 ×10−3

σWN,S U(10−5,10−1) std(s) = 1.83×10−3 0.178+0.007
−0.007 ×10−3

τ days U(5,100) 22 23.6+1.1
−1.1

η U(0.1,0.9) 0.5 0.58+0.04
−0.04

Prot days U(24,32) 27 28.1+0.4
−0.5

θRV (RV fit parameters)
µRV m s−1 U(97,113) mean(r) = 102.4 102.4+0.3

−0.3

σQP,RV m s−1 U(0.01,10) std(r) = 1.65 1.44+0.16
−0.15

σWN,RV m s−1 U(0.01,10) std(r) = 1.65 1.25+0.04
−0.04

Table 1. Summary of parameters used for Markov chain Monte Carlo (MCMC) sampling for the S index and RV fits of solar telescope and
HARPS-N data. The upper and lower bounds of the uniform priors are given in addition to the initial guesses used for each parameter. The last
column shows the resulting median value of the MCMC samples and their corresponding 16% and 84% quantiles as error bars.

ples are shown graphically in the bottom left half of Fig. 2.
The largest correlations are the (η, σQP,S) and (η, σWN,S) pairs
with statistically significant Pearson correlation coefficients
(Student 1908) of 0.49 and 0.42 respectively. This could
indicate an unaccounted for spatial dependence in the mag-
netic activity. Furthermore, significant correlations exist in
the (η, τ ) and (η, Prot) pairs, potentially reflecting the migra-
tion of active regions from higher latitudes (and thus longer
rotation period) to lower latitudes (and thus shorter rotation
period) over the 2.2 years of data. Additionally, σQP,S in-
creases slightly with τ , lending further evidence to a time
dependence in the fit parameters as τ will be longer for the
on average larger, longer-lived active regions earlier in the
solar magnetic cycle. These correlations suggest a more so-
phisticated model may more closely represent the physical
mechanisms in the photosphere of the Sun and thus capture
more of the RV variation due to activity. Further investiga-
tion of these correlations are left to future study.

2.4. Fitting the RVs

We assume that the magnetic activity driving the S index
also affects the observed RVs with equivalent correlated vari-
ability and thus may be described with equal GP regression
parameters: τ , η, and Prot. Unlike Rajpaul, V. et al. (2015)
who fit the S index and RVs simultaneously, we model the S
index and RVs consecutively. We fit the RVs using the same
quasiperiodic kernel function of equation (1) with the spot
lifetime, τ , spot distribution, η, and the rotation period Prot

fixed at the median value from the S index fit. Because the
effects of solar system planets have already been removed
from the RVs, we are left with only three fit parameters:

θRV = {µRV, σQP,RV, σWN,RV} (5)

and the likelihood function becomes

L
(
θRV|r, t

)
=

1√
det (2πKRV)

exp
(

−
1
2

∆rTK−1
RV∆r

)
(6)

where ∆r = r −µRV, r is a vector of the RVs at times t and
KRV is populated with θRV by substituting all ‘S’ subscripts
with ‘R’ in equation (2). Priors are shown in Table 1.

The posterior probability, pRV
(
θRV|r, t

)
, is proportional to

the likelihood function within the bounds of the prior and
0 otherwise. It is sampled using the same MCMC protocol
as with the S index and we observe a correlation length of
nRV = 11. Retaining one of every nRV samples leads to a
total of 145,312 uncorrelated samples. The parameter esti-
mates, θ̂RV, are summarized in Table 1 and the resulting GP
regression fit and residuals are shown in Fig. 1. The fit re-
duces the RMS scatter in the data from 1.65 m s−1 to 1.14
m s−1, consistent with Milbourne, T. W. et al. (2019), Mik-
los, M. et al. (2020), and other solar analyses (see section 5).
The marginalized distributions are shown in Fig. 2 and again
display a well behaved posterior distribution. The only sig-
nificant correlation exists between σQP,RV and σWN,RV and is
negative, which is expected as these parameters will trade off
the amount of variation seen in the RVs.

3. SENSITIVITY MAP

3.1. Synthetic Planet Model

To explore the limits of our GP regression for detecting
low-mass, long-period exoplanets, we inject synthetic plan-
ets with varying Keplerian parameters into the solar RVs.
The general Doppler induced radial velocity, vRV(t), of a host
star by a companion planet is given by

vRV(t) = Kpl
[
cos(ω +ν(t|tp,Porb,e)) + ecos(ω)

]
(7)

where Kpl is the semi-amplitude, ω is the argument of peri-
astron, e is the eccentricity, tp is the time of pericenter pas-
sage, Porb is the orbital period, and ν(t|tp,Porb,e) is the true
anomaly (Perryman, M. 2011). As a best case scenario, we
restrict ourselves to circular orbits (i.e., e = 0), which simpli-
fies the Doppler shift to the sine function

vRV(t) = Kpl sin
(

2πt
Porb

+φ

)
(8)
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Figure 3. Sensitivity maps of the recovered (a) semi-amplitude, Kpl, and (b) orbital period, Porb, of synthesized planets using the GP regression
with synthetic planetary signals injected into the 800 days of solar RVs. Color bars show the statistical significance (SS) of the recovered
parameters as defined in equation (11). The white lines in (a) show contours of 2σ,3σ, . . . statistical significance and the white lines in (b) show
contours of 5σ,10σ,20σ,30σ, and 50σ statistical significance. Each "pixel" in either image represents one of the 210 simulated planets. The
orbital period is generally recovered with a high degree of confidence but the semi-amplitude is only recovered at the 5σ level for planets with
semi-amplitude above 1 m s−1.

where φ is an arbitrary phase. A synthetic planet is then gen-
erated by choosing values for the semi-amplitude, orbital pe-
riod, and phase followed by adding vRV(t) to the vector of
measured solar RVs, r, observed at times t. The vector of
RVs thus undergoes the transformation

r→ r + vRV(t). (9)

The GP regression now contains a mean function given by
the addition of the overall mean value of the RVs, µRV, along
with the Keplerian parameters required to describe the in-
jected circular planetary orbit:

θRV = {Kpl, Porb,φ, µRV, σQP,RV, σWN,RV} (10)

and the likelihood function is still given by (6), with the
exception that the vector of fit residuals becomes ∆r = r −

(µRV + vRV(t)) with t the vector of observation times and vRV

the function defined in Eq. 8.

3.2. Retrieval of Injected Signals

Using the techniques of the previous section, we construct
a map of detection sensitivities for a range of synthetic, low-
mass, long-period planets. Our grid contains 210 injected
planets with semi-amplitudes from 0.6 m s−1 to 2.4 m s−1

in 0.2 m s−1 steps and orbital periods from 100 days to 500
days in 20 day steps. The phase of each planet is drawn
from a uniform distribution, φ ∼ U(−0.1,0.1) radians, and
the prior on the phase is uniform from −π to π radians. This
is done to avoid numerical instabilities associated with the

phase occurring near the boundary of the prior. The prior
on the semi-amplitude allows only positive values less than
10 m s−1 and the prior on the orbital period is in the range
( 1

2 Porb,2Porb). For planets detected with a high degree of sta-
tistical significance, the priors are uninformative and do not
affect the results. However, for the lowest mass planets with
1σ detections or less, the priors do constrain the results as
described below. These planets set the lower bound on the
range of injected semi-amplitudes used in this analysis.

We draw MCMC samples, exploring the semi-amplitude
and orbital period linearly, in the same fashion as the pre-
vious section with the non-Keplerian parameter priors un-
changed. We again define the parameter estimates, θ̂RV, as
the median value of the uncorrelated samples and the corre-
sponding lower and upper bounds, θ̂R, lower and θ̂R, upper, as
the 16% and 84% quantiles. The statistical significance, SSi,
is defined as

SSi =

∣∣∣θ̂i

∣∣∣
1
2

(
θ̂i, upper − θ̂i, lower

) (11)

where θi is a given parameter from the vector defined in Eq.
(10). We plot the statistical significance of the recovered or-
bital period and semi-amplitude of the 210 synthetic planets
in Fig. 3. The orbital period is determined with a high de-
gree of statistical significance, though for semi-amplitudes
below 1 m s−1 this should be taken as an upper bound as
the MCMC samples begin to encounter the edges of the uni-
form prior. The semi-amplitude, however, is much less cer-
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tain. For a 5σ “discovery” threshold, planets with a semi-
amplitude less than 1 m s−1 would require more observations
than the 800 days of solar telescope data used in this analysis.
The structure of the contours in Fig. 3(a) is likely due to our
non-continuous observing schedule. In particular, Nava, C.
et al. (2019) find that activity-driven signals at orbital peri-
ods unrelated to either planetary orbital periods or the stellar
rotation period can arise from uneven sampling. Thus even
the near-daily, long-baseline observing schedule of the solar
telescope decreases the semi-amplitude sensitivity (Hall, R.
D. et al. 2018). We find agreement within parameter uncer-
tainties between the injected and extracted orbital periods and
semi-amplitudes, suggesting no systematic effects induced
by the GP regression. In the next section we explore the
baseline of observations required to detect sub-m s−1 plan-
ets using completely synthetic RVs.

4. SYNTHETIC RVS

To study longer observing baselines than in the previous
section, we synthesize not only Keplerian Doppler shifts, but
also the solar RVs themselves. We thus extend the observing
baseline to determine the requirements for detecting a low-
mass, long-period analog. A synthetic planet with the orbital
period of Venus (225 days) is injected with varying semi-
amplitude. We use the orbital period of Venus to avoid sys-
tematic biases associated with measuring any periodic signal
at 365 days.

4.1. Observing schedule

The first step to synthesizing solar telescope data is to cre-
ate a realistic observing schedule to account for bad weather
and telescope downtime. We assume a naive model where
each calendar month, m, is assigned an observation probabil-
ity, pobs(m), which represents the fraction of days that have
observations in month m. These probabilities are estimated
using historical solar telescope data with the corresponding
fraction of days with 10 or more observations. These proba-
bilities are shown in red in Fig. 4a.

For any given day d in month m, a uniform random num-
ber, r(d) ∼ U(0,1), is drawn and compared to pobs(m). If
r(d) ≤ pobs(m), an observation occurs. This process is re-
peated for as many consecutive days as needed. Using this
process, we create a synthetic 30 year observing schedule
mimicking the solar telescope seasonal variations. The re-
sulting synthetic observing schedule is shown in blue in
Fig. 4a.

4.2. Observation times

The second step for simulating data is to generate an ob-
servation time for each day with an observation. We begin
by computing the mean observation time of all exposures in
each day from historical solar telescope data, limiting only to

days with at least 10 exposures. This distribution of mean ob-
servation times is histogrammed and fit to a Gaussian kernel
density estimate (KDE) (Scott, D. W. 2015). Synthetic ob-
servation times are drawn from this KDE. Fig. 4b shows the
distribution of mean telescope exposure times and the result-
ing observation times drawn from the KDE. These observa-
tion times coupled with the observing days from the previous
section completely determine the observing schedule of the
simulated data.

4.3. Synthesized RVs

Finally we synthesize the solar telescope RVs using a GP
with the same kernel function given in equation (2). The
parameter values used to populate the covariance matrix are
taken from the GP regression fit of the solar data as given in
Table 1. A random sample of RVs is then drawn from the GP
using these parameter values and the synthetic observation
times generated in the previous section. Because the solar
telescope RVs only cover a fraction of the solar magnetic cy-
cle during solar minimum, we do not model this effect and
thus the resulting synthetic RVs represent a best case sce-
nario for this model. Additionally, a Keplerian term given by
equation (8) is added with several test semi-amplitudes, an
orbital period of 225 days, and a phase drawn randomly in
the interval (−0.1,0.1) radians.

We then draw MCMC samples and define the parameter
estimates and lower and upper bounds as before to determine
the statistical significance of the recovered semi-amplitude
for baselines of data equal to 2, 4, 8, 16, and 24 years. We
repeat this process for semi-amplitudes given by 1, 0.5, and
0.1 m s−1. The resulting statistical significances are shown in
Fig. 4c. The dashed-dotted curve representing the 0.1 m s−1

planet represents an upper bound, with the prior probability
distribution on the semi-amplitude restricting its value to be
positive. Even for a 0.5 m s−1 planet, we determine that be-
tween 10 and 15 years of data are needed to reach the 5σ
discovery threshold using this GP regression and data similar
to that of the HARPS-N solar telescope.

As shown above, a multi-decade temporal baseline is re-
quired to detect a temperate, low-mass planet orbiting a Sun-
like star using this GP regression. Thus we next assume that
we have a direct measure of the magnetic variability of the
target star and are able to perfectly remove the effects of vari-
ability from the RVs, leaving only the planetary signals and
white noise. We can then fit to a sine curve with simple least
squares methods. We expect the semi-amplitude uncertainty,
σKpl , to scale with the measurement sensitivity, σRV, divided
by the square-root of the number of RV measurements, N
(Cloutier, R. et al. 2018):

σK = σRV

√
2
N
. (12)
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Figure 4. Generating synthetic RVs based on historical solar telescope observations. (a) Seasonal variation of solar telescope and synthetic
observations. Red histogram shows the fraction of days with at least ten 5 minute exposures for 12 evenly spaced sections of a year (does
not correspond to calendar months). Blue histogram shows the analogous ratio of seasonal observations from dates synthesized from the red
histogram. (b) Histogram of RV observation times given as a fraction of a day since noon UTC: blue - all 5 min solar telescope exposures,
orange - daily averaged observation times for days with at least ten 5 minute exposures, green - synthesized observation times using a Gaussian
kernel density estimate. (c) Statistical significance (SS), defined in equation (11), of the recovered semi-amplitude, Kpl, using a GP regression
for an "exo-Venus" (225 day orbital period) as a function of baseline of data. Solid (circles) and dashed (triangles) curves show the SS for an
"exo-Venus" with semi-amplitudes of 1.0 m s−1 and 0.5 m s−1 respectively. Dashed-dotted (squares) curve shows an upper bound for a semi-
amplitude of 0.1 m s−1. Dashed grey line shows the 5σ detection threshold. (d) SS for a 0.1 m s−1 "exo-Venus" with stellar variability perfectly
removed (i.e., only white noise). Solid and dashed curves show the SS for white noise amplitudes of 0.2 m s−1 and 0.8 m s−1 respectively. Error
bars are shown as vertical lines and are too small to be seen for baselines less than 15 years. Again, dashed grey line shows the 5σ detection
threshold.

To confirm this scaling, we synthesize RV time series com-
prising simple white noise and a Keplerian Doppler shift of
Kpl = 10 cm s−1 for an injected planet with an orbital period of
225 days (i.e., an exo-Venus). We generate this data for vary-
ing baselines and white noise levels of both 0.8 m s−1 and 0.2
m s−1. The statistical significance of the semi-amplitude, Kpl,
from least squares fits to these data sets are shown in Fig. 4d
and are in good agreement with expectations set by Eq. 12.
We emphasize that we need to reduce the white noise to lev-

els approaching 0.2 m s−1 to reach the 5σ detection threshold
in only a few years for a true exo-Venus.

5. DISCUSSION AND CONCLUSIONS

The GP regression of Sec. 2 reduces the RMS variation
of the solar RVs from 1.65 m s−1 to 1.14 m s−1. However,
treating stellar variability with this GP regression still re-
quires 10 to 15 years of densely sampled RV observations
to detect long-period, low-mass planets. This is much longer
than would be expected if the RVs contained purely uncorre-
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lated white nosie. This result is in line with more physically-
motivated techniques. For example, Milbourne, T. W. et al.
(2019) used magnetograms and dopplergrams from the He-
lioseismic and Magnetic Imager (HMI) on board the Solar
Dynamics Observatory (SDO) to derive activity-driven RV
timeseries. By modeling the HARPS-N RVs using these ac-
tivity timeseries, they reduced the RV RMS from 1.65 m s−1

to 1.21 m s−1. Haywood, R. D. et al. (2020) reduced the
RV RMS to 0.85 m s−1 by modeling the RVs with a linear
combination of the unsigned magnetic flux from HMI and
the total solar irradiance, using the FF ′ method (Aigrain, S.
et al. 2012). Fitting our GP regression to the unsigned flux
may yield a smaller variation in the RV residuals, and this
will be investigated in a future work. Dumusque, X. (2018)
and Cretignier, M. et al. (2020) used logistic regression and
gradient boosting on HARPS-N solar spectra to differentiate
activity sensitive and insensitive lines. Computing RVs from
these sets of lines reduced the RV RMS to 0.9 m s−1. Simi-
larly, Miklos, M. et al. (2020) applied the techniques of Me-
unier, N. et al. (2017) to the HARPS-N solar RVs to estimate
magnetoconvective RV variations. This analysis, however,
was unable to reduce the observed RMS RVs.

That the GP regression — a statistical tool — per-
forms similarly to these more physically-motivated analyses
demonstrates its power: rather than requiring high-resolution
solar images or specially tuned line lists, the GP regression
assumes a correlation between the solar S index and ob-
served RVs. However, the fact that the GP analysis and these
physically-motivated techniques arrive at the same approxi-
mately 1 m s−1 RV uncertainty level indicates that something
else — either another physical process operating on a dif-
ferent timescale or an instrumental systematic — is limiting
the performance of these techniques. Haywood, R. D. et al.
(2020) discuss some physical effects missing from the cur-
rent models, to be addressed in future work. However for cur-
rent data analysis models, the solar dataset used in this work,
with nearly 2.5 years of near-daily observations mostly in the
decline phase of Cycle 24, represents a best-case scenario;
we can therefore only perform 5σ recoveries of long-period
planets with semi-amplitudes greater than 1 m s−1, consistent
with the results of the recent community-wide RV challenge
of Dumusque, X. et al. (2017).

Our work using synthetic RVs indicates that more obser-
vations will not quickly overcome this limit: As shown in
Fig. 4, it will take 10-15 years to get 5σ on a 0.5 m s−1

RV signal with a 225 day period (i.e., the orbital period of
Venus), and at least 25 years for a 0.1 m s−1 RV signal. The
last panel of this figure also indicates that a perfect model
of activity-driven correlated variations would not in itself
suffice for the rapid detection of an exo-Venus or an exo-
Earth: even in the absence of correlated noise, a current-
generation spectrograph with a long term stability of about

0.8 m s−1 would need a 10-15 year observing baseline to
reach a 5σ detection of an exo-Earth. Successful exo-Earth
discovery therefore requires both more sophisticated mod-
els of stellar variability and the improved RV precision, long
term stability, and dense observational sampling from a next-
generation spectrograph (Wright, J. T. & Robertson, P. 2017)
such as ESPRESSO (Pepe, F. A. et al. 2010), NEID (Allen,
L. E. et al. 2018), EXPRES (Jurgenson, C. et al. 2016),
HARPS3 (Thompson, S. J. et al. 2016), or G-CLEF (Szent-
gyorgyi, A. et al. 2014) on the GMT.
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