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Nitrogen-vacancy (NV) spin ensembles in diamond provide an advanced magnetic sensing plat-
form, with applications in both the physical and life sciences. The development of isotopically
engineered 15NV diamond offers advantages over naturally occurring 14NV for magnetometry, due
to its simpler hyperfine structure. However, for sensing modalities requiring a bias magnetic field
not aligned with the sensing NV axis, the absence of a quadrupole moment in the 15N nuclear spin
leads to pronounced envelope modulation effects in time-dependent measurements of 15NV spin
evolution. While such behavior in spin echo experiments are well studied, analogous effects in Ram-
sey measurements and the implications for magnetometry remain under-explored. Here, we derive
the modulated 15NV Ramsey response to a misaligned bias field, using a simple vector description
of the effective magnetic field on the nuclear spin. The predicted modulation properties are then
compared to experimental results, revealing significant magnetic sensitivity loss if unaddressed. We
demonstrate that double-quantum coherences of the NV S = 1 electronic spin states dramatically
suppress these envelope modulations, while additionally proving resilient to other parasitic effects
such as strain heterogeneity and temperature shifts.

I. INTRODUCTION

Ensembles of negatively charged nitrogen-vacancy
(NV) centers in diamond are a leading quantum sens-
ing platform, particularly for applications in magnetom-
etry. The NV center has a magnetically sensitive elec-
tronic triplet ground state with spin S = 1 that can be
optically initialized and read out, and coherently manip-
ulated using microwave fields, while operating at ambient
conditions.

Demonstrations of sensing or imaging of static and
broadband (DC) magnetic fields have predominantly
used continuous-wave optically detected magnetic reso-
nance (CW-ODMR) techniques. However, the achievable
volume-normalized magnetic sensitivity in CW-ODMR is
constrained by competing effects of the optical and mi-
crowave fields applied during sensing [1]. Alternatively,
pulsed measurement protocols such as Ramsey interfer-
ence magnetometry can be employed to measure DC
magnetic fields [2, 3]. By separating spin control and
readout from the sensing interval, pulsed measurements
enable the use of increased optical and microwave intensi-
ties to improve sensitivity. As a result, Ramsey protocols
have produced some of the best volume-normalized DC
sensitivities reported to date for NV ensembles [4, 5].

Beyond advancements in sensing protocols, the opti-
mization of diamond material properties provides a cru-
cial path towards improvements in volume-normalized
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sensitivity. In particular, 15NV centers found in 15N-
enriched diamond provide practical advantages over the
naturally abundant 14NV due to the nuclear spin I = 1/2
of 15N, as compared to I = 1 for 14N. For sensing, this
difference translates to increased signal contrast during
optical readout while driving a single 15NV hyperfine res-
onance, as the nuclear spin population is only distributed
between two states. Both 15NV hyperfine-split electronic
resonances can also be driven simultaneously with the
same Rabi nutation rate by tuning the frequency of the
applied microwave field to the midpoint of the splitting,
enabling more uniform spin control. In addition, the two-
level nuclear spin system simplifies quantum logic proto-
cols that exploit the coupled electron-nuclear system for
enhanced sensing [6, 7].

The ease with which Ramsey magnetometry can be
implemented with 15N-enriched diamond depends on
the bias magnetic field commonly applied to break the
ground state electronic spin degeneracy, associated with
spin sublevels ms = ±1. In practice, the bias field magni-
tude and orientation is often constrained by the desired
sensing modality or system to be studied. For exam-
ple, full vector reconstruction of magnetic fields in three
dimensions typically requires a bias field oriented to pro-
duce a unique projection onto each class of NV centers
across the four crystal axes [8–11]. This approach en-
sures that the resonances associated with each class of
NV centers are non-degenerate and individually address-
able with microwave control. Alternatively, the bias field
may be applied to spectrally overlap two or more NV
classes to increase the number of spins participating in
sensing, improving sensitivity [11–15].
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FIG. 1. (a) Experimental setup schematic. Diamond contain-
ing an ensemble (≈ 0.3 ppm) of 15NV centers is probed using
532 nm green laser excitation through a microscope objective,
with red fluorescence collected back along the same path. A
gold Ω-shaped waveguide is placed above the NV layer for mi-
crowave (MW) delivery. A pair of ring magnets apply a bias
magnetic field at two distinct orientations, aligned and mis-
aligned with the symmetry axis for one class of NV centers.
Top right inset: diamond crystal axes and bias field orienta-
tions relative to a single NV quantization axis. Bottom right
inset: NV electronic energy level diagram of ground and ex-
cited states. (b) Example Ramsey time series measured for
bias fields aligned (gray) and misaligned (blue) to one class of
NV centers. Effect of electron Ramsey envelope modulation
(EREEM) is clearly observable for data with the misaligned
field. Upper inset: Ramsey pulse sequence diagram.

In the presence of such misaligned fields (Fig. 1), we
observe envelope modulations in 15NV Ramsey measure-
ments, which negatively impacts sensitivity if left un-
addressed. The physical origin of this behavior can be
attributed to the electron-nuclear hyperfine coupling of
the 15NV center in the presence of a transverse magnetic
field. This effect resembles the well-known electron spin
echo envelope modulation (ESEEM), which has received
extensive study for over half a century in NMR systems
and more recently in solid state defects [16–18]. However,
the analogous effect on a Ramsey measurement and the
resulting impact on NV magnetic sensing has yet to be
detailed.

In this paper, we characterize this effect, which we refer
to as electron Ramsey envelope modulation or EREEM.
First, we model the Ramsey envelope properties by con-
sidering an NV electronic spin coupled to its native nitro-
gen nuclear spin. The resulting EREEM predictions are

compared to experimental results, showing good agree-
ment for 15NV ensembles across a range of magnetic field
magnitudes and misalignments. We then discuss the im-
pact of EREEM on NV-diamond magnetic sensitivity,
considering typical operating conditions used for mag-
netometry. Finally we study EREEM in the context of
double-quantum (DQ) protocols, which leverage super-
positions of NV electronic spin states |ms = ±1〉 for mag-
netometry. We demonstrate dramatic suppression of en-
velope modulations in DQ Ramsey measurements. These
results provide further motivation for the use of DQ sens-
ing schemes, in addition to their documented robustness
to strain gradients and temperature drift. [5, 19–22].

II. ELECTRON RAMSEY ENVELOPE
MODULATION (EREEM)

This section presents a derivation of EREEM proper-
ties, described by a simple vector model of the effective
magnetic field on the nitrogen nuclear spin - which, im-
portantly, is dependent on the NV electronic spin state.
First, the 15NV center is modeled by an electronic spin
system (S = 1) coupled to the native 15N nuclear spin
(I = 1/2). Under the application of a bias magnetic field
~B = (Bx, By, Bz), the ground state Hamiltonian H can
be written as [23]

H

~
= DŜ2

z − γe ~B · ~S − γn ~B · ~I + ~S ·A · ~I. (1)

The vectors ~S = (Ŝx, Ŝy, Ŝz) and ~I = (Îx, Îy, Îz) con-
tain the electronic and nuclear spin operators, respec-
tively, with corresponding gyromagnetic ratios γe =
2π ×−2.8024 MHz/G and γn = 2π ×−431.6 Hz/G. The
room temperature zero field splitting D ≈ 2π×2.87 GHz
[24] sets the electron quantization axis along ẑ. The
NV hyperfine interaction is described by the diagonal

tensor A =

(
A⊥ 0 0
0 A⊥ 0
0 0 A||

)
, with transverse and longi-

tudinal components A⊥ = 2π × 3.65 MHz and A|| =
2π × 3.03 MHz, respectively [25]. This ground state en-
ergy level structure is depicted in Fig. 2(a), for a magnetic
field of magnitude B aligned along the ẑ direction.

The C3v symmetry of the NV center allows us to re-
strict the magnetic field to the x-z plane without any loss
in generality [26]. For this study, we consider bias mag-
netic fields B < 200 G. Within this field regime, the zero
field splitting term DŜ2

z sets the dominant energy scale in
the Hamiltonian, allowing us to treat contributions not
commuting with Sz as non-secular perturbations. Ac-
curate to second order in perturbation theory, a leading
order correction to the secular Hamiltonian can be ob-
tained [18, 26, 27]. After transforming into a frame res-
onant with the two electronic transitions ms = 0 ↔+1
and 0 ↔ −1 [21], the following Hamiltonian under the
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rotating wave approximation is found:

H̃

~
=A||Ŝz Îz − γnBz Îz

− (1− 2κ)γnBxÎx − 3κγnBxŜ
2
z Îx.

(2)

Here, a dimensionless factor κ ≡ γeA⊥
γnD

≈ 8.26 describes

an effective amplification of the bare nuclear spin re-
sponse to a transverse magnetic field Bx, by a factor of
1− 2κ ≈ −15.5.

The contributions to Eq. (2) can be separated into two
categories. The first category consists of terms that de-
pend on Ŝz or equivalently ms. The sum of these terms
can be described as an effective vector magnetic field
~β(ms) on the nuclear spin. The terms that do not con-

tain Ŝz can be represented by a spin-independent effec-

tive field ~βind, with a constant coupling to the nuclear
spin regardless of the electronic spin state ms. The re-
sulting Hamiltonian can thus be summarized as

H̃n

~
= −γn

(
~βind + ~β(ms)

)
· ~I. (3)

For a given electronic spin state |ms〉, the nuclear spin

precesses around an effective magnetic field ~βind + ~β(ms)

with a Larmor frequency ωms
=
∣∣γn(~βind + ~β(ms)

)∣∣. For
ms = 0 in particular, there are no terms in Eq. (2) that

depend on the electronic spin state, such that ~β(0) = 0
and ω0 =

∣∣γnβind

∣∣. These field vectors are visualized
in Figure 2(b). For simplicity, the coordinate system is

rotated so the spin-independent field ~βind = βindẑ
′ now

lies along the newly defined z′-axis [27]. In this frame,

the angle between ~βind and an effective field ~βind + ~β(ms)
is given by

φms
= tan−1

(
βx′(ms)

βind + βz′(ms)

)
, (4)

where βz′(ms) and βx′(ms) denote components of ~β(ms)

parallel and perpendicular to ẑ′, respectively. For dis-
tinct electronic spin states |i〉 and |j〉, we define the an-
gle between the two corresponding nuclear fields as Φi,j ,
with the example Φ0,+1 = φ+1 shown in Fig. 2(b).

Using this vector description, we derive the expected
Ramsey envelope modulation as a function of the free
evolution time τ . For an initial superposition of elec-
tronic spin states |i〉 and |j〉, the Ramsey signal Si,j(τ),
up to an overall phase, is given by

Si,j(τ) = cos (Φi,j) sin
(ωiτ

2

)
sin
(ωjτ

2

)
− cos

(ωiτ
2

)
cos
(ωjτ

2

)
.

(5)

Figure 2(c) shows an example simulated Ramsey re-
sponse S0,+1(τ) due to a single-quantum coherence be-
tween ms = 0 ↔ +1, for a bias field of magnitude
B = 100 G misaligned from the NV axis by an angle
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FIG. 2. Energy level diagram, modulated 15NV Ramsey free
induction signal (EREEM), and vector models of the effec-
tive magnetic fields for nuclear spins 15N and 14N. (a) Energy
level diagram for the 15NV ground state, with splittings due to
Zeeman and hyperfine interactions assuming an aligned bias
field. (b) Effective magnetic field vectors on the 15N nuclear
spin due to a misaligned bias magnetic field, for each elec-
tronic spin state |ms〉. Each effective nuclear field consists

of an electronic-spin-dependent contribution, ~β(ms), and a

component ~βind independent of the electronic spin state. (c)
Example 15NV Ramsey free induction signal due to a 15◦

misaligned bias magnetic field, showing envelope modulation.
The amplitude modulation χ(τ) is indicated, showing oscilla-
tions between χmin = cos (Φ0,+1) and 1, with a characteristic
period 2π/ω0. (d) Power spectrum of the Ramsey signal from
(c). (e) Effective magnetic field vectors on the 14N nuclear
spin. For all three electronic spin states, the effective nuclear
fields are nearly parallel due to a dominant nuclear quadrupo-
lar field.

θ = 15◦. The Ramsey signal oscillation is modulated by
an envelope with a slow characteristic beat frequency ω0,
i.e., an example of EREEM. The corresponding power
spectrum is shown in Fig. 2(d), revealing two peaks cen-
tered around ω+1/2 ≈ A||/2 = 2π × 1.515 MHz, with a
frequency splitting of magnitude ω0. At any given time τ ,
the maximum Ramsey signal contrast must be corrected
by a multiplicative factor χ(τ), due to this envelope mod-
ulation. This amplitude modulation factor χ(τ) oscillates
as a function of τ between values χmin = | cos (Φ0,+1)|
and χmax = 1, indicating points of minimum and max-
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imum contrast, respectively. The depth of this modula-
tion can be inferred from the angle Φ0,+1 between the
participating effective nuclear fields.

To connect this vector model to the expected EREEM
behavior in experimentally realistic conditions, we first
consider a magnetic field aligned with the NV axis. Since
Bx = 0, the Hamiltonian in Eq. (2) consists only of nu-

clear spin contributions along Îz. Consequently, the effec-

tive nuclear fields ~βind and ~βind + ~β(+1) are parallel, such
that Φ0,+1 = 0. No Ramsey envelope modulation should
be observed, as the amplitude modulation factor remains
constant: χmin = | cos (Φ0,+1)| = χmax = 1. However, in
the presence of a magnetic field not aligned with the NV
axis (Bx 6= 0), the nuclear spin experiences an enhanced
transverse magnetic field determined by the factor κ. The
effective nuclear fields are no longer aligned, Φ0,+1 > 0,
which should lead to observable envelope modulation. At

bias magnetic fields where ~βind and ~βind + ~β(+1) are or-
thogonal, χmin = 0 and the Ramsey signal contrast at
modulation nodes is maximally suppressed.

This vector model can be readily extended to the 14NV
center, with some modifications. Besides straightforward
changes to the physical constants A⊥, A||, and γn, an ad-

ditional nuclear quadrupolar interaction term QÎ2
z con-

tributes to the Hamiltonian in Eq. (1), with quadrupolar
coupling constant Q = 2π×−4.945 MHz [28, 29]. This in-
clusion dramatically changes the Ramsey envelope prop-
erties, by contributing a large quantizing field of magni-

tude |Q/γn| ≈ 16 000 G to ~βind [18]. In the small mag-
netic field regime B � |Q/γn|, the effective nuclear fields
~βind +~β(ms) are dominated by the spin-independent con-

tribution ~βind, which is visualized in Fig. 2(e). The
small angle between the nuclear field vectors results in
χmin ≈ 1, and suppressed EREEM for 14NV.

III. EXPERIMENTAL METHODS

The measurements for this study utilize a custom-built
microscope setup and a 100 µm-thick, 15N-enriched CVD
diamond layer (NV T ∗2 = 5 µs, [N] ≈ 3 ppm, > 99.995%
12C), grown by Element Six Ltd. on a 2×2×0.5 mm3

high-purity diamond substrate, as shown in Fig. 1(a).
Post-growth treatment via electron irradiation and an-
nealing increases the NV concentration to approximately
0.3 ppm.

Initialization of the NV ensemble electronic spin states
is accomplished via pulsed 532 nm excitation, generated
by a continuous-wave laser gated by an acoustic optical
modulator (AOM). The light is focused onto the NV layer
using a microscope objective, which is also used to route
the outgoing NV fluorescence for spin state readout. Mi-
crowave pulses are synthesized by signal generators and
controlled by switches for single- or double-quantum con-
trol of the NV spin states. The microwave drive fields are
delivered through an Ω-shaped planar waveguide, fabri-
cated onto a sapphire substrate. The bias magnetic field

is applied using two identical permanent ring magnets
equally spaced from the diamond sample. The field mag-
nitude is manually adjusted by varying the separation
between the magnets. To control the field misalignment
angle from the target NV axis, two automated rotation
stages are used to adjust the yaw and pitch of the mag-
net pair with a nominal accuracy of 0.047◦. The bias
magnets provide a homogeneous field magnitude of up to
∼150 G over an illumination spot size of ∼20 µm in diam-
eter on the NV-rich layer. Additional details regarding
the experimental setup are provided in the Supplemen-
tary Material [27].

To accurately determine the bias field magnitude B
and misalignment angle θ, pulsed optically detected
magnetic resonance (pulsed-ODMR) spectroscopy is em-
ployed to probe the NV ground state spin resonances.
First, the field is aligned to a single NV axis by ad-
justing the magnets until the pulsed-ODMR spectra of
the other three misaligned NV classes overlap. Us-
ing weak microwave π-pulses of duration ∼ 1 µs each
[30], the resonance spectrum of the aligned NV axis is
recorded for both electronic transitions ms = 0 ↔ +1
and ms = 0 ↔−1. These transitions are separated by
∆±1 = 2γeB, which is used to estimate the bias field
magnitude B. The magnets are then rotated away from
the NV quantization axis, and Ramsey measurements are
performed at a range of misalignment angles θ. At each
position, the ODMR spectrum is again recorded to mea-
sure ∆±1. This frequency difference is determined by the
field projection along the NV axis, ∆±1 = 2γeB cos θ,
which is then used to estimate θ. Additional details are
provided in the Supplemental Material [27]. Field mis-
alignment angles of up to θ ≈ 40◦ can be accessed, limited
by the geometrical constraints of the setup.

IV. MEASURED EREEM PROPERTIES

To study the properties of electron Ramsey envelope
modulation (EREEM), we perform a series of Ramsey ex-
periments involving the electronic basis states |ms = 0〉
and |ms = +1〉. The envelope properties are extracted
using fits to the measured Ramsey time series, repeated
at various magnetic field magnitudes and misalignment
angles, with results shown in Fig. 3. The Ramsey proto-
col consists of two microwave π/2-pulses used to drive the
ms = 0↔+1 transition, spaced by a variable free preces-
sion interval τ . To avoid artifacts in the Ramsey fringes
due to microwave detuning errors, the driving frequency
is carefully calibrated to probe the center of the two hy-
perfine resonances [27]. This results in equal detunings
of magnitude A||/2 = 2π × 1.515 MHz from each hyper-
fine transition, giving the characteristic Ramsey fringe
frequency. A slow beating (EREEM) is observed when
exposed to a misaligned field, with an example shown in
Fig 3(a).

The measured Ramsey signals are fit to a modified
form of Eq. (5), which incorporates an exponential de-
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FIG. 3. Ramsey experimental data and envelope properties
from model fits. (a) Example Ramsey time series at field mag-
nitude B = 90.08(2) G and misalignment angle θ = 16.79(9)◦.
Data is shown in black and the fit in blue. The observed slow
beating is an example of EREEM. (b) Estimates of envelope
beat frequency ω0 extracted from fits to experimental data,
collected across a range of magnetic field magnitudes and ori-
entations. Theoretical predictions for ω0 are shown in solid
lines for each magnetic field. After allowing the transverse hy-
perfine constant A⊥ to vary as a fitting parameter, updated
ω0 predictions at each field are shown with dashed lines. (c)
Estimates of the relative contrast at amplitude modulation
nodes, χmin, for the magnetic field configurations used in (b).
Solid lines indicate theoretical predictions with A⊥ fixed. In-
set: Magnified view of χmin values for misalignment angles
20◦ < θ < 40◦.

cay e−(τ/T∗2 )p with a characteristic dephasing time T ∗2
and stretch factor p. To further adapt the expression to
experimental data, an overall amplitude scaling factor, a
vertical offset, and phase offsets are all included in the fit
function [27]. From the resulting fits, two frequencies ω0

and ω+1 are obtained. The values for the envelope beat
frequency ω0 are plotted in Fig. 3(b), with 95% confi-
dence intervals indicated by error bars [27, 31]. For each
magnetic field magnitude, theoretical predictions for ω0

are also plotted as solid curves, obtained from the spin-
independent contributions to Eqs. (2) and (3),

ω0 = |γnβind| = |γn|
√
B2
z + (1− 2κ)2B2

x

= |γn|B
√

1 + 4(κ2 − κ) sin2 θ.
(6)

As expected from Eq. (6), the measured envelope beat
frequency ω0 increases with both the magnetic field mag-
nitude B and misalignment angle θ.

Notably, small differences are observed between theo-
retical predictions of ω0 (solid curves in Fig. 3(b)) and
fits to experimental data, ranging from around 2% to 6%
across the measurements presented in Fig. 3. To explore
this inconsistency, we first perform full-Hamiltonian nu-
merical simulations of Ramsey spin dynamics and com-
pare the observed envelope beat frequency to Eq. (6),
which was originally obtained using second order pertur-
bation theory. These simulations are conducted using the
QuTiP package [32, 33] in Python. The NV system is de-
scribed by the lab frame Hamiltonian from Eq. (1) and
the pulse sequence is implemented using time-dependent
AC magnetic field contributions. For the field configura-
tions considered in Fig. 3, strong agreement is observed
between Eq. (6) and the results of QuTiP simulations,
with differences in ω0 . 1% (see the Supplemental Ma-
terial [27]). These results, however, do not fully account
for the observed discrepancies in ω0.

Interestingly, the agreement between analytical and ex-
perimental results is improved when the enhancement
parameter κ = γeA⊥

γnD
in Eq. (6) is allowed to deviate.

Besides the transverse hyperfine constant A⊥, other con-
tributions to κ include the well-established gyromagnetic
ratios γe and γn, and the zero field splitting D. We deter-
mine D to be 2870.71(4) MHz using pulsed-ODMR mea-
surements, consistent (<0.03% deviation) with the value
assumed for analytical predictions and QuTiP numerical
simulations. In contrast, an experimental determination
of A⊥ for 15NV has (to our knowledge) only been re-
ported once, by Felton et al. [25], using EPR studies at
higher fields B ∼ 2000 G. Given the simple relationship
between the envelope beat frequency ω0 and A⊥ at low
fields (via κ in Eq. (6)), EREEM presents a direct probe
of A⊥ in this regime. With this in mind, we conduct a
phenomenological fit of Eq. (6) to measurements of ω0 at
each magnetic field, with A⊥ as the sole degree of free-
dom. Using the adjusted A⊥ values at each field, the
corresponding values for ω0 from Eq. (6) are shown as
dashed lines in Fig. 3(b). We obtain values of A⊥/2π
between 3.74 MHz and 3.80 MHz across the fields consid-
ered here, differing slightly from the previously reported
value of 3.65(3) MHz by around 3%. We note that an ob-
served deviation with respect to B (see the Supplemental
Material [27]) warrants a more thorough study across an
extended range of magnetic fields, left as a subject for
future work.

Figure 3(c) shows excellent agreement between the-
oretical predictions and experimentally observed values
of the relative contrast at amplitude modulation nodes
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FIG. 4. Calculations of expected Ramsey magnetic field sensi-
tivity with and without envelope modulation (EREEM), and
at different bias magnetic field configurations. (a) Inverse sen-
sitivity η−1 vs Ramsey free evolution time τ without EREEM,
given by Eq. (8) for fixed dead time TD = 5 µs and dephasing
time T ∗2 = 5 µs. The optimal inverse sensitivity η−1

opt is indi-
cated, corresponding to a free evolution time τopt indicated in
all subfigures with a vertical dashed line. (b) Relative inverse
sensitivity with EREEM ηopt/η̃, normalized to the optimal
sensitivity and free evolution time established in (a), for two
distinct magnetic field misalignment angles θ = 10◦, 20◦ at
the fixed magnitude B = 100 G. Adjusted optimal evolution
times τ̃opt are indicated by symbols ♦. (c) 2D color plot of the
normalized inverse sensitivity at a fixed misalignment angle
θ = 10◦, across bias field magnitudes 0 < B < 200 G.

χmin = | cos (Φ0,+1)|. Even for modest misalignments of
∼ 10◦, the contrast at the nodes of the envelope modu-
lation is reduced to around 30% of its maximum value.
The resulting implications for magnetic field sensitivity
are discussed in the following section.

V. MODULATION AMPLITUDE AND IMPACT
ON MAGNETOMETRY

To study the impact of EREEM on NV magnetic field
sensitivity, we first consider a conventional Ramsey mag-
netometry measurement in the absence of any envelope
modulation, using a single-quantum coherence between

states |ms = 0〉 and either |ms = +1〉 or |ms = −1〉. A
fixed Ramsey free evolution time τ is employed to map
small magnetic field deviations onto changes in the fluo-
rescence contrast. This working point is determined by
optimizing the photon shot noise-limited magnetic field
sensitivity [1],

η =
1

γe

1

Ce−(τ/T∗2 )p
√
N

√
τ + TD
τ

. (7)

The average photon number is denoted by N and the
dead time TD represents the time spent outside the Ram-
sey sensing sequence for spin state initialization and read-
out. The maximum contrast C decays due to NV spin
dephasing, via a correction factor e−(τ/T∗2 )p . A plot of
η−1 as a function of τ is shown in Figure 4(a), setting
p = 1, T ∗2 = 5 µs, and TD = 5 µs according to our exper-
imental conditions. This reveals an optimal sensitivity
ηopt obtained at a corresponding free evolution time τopt,
which approaches T ∗2 in the limit of long overhead time
TD � τ .

If EREEM is observed, then the contrast C takes on an
additional correction factor due to the amplitude modu-
lation χ(τ), which results in an adjusted sensitivity η̃.
Normalizing to ηopt, the relative inverse sensitivity is
therefore given by the following ratio, assuming N,T ∗2 , p,
and TD remain unchanged between experiments:

ηopt

η̃
= χ(τ)

√
τopt + TD
τ + TD

exp

(
τopt − τ
T ∗2

)
. (8)

As established earlier, χ(τ) oscillates between values
χmin = | cos (Φ0,±1)| and χmax = 1, at a characteristic
beat frequency ω0. These envelope properties are deter-
mined by the magnetic field magnitude B and misalign-
ment angle θ, which in turn affect the relative inverse
sensitivity ηopt/η̃.

The optimal sensitivity η̃opt = ηopt is only achieved
when an envelope maximum χmax occurs at τopt, ob-
tained when the beat frequency ω0 is an integer multiple
of 2π/τopt. If this condition is not satisfied, an updated
optimal evolution time τ̃opt is necessary to minimize sen-
sitivity degradation. These two scenarios are depicted
in Fig. 4(b), which shows ηopt/η̃ at two misalignment
angles 10◦ and 20◦, for a field magnitude B = 100 G.
The adjusted optimal evolution time τ̃opt for each case
is marked, with a notable reduction in sensitivity seen
in the 10◦ configuration. Similarly, changes in the field
magnitude B can affect sensitivity. Fixing the misalign-
ment angle at 10◦ as an example (see the Supplemental
Material for other misalignment angles [27]), Fig. 4(c)
shows ηopt/η̃ across a range of magnetic field magnitudes
B and free evolution times τ . Since the beat frequency ω0

increases with the field magnitude B, the relative inverse
sensitivity ηopt/η̃ exhibits faster oscillations with respect
to τ for higher fields. The sensitivity is optimized at fields
where a Ramsey envelope maximum coincides with τopt,
with the latter indicated by a dashed line in Fig. 4(c).

These calculations indicate that the sensitivity loss due
to EREEM is highly dependent on changes in the bias
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field configuration. In practice, the tunability and con-
trol of such parameters depend on the specific sensing
modality or application. For example, in experiments
where an equal bias field projection on multiple NV axes
is desired, the misalignment angle θ is highly constrained.
Separately, there may be restrictions on the applied field
magnitude B, for example, during studies of paramag-
netic systems [34].

VI. DOUBLE-QUANTUM RAMSEY

As described in the previous section, envelope mod-
ulation (EREEM) in single-quantum (SQ) Ramsey ex-
periments depends on the bias magnetic field configura-
tion, and can result in significant magnetic field sensi-
tivity loss. Alternatively, double-quantum (DQ) Ramsey
protocols, which exploit the full NV spin-1 system, can
circumvent the deleterious effects of EREEM. In fact,
we observe a dramatic reduction of envelope modulation
while using DQ coherence magnetometry. This behavior
is illustrated in Fig. 5(a,b), which depicts measured SQ
and DQ Ramsey free induction decay signals and their
corresponding power spectra, at the same magnetic field
configuration.

The DQ Ramsey protocol employs dual-tone mi-
crowave pulses with frequencies resonant with both the
electronic transitions ms = 0 ↔+1 and ms = 0 ↔−1,
often referred to as DQ pulses. Besides this change to the
applied pulses, the DQ Ramsey sequence mirrors the SQ
protocol and consists of a pair of DQ pulses separated by
a free evolution interval τ . The first DQ pulse prepares
an equal superposition of the electronic spin states |+1〉
and |−1〉. After the interval τ , a second DQ pulse maps
the relative phase accumulated by these basis states onto
the NV spin population, which is then read out optically.

The lack of EREEM in the observed DQ signal can be
understood by referring back to the vector model estab-
lished in Sec. II. The expected DQ Ramsey response can
be described by Eq. (5) after substituting the electronic
basis states denoted by i and j with −1 and +1, respec-
tively. The effective nuclear magnetic fields associated
with the electronic spin states |ms = ±1〉 are then given

by ~βind + ~β(±1) as depicted in Fig. 5(b). These field
vectors are nearly antiparallel (Φ−1,+1 ≈ π), resulting in
negligible envelope modulation χmin = | cos (Φ−1,+1)| ≈
1 for a DQ Ramsey measurement.

The stark difference in envelope modulation behavior
between SQ and DQ Ramsey is highlighted by calcula-
tions shown in Fig. 5(c). For a range of bias field magni-
tudes B and misalignment angles θ, the relative contrast
at amplitude modulation nodes χmin is plotted for both
cases (see the Supplemental Material [27] for extended
ranges of B and θ). Consistent with the results shown
in Fig. 3(c), the SQ Ramsey contrast at envelope nodes
decays rapidly as a function of θ, nearing zero even for
small misalignment angles θ ∼ 10◦. On the other hand,
the DQ contrast is well preserved, with values of χmin ≈ 1

(a)

(c)

(b)

Modulation Minimum χmin

Misalignment Angle θ (deg)

Free Evolution Time τ (μs)

Fi
el

d 
M

ag
ni

tu
de

 B
 (G

)

βind + β(+1)
→ →

βind + β(–1)
→ →

Φ–1,+1 

SQ DQ

FIG. 5. Comparison between experimental single-quantum
(SQ) and double-quantum (DQ) Ramsey measurements un-
der a misaligned bias magnetic field. Representative SQ and
DQ Ramsey data collected at a bias field magnitude B ≈ 50 G
and misalignment angle θ ≈ 35◦, in both time (a) and fre-
quency (b) domains. The inset in (b) shows the effective

nuclear magnetic fields ~βind + ~β(±1) associated with the elec-
tronic spin states |ms = ±1〉 participating in the DQ protocol.
The effective fields are nearly antiparallel (Φ−1,+1 ≈ π), re-
sulting in no observable envelope modulation (EREEM) in
the DQ Ramsey signal (χmin = | cos Φ−1,+1| ≈ 1). (c) Cal-
culation of relative contrast at amplitude modulation nodes
χmin for both SQ and DQ Ramsey signals, over a range of bias
magnetic field magnitudes and misalignment angles. For SQ
Ramsey, calculated values of χmin = | cos Φ0,+1| = | cosφ+1|
are shown, obtained using Eq. (4). For DQ Ramsey, χmin =
| cos Φ−1,+1| = | cos (φ+1 − φ−1)|.

across the fields considered in this work. Compared to SQ
Ramsey, DQ Ramsey often provides more than an order
of magnitude suppression of Ramsey amplitude modula-
tion.
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VII. CONCLUSION

In this work, we present a physical model of electron
Ramsey envelope modulation (EREEM) and find reason-
able agreement with experimental measurements using
an ensemble of 15NV centers in diamond. The observed
envelope modulation exhibits a characteristic beat fre-
quency and amplitude, dependent on the bias field mag-
nitude and angle with respect to the NV quantization
axis. We note a small systematic discrepancy between
measurements of the envelope beat frequency and analyt-
ical predictions, which can be reconciled using an adjust-
ment to the transverse hyperfine parameter A⊥. These
estimates deviate by around 3% from previous EPR mea-
surements conducted at ∼ 2000 G [25], an order of mag-
nitude greater than the magnetic fields considered here.
However, these estimates of A⊥ exhibit a dependence on
the applied field magnitude, warranting additional mea-
surements across an extended range of magnetic fields in
future studies.

For magnetic field sensing modalities requiring mis-
aligned magnetic fields, the integration of 15NV diamond

and Ramsey coherence magnetometry is hindered by en-
velope modulation effects. We show that the resultant
loss in sensitivity can be recovered by careful choice of the
bias field. However, experimental constraints can limit
the tunability of these field parameters. Alternatively,
we find that double-quantum coherence magnetometry
dramatically suppresses envelope modulation, while pro-
viding robustness to strain and temperature changes.
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SUPPLEMENTARY MATERIAL: RAMSEY ENVELOPE MODULATION IN NV DIAMOND
MAGNETOMETRY

S-I. THEORETICAL DETAILS

This section provides a detailed derivation of the expressions given in Sec. II of the main text. We start with the
NV ground state Hamiltonian H, including the effects of a magnetic field restricted to the x-z plane and the hyperfine
interaction between the NV electronic spin and the onsite nitrogen nuclear spin,

H

~
= DS2

z − γe
(
BzŜz +BxŜx

)
− γngn

(
Bz Îz +BxÎx

)
+A||Ŝz Îz +A⊥

(
ŜxÎx + Ŝy Îy

)
. (S.9)

The contributions to H0 can be separated into secular and non-secular contributions HS and HNS , respectively. The
secular term HS consists of contributions that commute with operator Ŝz. Conversely, the non-secular terms HNS do
not commute with Ŝz and are capable of driving transitions within the electronic spin system. This is summarized as
follows:

H = HS +HNS

HS

~
≡ DŜ2

z − γeBzŜz − γngn
(
Bz Îz +BxÎx

)
+A||Ŝz Îz

HNS

~
≡ −γeBxŜx +A⊥

(
ŜxÎx + Ŝy Îy

)
.

(S.10)

We begin by reproducing work done by Childress et al. [18] and Myers [26]. The Hamiltonian is expanded as a
series determined by order D, the largest energy scale within the Hamiltonian for the magnetic fields B < 200 G used
in our study. The non-secular terms HNS are treated as a perturbation to the secular Hamiltonian HS . Using second

order perturbation theory, we obtain the leading order correction to the Hamiltonian H
(1)
ms for a given electron spin

quantum number ms,

P̂msHS +H(1)
ms

= P̂msHNS
1

Ems
−
(

1− P̂ms

)
HS

(
1− P̂ms

)HNSP̂ms , (S.11)

with projection operator P̂ms ≡ |ms〉 〈ms| and identity operator 1. An effective nuclear g-tensor gn(ms) is defined by
evaluating the change in the Hamiltonian with respect to the magnetic field,

gn(ms) =
d

dB

(
P̂ms

HS +H(1)
ms

)
=

1 0 0
0 1 0
0 0 1

− γe
γnD

(2− 3|ms|)

A⊥ 0 0
0 A⊥ 0
0 0 0

 .
(S.12)

This effective nuclear g-tensor is substituted into the expression for HS . After introducing an enhancement parameter
κ = γeA⊥

γnD
≈ 8.26, the following Hamiltonian is obtained:

H1 =DŜ2
z − γeBzŜz +A||Ŝz Îz − 3κγnBxŜ

2
z Îx

− γn
(
Bz Îz + (1− 2κ)BxÎx

)
.

(S.13)

After moving into an electronic doubly-rotating frame [21] using the unitary transformation

R1(t) ≡
(
eiλ1t |ms = +1〉 〈ms = +1|+ |ms = 0〉 〈ms = 0|+ eiλ2t |ms = −1〉 〈ms = −1|

)
⊗ 1n

=

eiλ1t 0 0
0 1 0
0 0 eiλ2t

⊗ (1 0
0 1

) , (S.14)

with λ1,2 = D∓γeBz, we obtain the Hamiltonian H̃1 given in Eq. (S.15), which is also given in the main text as Eq. (2).
Experimentally this Hamiltonian is realized using microwave fields to probe transitions |ms = 0〉 ↔ |ms = +1〉 and/or
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|ms = 0〉 ↔ |ms = −1〉, equally detuned from the two hyperfine resonances.

H̃1 = R1(t)H1R1(t)† + i
dR1(t)

dt
R1(t)†

= A||Ŝz Îz − 3κγnBxŜ
2
z Îx︸ ︷︷ ︸

depends on ms

− γn
(
Bz Îz + (1− 2κ)BxÎx

)
︸ ︷︷ ︸

independent of ms

(S.15)

An additional rotation using R2(t) = eiφÎy further simplifies the Hamiltonian, with φ = tan−1
(

(1−2κ)Bx

Bz

)
. This rota-

tion diagonalizes the nuclear subsystem that is independent of the electron spin, producing the following Hamiltonian:

H̃2 = R2(t)H̃1R2(t)† + i
dR2(t)

dt
R2(t)†

= −γn
(
~βind + ~β(ms)

)
· ~I.

(S.16)

Equation (S.16), also provided in the main text as Eq. (3), consists of an effective magnetic field ~βind + ~β(ms)
interacting with the nuclear spin. This vector sum consists of:

1. a magnetic field along the newly defined z′-axis, independent of the electronic spin state,

~βind = βindẑ′ =
√
B2
z + (1− 2κ)2B2

x ẑ
′, (S.17)

2. and a spin-dependent field

~β(ms) =

βx′(ms)
βy′(ms)
βz′(ms)

 =
1

βind

Bx
(
ms(1− 2κ)

A||
γn

+m2
s3κBz

)
0

−ms
A||
γn
Bz +m2

s3κ(1− 2κ)B2
x

 . (S.18)

An additional rotation generated by Îy′ by an angle φms diagonalizes the Hamiltonian, depending on the electronic
spin state ms,

φms
= tan−1

(
βx′(ms)

βind + βz′(ms)

)
. (S.19)

From Eq. (S.16), the effective nuclear Larmor precession frequency can be obtained,

ωms =
∣∣∣γn (~βind + ~β(ms)

)∣∣∣ = −γn

√(
βind + βz′(ms)

)2

+ βx′(ms)2

= −γn

√
B2
x

(
1− 2κ+m2

s3κ
)2

+

(
ms

A||

γn
−Bz

)2

.

(S.20)

For a given electronic spin state ms, the nuclear spin precesses at a corresponding frequency ωms
. Note that when

ms = 0, this reduces to the spin-independent Larmor frequency ω0 = |γnβind|.
For a single-quantum (SQ) Ramsey sequence, we effectively operate within a 2-level system consisting of |ms = 0〉

and either |ms = +1〉 or |ms = −1〉. To apply a microwave rotation pulse, we define the unitary operator Ûx(θ) =
e−iσ̂xθ/2 using the 2-level Pauli spin operator σ̂x. The SQ Ramsey sequence consists of two π/2 pulses separated by a
free precession period of duration τ . The initial state |ψ(0)〉 = |ms = 0〉 evolves under the following unitary rotations:

ψSQ(t) = Ûx (π/2)
(
e−iH̃2τ/~

)
Ûx (π/2) |ψ(0)〉 . (S.21)

The Ramsey response SSQ can be represented by a projection P0 = |ms = 0〉 〈ms = 0| onto the ms = 0 state,

SSQ(τ) = Tr {P0 |ψSQ(τ)〉 〈ψSQ(τ)|}

=
1

2

(
1− cos

(ω0τ

2

)
cos
(ω±1τ

2

)
+ cos (Φ0,±1) sin

(ω0τ

2

)
sin
(ω±1τ

2

))
.

(S.22)
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This response represents the electronic spin population and therefore spans between 0 and 1. For tidiness, this form is
slightly modified to give the expression in the main text Si,j(τ) = 2S(τ)− 1, where S(τ) denotes the response shown
in Eq. (S.22). The double-quantum (DQ) response can be similarly obtained by substituting the 2-level spin operator

σx in the unitary rotation Û(θ) with the appropriate spin-1 operator:

SDQ =
1

2

[
1 + cos

(ω−1τ

2

)
cos
(ω+1τ

2

)
− cos (Φ−1,+1) sin

(ω−1τ

2

)
sin
(ω+1τ

2

)]
(S.23)

S-II. EXPERIMENTAL DETAILS

A diode-pumped solid-state laser (Lighthouse Photonics, Sprout-D5W) is employed to generate the continuous-wave
532 nm laser beam. The laser beam is passed through an acousto-optic modulator (AOM) (Gooch & Housego, Model:
3250-220) and the first order diffracted beam is used for the experiments. To create optical pulses for NV ensemble
initialization and readout, the RF driver for the AOM is gated by switches (Mini-Circuits, ZASWA-2-50DR+) using
transistor-transistor logic (TTL) pulses (Swabian Instruments, Pulse Streamer 8/2). The beam is focused through a
20×/0.75 NA Nikon objective onto the diamond, illuminating the NV-enriched layer over a spot of ∼ 20 µm diameter.
The illumination intensity is kept below 0.1 mW/µm2. The outgoing spin-dependent NV fluorescence is collected
through the same objective, passed through a 150 µm pinhole (Thorlabs, P150D) to restrict the collection volume,
filtered by a 647 nm long pass filter (Semrock) and finally projected onto an avalanche photodiode (Hamamatsu
C10508-01). Photodiode voltage measurements are acquired using a DAQ system (National Instruments, NI USB-
6363). The bias magnetic field is generated using two permanent samarium cobalt (SmCo) ring magnets to minimize
temperature sensitivity of the bias field. Rotation of the magnet pair for different misalignment angles is controlled
using two sets of Thorlabs HDR50 rotation stages with stepper motors. Microwave fields are synthesized from up to
two signal generators with built-in IQ mixers (Stanford Research System, SG384); and gated by switches and TTLs
to provide either single- or double- quantum pulsed control of the NV ensemble spin states. The Ω-shaped planar
waveguide for microwave delivery has a diameter ≈ 150 µm to ensure field homogeneity over the laser illumination
area.

S-III. BIAS FIELD MISALIGNMENT ANGLE

(a)

(b)
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� 
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z)

FIG. S6. Transition frequency difference ∆±1 between ms = 0↔ +1 and ms = 0↔ −1 resonances as a function of misalignment
angle. Calculation is performed at 90 G. (a) Numerical results of ∆±1 using the full NV ground state Hamiltonian (solid, red)
and the approximate formula from perturbation theory 2γeB cos θ (dashed, blue). (b) Absolute and percentage deviation of
∆±1 between the two calculation methods.

When the bias magnetic field is misaligned from the NV axis, both the transverse Bx and longitudinal Bz field
components affect the energy levels of |0〉 , |±1〉. In the main text, the resonance frequency difference ∆±1 between
the two transitions |ms = 0〉 ↔ |ms = +1〉 and |ms = 0〉 ↔ |ms = −1〉 is used to calculate the misalignment angle
θ, via the relationship ∆±1 ≈ 2γeBz = 2γeB cos θ. This approximate relationship is obtained from time-independent
perturbation theory. For the small bias field magnitudes B . 110 G used in our study, the large NV zero field
splitting D = 2π × 2870 MHz dominates the energy scale, D � |γeB|. This allows us to treat the transverse field Bx
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contribution as a perturbation, resulting in the eigenenergies E|0〉→|±1〉 accurate to the second order correction [22]:

E|0〉→|±1〉

~
= D +

3 |γeBx|2

D
± γeBz. (S.24)

Therefore, ∆±1 =
(
E|0〉→|+1〉 − E|0〉→|−1〉

)
/~ can be accurately modeled by 2γeB cos θ, up to second order. Using this

relationship, the measurements of ∆±1 are converted to values of the misalignment angle θ. The error bars for θ in
Fig. 3 of the main text indicate the corresponding 95% confidence interval (CI), except for cases where the standard
deviation σθ calculated from error propagation is less than the stage rotation error. In these cases, the nominal
accuracy (±0.047◦) of the stage is used for σθ instead.

To verify that the expression for ∆±1 is indeed valid, we compare the measured values of ∆±1 to those obtained
by diagonalizing the complete Hamiltonian given in Eq. (1). An example plot is shown in Fig. S6, for a 90 G bias
field magnitude and misalignment angles θ up to 45◦. We observe excellent agreement with the results obtained using
the full Hamiltonian, with percentage deviation in ∆±1 of under 0.15%. The corresponding error contribution to the
angle estimation is less than the dominant error values used for Fig. 3 in the main text.

S-IV. MICROWAVE FREQUENCY CALIBRATION

To set the microwave frequency to the center of the two 15NV hyperfine-split transitions, we perform a two-step
calibration procedure combining pulsed-ODMR and Ramsey techniques. First, the two hyperfine transitions are
resolved by performing a pulsed-ODMR experiment with low microwave power (π pulse time ∼ 900 ns). The resulting

spectrum is fit to a sum of two Lorentzians A −
∑2
i=1

Ci

π

1
2 Γi

(ν−νi)2+( 1
2 Γi)2

, with free parameters including the contrast

Ci, line width Γi, frequency νi and overall offset A.
The mean of the two Lorentzian center frequencies ν∗ = (ν1 + ν2)/2 is used as the initial value of the applied

microwave frequency. Next, a series of Ramsey π/2 − τ − π/2 experiments are performed to refine this estimate.
Fixing τ at a point of maximum contrast, the microwave frequency is varied around ν∗ to produce an oscillating
magnetometry curve [1]. Choosing a common phase for both microwave π/2 pulses, the extremum nearest to ν∗ is
used as the updated center resonance frequency. This calibrated value νcalib∗ is obtained by fitting the magnetometry
curve to a sinusoidal function and extracting the necessary frequency offset.

S-V. MEASURED RAMSEY TIME SERIES FIT DETAILS

For fits to Ramsey time series data, we use a modified form of Eq. (5) from the main text:

S̃0,+1(τ)

= C0e
−(τ/T∗2 )p

[
− cos

(ω0

2
τ + x0

)
cos
(ω+1

2
τ + x+1

)
+ cos (Φ0,+1) sin

(ω0

2
τ + x0

)
sin
(ω+1

2
τ + x+1

)]
+B.

(S.25)

Here, τ represents the free evolution time in a Ramsey sequence. The free fit parameters are the initial contrast C0,
dephasing time T ∗2 , stretched exponential factor p, EREEM frequency components ω0 and ω+1, amplitude modulation
factor determined by Φ0,+1, phase offsets x0 and x+1, and a vertical offset B.

For each estimate of ω0 or χmin = cos (Φ0,+1) reported in Fig. 3(b,c) of the main text, its corresponding confidence

interval (CI) is constructed using the standard interval method. For each parameter estimate θ̂, its error bar represents

a range bounded between θ̂±z(0.95)σ̂, where θ̂ represents the point estimate of the parameter of interest with standard

error σ̂, and z(0.95) denotes the 95th percentile of the normal deviate. Both θ̂ and σ̂ are calculated using maximum
likelihood estimation via the MATLAB lsqcurvefit function. However, the exact CI can differ from the standard
interval approximation if the measurement error is not normally distributed. In such scenarios, a bootstrap confidence
interval produces a more accurate CI estimation [31]. To test this approach, we applied a bootstrap sampling method
to four randomly selected data points from Fig. 3(b,c) in the main text. The distribution of fitted parameters

resembles a normal distribution with ∼ 95% data points located within θ̂ ± z(0.95)σ̂, which supports the reporting
of CI estimates obtained by the standard interval method in the main text. A bootstrap fitting example for the
envelope beat frequency ω0 is shown in Fig. S7, for a bias field magnitude B = 90.08(2) G and a misalignment angle
θ = 25.72(9)◦.
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Beat Frequency ω0 / 
2� (MHz)

FIG. S7. Example bootstrap fit result for the EREEM beat frequency. Starting with a single Ramsey time series, 10, 000
additional datasets are created by randomly sampling with replacement from the initial time series. Estimates of the EREEM
beat frequency ω0 are extracted using the MATLAB lsqcurvefit function for each dataset. The distribution supports the
assumption of normality used by the standard interval method for confidence interval (CI) construction.

A fit to Eq. (S.25) is appropriate when the microwave driving frequency is equally detuned from the two 15NV
hyperfine-split transitions, |δmI=− 1

2
| = |δmI= 1

2
|. Alternatively, the EREEM beat frequency ω0 can be extracted when

these detunings are not equal |δmI=− 1
2
| 6= |δmI= 1

2
|. This approach comes at the expense of fitting accuracy due

to the presence of extra frequency tones in the Ramsey response. In such a case, we expect a four-tone Ramsey
oscillation with two frequency splittings of magnitude ω0 centered around |δmI=− 1

2
| and |δmI= 1

2
|, respectively. To

resolve all frequency components and to avoid ambiguity in the frequency assignments, the following condition is
enforced: |δmI=− 1

2
|− |δmI= 1

2
| � ω0. This alternative method is applied to four randomly selected field configurations

from those shown in Fig. 3 of the main text. A four-tone EREEM function modified from Eq. (S.25) is used for fitting
to the data. The extracted envelope beat frequencies overlap with the CI of the corresponding data under the same
field configurations in the main text. Example data is shown in Fig. S8, for a bias field magnitude B = 90.08(2) G
and misalignment angle θ = 25.72(9)◦.

Free Evolution Time τ (μs)

FIG. S8. Ramsey oscillation with a purposefully detuned microwave driving frequency. The larger detuning enables clear
separation among all frequencies components. The fit result for the EREEM beat frequency ω0 is 0.2733 ± 0.0014 MHz,
overlapping with the confidence interval (CI) of the corresponding beat frequency fit result, 0.2736 ± 0.0008 MHz, using a
microwave frequency equally detuned from the two hyperfine transitions.
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FIG. S9. Calculation and comparison of Ramsey envelope (EREEM) beat frequency ω0 as a function of bias magnetic field
magnitude and misalignment angle, using analytical approximation and QuTiP numerical simulations. (a) ω0 obtained using
numerical simulations (circles) and analytical perturbation theory (solid line), for magnetic fields between 40 G and 140 G.
(b) Absolute differences between ω0 estimates from QuTiP numerical simulations and analytical approximation, for the field
configurations shown in (a). (c) Percentage deviation between ω0 estimates from QuTiP numerical simulations and analytical
approximation.

S-VI. QUTIP SIMULATIONS

As discussed in Sec. IV of the main text, systematic differences are observed between experimental estimates of the
Ramsey envelope (EREEM) beat frequency ω0, and theoretical predictions from Eq. (6) of the main text obtained
using second order perturbation theory. This equation is reproduced below for clarity.

ω0 = |γnβind| = |γn|
√
B2
z + (1− 2κ)2B2

x

= |γn|B
√

1 + 4(κ2 − κ) sin2 θ.
(6)

The observed difference increases with the bias magnetic field misalignment angle. To study this discrepancy, we con-
duct numerical simulations of Ramsey spin dynamics for a range of bias field configurations, using the QuTiP package
in Python. For a coupled NV electron-nuclear system initially described by the lab frame Hamiltonian in Eq. (1) of

the main text, applied microwave pulses are modeled using time-dependent contributions Ω(t) cos (ωet+ ϕ)Ŝx. The
AC magnetic field amplitude Ω(t) is chosen to yield a 20 MHz Rabi frequency during pulses. The duration of each
pulse is calibrated so a π/2 rotation is performed. The phase ϕ is used to toggle between pulse rotation axes.

For each field configuration, the lab frame Hamiltonian H is first diagonalized to obtain eigenenergies and eigen-
states. The pair of frequencies for transitions between |ms = 0,mI + 1/2〉 ↔ |1,+1/2〉 and |0,−1/2〉 ↔ |1,−1/2〉 are
calculated. The mean of these two values is used as the frequency ωe of the pulses. Starting with an initial state
|0,−1/2〉, the Ramsey pulse sequence is applied and the final population in the ms = 0 state is determined. Pulse
sequences are simulated for a range of free evolution times τ , and the resulting time series is fit to Eq. (S.22) to extract
the parameters ω0, ω±1 and Φ0,±1. In Fig. S9, the values of ω0 extracted from numerical simulations are compared
to the analytical predictions given by Eq. (6). For the field configurations considered in the main text, the difference
between these calculations remains around or below 1%.

S-VII. NORMALIZED INVERSE SENSITIVITY

In Fig. 4(c) of the main text, a 2D color plot of the relative normalized inverse magnetic field sensitivity is shown,
evaluated using Eq. (8). These calculations are repeated here for two other misalignment angles θ = 20◦, 54.7◦ and
are shown in Fig. S10. The experimental timescales assumed here (TD = 5 µs, T ∗2 = 5µs) are the same as those used
in the main text. In particular, the θ = 54.7◦ case can describe a bias magnetic field oriented to have equal projections
onto all four NV quantization axes.
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FIG. S10. 2D color plots of the normalized inverse sensitivity with respect to the Ramsey free evolution time τ and bias
magnetic field magnitude B, at 2 distinct misalignment angles θ = 20◦ (a) and 54.7◦ (b)

S-VIII. TRANSVERSE HYPERFINE PARAMETER

Field Magnitude B (G)

A
┴
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FIG. S11. Results for the transverse hyperfine parameter A⊥ as a fit parameter to the Ramsey envelope (EREEM) beat
frequency ω0, extracted from experimental data, for a range of magnetic fields, with error bars showing the 95% confidence
interval, shown in black. Estimated corrections to values of A⊥ are depicted in red, using the discrepancy between QuTiP
numerical simulations and theoretical predictions of ω0.

As discussed in Sec. IV of the main text, we perform fits of Eq. (6) to experimental measurements of ω0 while
allowing the transverse hyperfine parameter A⊥ to vary as a fit degree of freedom. We repeat this process at a series
of bias field magnitudes, extending beyond those considered in the main text. The resulting fits for A⊥ are shown
in Fig. S11 using black markers, with error bars representing a 95% confidence interval (CI). We observe an overall
decrease of A⊥ as the field magnitude is increased.

Due to the field-dependent discrepancy of ω0 between QuTiP simulations and the predictions of perturbation theory,
additional corrections are necessary to precisely determine A⊥. However, as shown in Fig. S9, the degree to which
these predictions differ depends on the misalignment angle θ. As an initial attempt to estimate these corrections, we
fit Eq. (6) to the estimates of ω0 obtained using QuTiP simulations, at the specific magnetic field magnitudes and
misalignment angles studied in experiment. The absolute difference between these fits and the originally assumed
value for A⊥ is used to update the experimentally determined A⊥ estimates, shown in Fig. S11 as red points. We
expect a future study to further refine the estimation for A⊥ by increasing the sampling of misalignment angles at
each magnetic field magnitude. In addition, an extension of these studies to higher field magnitudes will allow direct
comparisons to the previous ESR study [25].

S-IX. DOUBLE-QUANTUM ENVELOPE AMPLITUDE

In Fig. 5(c) of the main text, 2D color plots of the relative contrast at amplitude modulation nodes χmin are shown
for both single-quantum (SQ) and double-quantum (DQ) Ramsey. The calculations for DQ Ramsey are reproduced
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FIG. S12. Calculated double-quantum (DQ) Ramsey relative contrast at amplitude modulation nodes χmin = | cos (Φ−1,+1)|,
for magnetic field magnitudes B up to 800 G and misalignment angles up to 90◦. Dashed contour lines indicate magnetic field
configurations where χmin equals 0.9 and 0.5, representing 10% and 50% contrast loss at envelope nodes, respectively.

here, with the range of magnetic field magnitudes and misalignment angles extended to 800 G and 90◦, respectively.
For the magnetic field magnitudes considered in this study B . 200G, the contrast at envelope modulation nodes is
well-preserved (χmin ≈ 1). However, the calculations illustrated in Fig. S12 show that for a sufficiently large magnetic
field magnitude, the DQ Ramsey signal can exhibit significant envelope modulations.


	Ramsey Envelope Modulation in NV Diamond Magnetometry
	Abstract
	I Introduction
	II Electron Ramsey Envelope Modulation (EREEM)
	III Experimental Methods
	IV MEASURED EREEM Properties
	V Modulation Amplitude and Impact on Magnetometry
	VI Double-quantum Ramsey
	VII Conclusion
	 Acknowledgments
	 References
	 Supplementary Material: Ramsey Envelope Modulation in NV Diamond Magnetometry
	S-I Theoretical Details
	S-II Experimental Details
	S-III Bias Field Misalignment Angle
	S-IV Microwave Frequency Calibration
	S-V Measured Ramsey Time Series Fit Details
	S-VI QuTiP Simulations
	S-VII Normalized Inverse Sensitivity
	S-VIII Transverse Hyperfine Parameter
	S-IX Double-quantum Envelope Amplitude


