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Controllable tunability of a Chern number within the
electronic-nuclear spin system in diamond
Junghyun Lee 1,2,11, Keigo Arai3,4,11, Huiliang Zhang3,5, Mark J. H. Ku3,5,6,7 and Ronald L. Walsworth 3,5,8,9,10✉

Chern numbers characterize topological phases in a wide array of physical systems. However, the resilience of system topology to
external perturbations makes it challenging experimentally to investigate transitions between different phases. In this study, we
demonstrate the transitions of a Chern number from 0 to 3, synthesized in an electronic-nuclear spin system associated with the
nitrogen-vacancy (NV) centre in diamond. The Chern number is characterized by the number of degeneracies enclosed in a control
Hamiltonian parameter sphere. Topological transitions between different phases are realized by varying the radius and offset of the
sphere such that the Chern number changes. We show that the measured topological phase diagram is consistent with numerical
calculations and can also be mapped onto an interacting three-qubit system. The NV system may also allow access to even higher
Chern numbers, which could be applied to exploring exotic topology or topological quantum information.

npj Quantum Information            (2023) 9:66 ; https://doi.org/10.1038/s41534-023-00732-6

INTRODUCTION
Currently, extensive research is being conducted on the topolo-
gically invariant Chern number1, which is defined as the integral of
the Berry curvature of the system of interest2–6, and on the
application of its robust topological properties to quantum
metrology7, next-generation electronics8, spintronics9, and quan-
tum computation10–13. Particularly, exploration of the Chern
number at higher values and investigating the transitions
between different Chern numbers are of significant interest14–16.
For example, high Chern number phases in quantum anomalous
Hall insulators are a candidate platform for next-generation low-
power-consumption electronics, because the contact resistance
between normal metal electrodes and chiral edge channels drops
as the Chern number increases17–19. To characterize this scaling
experimentally, it is necessary to vary the Chern number without
changing the material properties.
The Berry curvature and Chern number are used to characterize

the topological properties of the Hamiltonian parameter space for
a quantum system of interest. In particular, the Berry curvature can
be visualized as the field lines of a pseudo magnetic monopole
associated with a quantum system under certain conditions20,
while the Chern number represents the number of these
monopoles within a closed surface in the system’s parameter
space. In a two-dimensional lattice system, the source of Berry flux
(and hence curvature) in momentum space is a point where two
bands touch, known as the degeneracy or Dirac point21 of the
Brillouin zone; whereas in a two-level system, the degeneracy
point coincides with the resonance condition (on-resonance point
in parameter space) at which the length of the associated Bloch
vector becomes zero.
Despite an advanced theoretical foundation, Chern numbers

greater than one have only recently been studied experimentally
in condensed matter systems, e.g., in multilayer-graphene boron-
nitride interfaces with field-tunable superlattice flat bands14,22;

and in undoped multilayers of a topological insulator under
alternating magnetic fields8,23. Moreover, although controllability
of the Chern number will add significant value to the above-
mentioned practical applications, it is even more challenging to
transit across topological phases. Two major challenges hinder
such experimental investigation: namely, continuous tuning of the
properties in materials; and direct detection of the topological
invariant of multi-fold degenerate points in condensed matter
systems.
An alternative approach to studying Chern numbers experi-

mentally involves the use of two-level systems24–27 in various
qubit platforms, including superconducting qubits28–30, ultracold
atoms31–34, and nitrogen vacancy (NV) centres in diamond35,36.
These platforms have many, well-controlled experimental degrees
of freedom that can be employed as powerful quantum simulators
for complex and dynamic Hamiltonian models in condensed
matter systems, which are otherwise difficult to access. Notably,
researchers have used a single NV centre to explore 2D synthetic
quantum Hall physics37, a topological phase transition of a
quantum wire38, and a synthetic monopole source in the Kalb-
Ramond field39.
According to Gritsev et al.40, the Chern number can be

measured as an integral of the deviation in the qubit Bloch
vector from the hemispherical trajectory of a time-varying Larmor
vector, owing to a nonadiabatic response (Fig. 1a). Here, we
assume that the qubit system can be described by the generic
Hamiltonian ĤðtÞ ¼ ĤS þ ĤCðtÞ, where ĤS is the static internal
Hamiltonian that defines the degeneracy points, and ĤCðtÞ is the
time-dependent control Hamiltonian. The control Hamiltonian
adopts the form ĤC tð Þ¼�_H tð Þ � σ=2, where _ is the reduced
Planck’s constant, H tð Þ is the time-varying Larmor vector in a
three-dimensional Hamiltonian parameter space labelled as
ðHx; Hy ; HzÞ, and σ ¼ ðσx ; σy ; σzÞ are the Pauli matrices. The
Larmor vector is chosen to sweep a hemispherical trajectory from
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the north pole to the south pole with a radius Hr and by
introduction of an offset H0 along the z-axis from the origin:

H tð Þ ¼ Hrsinθ tð Þcosϕ tð Þ; Hrsinθ tð Þsinϕ tð Þ; Hrcosθ tð Þ þ H0ð Þ; (1)

where θ is the time-varying polar angle and ϕ is the azimuthal
angle fixed at 0, without loss of generality. When the Larmor
vector traverses this trajectory at a finite speed, the qubit’s Bloch
vector σh i follows the Larmor vector HðtÞ, but with a small
deviation along the ϕ direction at each polar angle location owing
to a nonadiabatic response2–4,41. For a first-order approximation,
this deviation is related to the ϕ component of the Berry curvature
Fϕ through the following linear relation:

Fϕ θð Þ ¼ Hrsinθ σyh i
2vθ

; (2)

where hσyi is the expectation value of the y component of the
Bloch vector and vθ � dθ=dt denotes the angular speed about its
polar axis. Integration of this Berry curvature over the polar angle
of the trajectory yields the Chern number as follows:

C ¼
Z π

0
Fϕ θð Þdθ: (3)

Here, the Chern number depends on the number of degeneracy
points of the static internal Hamiltonian enclosed in a control
Hamiltonian sphere drawn by the Larmor vector. Every degen-
eracy point can be regarded as a synthetic magnetic monopole.
These monopoles produce radial synthetic magnetic fields that
exert a torque on the Bloch vector.
In this work, we apply the above protocol to experimentally

observe the transition of the Chern number from 0 to 3, using
three degeneracy points associated with the ground-state spin
energy levels of a single NV centre in diamond (Fig. 1b). In this
electronic-nuclear spin hybrid system, parameter space degen-
eracy points correspond to on-resonance conditions between the
hyperfine-split energy levels. The NV electronic spin ground-state
has three sublevels �1j i; 0j i; and þ1j i, out of which only �1j i
and j0i are used here as a two-level system, represented by σ in
the following measurements. The NV host nuclear spin 14N, with a
spin quantum number of I ¼ 1, induces a hyperfine coupling. The
associated internal Hamiltonian takes the form Ĥ0 ¼ ð_=2ÞAkσzIz ,
where Ak=2π ¼ 2:2 MHz is the coupling strength of the long-
itudinal component of the hyperfine interaction and Iz denotes
the z component of the nuclear spin. This electronic-nuclear spin
system contains three degeneracy points, allowing us to access

Fig. 1 Schematic of Chern number measurement with an NV centre in diamond. a Upper: Trajectory of the Larmor vector HðtÞ is
represented by a thick blue arrow in the spherical control Hamiltonian parameter space ðHx ; Hy ; HzÞ. The solid black arrow indicates the
direction of the sweep of the Larmor vector. The yellow circles represent the degeneracy points of the system Hamiltonian. Lower: Time
evolution of the NV electronic spin Bloch vector σðtÞ is represented by the red arrow on the Bloch sphere. The Bloch vector path deviates from
the Larmor vector path due to a nonadiabatic response. The red filled area indicates the amount of deviation, a summation of which over the
path is related to the Chern number. b NV centre energy level diagram. The NV ground states consist of 0j i; ±1j i electronic spin sublevels,
which are further split by hyperfine interactions with the host 14N nuclear spin. Three hyperfine transitions between 0j i and �1j i electronic
spin sublevels (yellow double-arrows) define three degeneracy points in the rotating frame with angular speeds of ωR � Ak;ωR;ωR þ Ak, where
Ak is the parallel component of the hyperfine tensor. c Experimental pulse sequence. An optical initialization pulse polarizes the electronic spin
into j0i. Then, a microwave pulse with time-varying Rabi frequency Ω tð Þ ¼ Ω1 sin θðtÞ and time-varying detuning Δ tð Þ ¼ Δ1 cos θðtÞ þ Δ2 under
a constraint of Ω1 ¼ Δ1 realizes the Larmor vector trajectory. This pulse is terminated at t ¼ Tmeas. The Larmor vector trajectory is completed
within a time of T ramp . The combination of a microwave tomography pulse and a laser readout pulse allows the measurement of all the Bloch
vector components.
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the topological phases with a Chern number greater than 1. The
time-dependent Larmor vector in Eq. (1) is realized through
application of spin-control microwave fields that exhibit a time-
varying Rabi frequency Ω tð Þ ¼ Ω1 sin θðtÞ and detuning of
Δ tð Þ ¼ Δ1 cos θðtÞ þ Δ2, both described in units of Hz. Under this
experimental configuration, the Larmor vector can be written as
the time-dependent Hamiltonian:

H tð Þ ¼ Ω1 sin θ tð Þ; 0; Δ1 cos θ tð Þ þ Δ2ð Þ: (4)

Figure 1c illustrates the experimental sequence for measuring
the Berry curvature at a specific polar angle. The hemispherical
trajectory of the Larmor vector starts from the north pole θ ¼ 0 at
t ¼ 0 and ramps along the Hy ¼ 0 meridian with a constant
angular velocity until it reaches the south pole θ ¼ π at t ¼ T ramp,
that is, θ tð Þ ¼ πt T ramp

� ��1
. Throughout this study, the direction of

the trajectory is fixed along the north-to-south direction with
respect to the points of ground-state degeneracy. A snapshot of
the NV electronic spin Bloch vector component hσyi at various
polar angle locations is obtained by terminating the sweep at time
t ¼ Tmeas.
As a measure of the degree of adiabaticity, an adiabaticity

parameter27 is introduced as follows:

α � Ω1T ramp

2π
: (5)

This parameter represents the fractional change in the Larmor
vector. Recalling the extra second-order term Oðv2Þ in the Berry
curvature formula (Supplementary Eq. 3), α characterizes the
accuracy of the measured Chern number. In the nonadiabatic limit
(α � 1), the first-order approximation of the Berry curvature in Eq.
(2) breaks down. Subsequently, the effects of higher-order terms

contaminate the signal in our measurements. Conversely, in the
adiabatic limit (α � 1Þ, the NV electronic spin remains in the
instantaneous ground state; and the spin Bloch vector is
approximately parallel to the direction of the control field,
following the meridian. However, the deviation signal hσyi
becomes smaller and eventually lies buried in measurement
noise. For the three-level NV system, the appropriate range
reflecting an optimum signal-to-noise ratio is found to be 2 �
α � 10 (see Supplementary Fig. 1). The adiabaticity parameter is
set to α ¼ 2 for the remainder of the work.

RESULTS
Chern number transition from 0 to 3
As a benchmark experiment, we first characterize a case with the
expected Chern number of C ¼ 0 (Fig. 2a). This case is realized by
choosing a small control Hamiltonian sphere with a normalized
radius of Hr=Ak ¼ 0:2 and a normalized detuning of H0=Ak ¼ 0:23,
which does not contain any of the three degeneracy points.
Although these degeneracy points are expected to make the
Berry-curvature zero for any θ, numerical simulations based on a
time-dependent Schrödinger equation (see Methods) predict a
deviation from zero. This deviation can be attributed to the
nonadiabatic effect, which limits the accuracy of this quasi-static
Chern number measurement approach. The measured Berry
curvature is consistent with the simulation results, including the
nonadiabatic effect. The resulting Chern number, obtained by
integrating the measured Berry curvature over theta, converges to
C ¼ �0:07± 0:04. Measurement error is evaluated from the
photon-shot noise (1σ).

Fig. 2 Observation of Chern numbers from 0 to 3. The number of degeneracy points included in the control Hamiltonian parameter sphere
is incremented one by one by enlarging the normalized sphere radius Hr=Ak under a fixed offset of H0=Ak ¼ 0:23. a Case with no degeneracy
points within the sphere. Expected Chern number is C ¼ 0: Top sphere is an illustration of the Bloch vector trajectory (red line) overlayed with
the degeneracy points (yellow circles) and the control Hamiltonian parameter sphere (grey). Numerically simulated Berry curvature Fsimϕ ðθÞ
(red line) presented in the middle. Measured Berry curvature Fmeas

ϕ ðθÞ (grey points and red shaded area) at the bottom. Integrating the Berry
curvature over θ gives a Chern number of C ¼ �0:07± 0:04. b–d Cases with one, two, and three degeneracy points, respectively: yellow (black)
circles lie outside (inside) the control Hamiltonian parameter spheres (grey). Expected Chern numbers are C ¼ 1; 2; 3, while the measured
Chern numbers are C ¼ 0:95 ± 0:35; 2:20 ± 0:39; 2:93± 0:38.
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To observe higher Chern numbers, we next examine cases with
one, two, and three enclosed degeneracy points by increasing the
radius up to Hr=Ak ¼ 2:25 (Fig. 2b–d). Numerical simulations
predict a larger deviation in the path of the Bloch vector with an
increase in the number of enclosed degeneracy points, indicating
more pronounced behaviour for the Berry curvature. The
measured Berry curvatures for each case agree well with the
numerically simulated values. The Chern numbers are determined
to be C ¼ 0:95 ± 0:35, 2:20 ± 0:39, and 2:93 ± 0:38. Thus, our
results demonstrate that the NV electronic-nuclear spin system
can be used as a platform for synthesizing up to three Chern
numbers.

Three monopole 2D phase transition diagram
The NV system can further explore the transition between the
observed Chern numbers. Figure 3a presents measurements of
the topological phase transition along the normalized radius axis (
Hr=Ak 2 0:25; 2:25f g) for various normalized offset conditions:
H0=Ak ¼ 2:0; 1:0; 0:23; 0:0. In all cases, we observe a mild phase
transition, which can be attributed to the finite NV electronic spin
coherence ðT�

2Þ time and the limited adiabaticity parameter α.
Additionally, the observed consistency between experimentally
measured and numerically simulated Chern numbers reflects this
nonadiabatic effect within one standard deviation of the
measurement error, except for Hr=Ak � 1: The disagreement
within this small-radius region may be due to imperfect system
calibration at low Rabi frequencies (see Methods). One notable
effect is found in the case of H0=Ak ¼ 0:0, where the number of

enclosed degeneracy points is expected to jump from one to
three at Hr=Ak ¼ 1. However, in the measurements, a sudden
depletion of C is observed below 1, and the transition is found to
occur above 1. This shift in the transition point can be attributed
to the nonadiabatic response of a qubit when the Larmor vector
coincides with the position of the degeneracy points on the z-axis.
Figure 3c presents the observed transition curves across the
normalized offset (H0=Ak 2 0:00; 2:25f g) for various values of the
normalized radius of Hr=Ak ¼ 0:23; 0:79; 1:36; 2:17, indicating
the diversity of the phase transition pattern.
A systematic assessment of the measurement results can be

obtained by mapping the Chern number phase diagram onto a
two-dimensional parameter space of H0=Ak and Hr=Ak(Fig. 3b). It is
found that the Chern number distribution is not mirror-reflected
with respect to the H0=Ak ¼ 0 line. This asymmetry occurs due to
the time-reversal symmetry breaking of the system42 when C ≠ 0,
which is caused by the sweeping of the Larmor vector from
positive to negative detuning during the measurement, creating a
directional dependence of the Lorentzian force-like response of
the qubit; thereby, breaking the Chern number transition
symmetry (see Supplementary Discussion).

DISCUSSION
We next discuss the connection (i.e., mapping) between the NV
system in our experiments and an interacting three-qubit system
to reveal the implications of our observed two-dimensional
topological phase diagram29. The topological phase diagram
presented in this study is constructed by varying the radius and

Fig. 3 Two-dimensional topological phase diagram and phase transitions along the vertical and horizontal directions. a Measured (grey
circles) and simulated (red solid line) Chern number values along the normalized radius Hr=Ak direction under a fixed normalized offset of
H0=Ak ¼ 2:00; 1:00; 0:23; 0:00. Control Hamiltonian parameter spheres (grey) and degeneracy points (yellow and black) are shown for each
case. b Numerically simulated topological phase map. White dashed lines along H0=Hr ¼ ±1 are presented as a guide for eye. Asymmetry in
the pattern with respect to H0=Ak ¼ 0 is attributed to the time-reversal symmetry breaking of the measurement protocol. c Measured (grey
circles) and simulated (red solid line) Chern number values along the normalized offset H0=Ak for a fixed normalized radius of
Hr=Ak ¼ 0:23; 0:79; 1:36; 2:17. Control Hamiltonian parameter spheres (grey) and degeneracy points (yellow and black) are shown for each
case.
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offset of the control Hamiltonian sphere with respect to the three
degeneracy points. As shown in Fig. 4a, varying the radius under
fixed inter-degeneracy spacings is topologically similar to varying
the inter-degeneracy spacing under a fixed radius. The former is
implemented in this work using the NV centre, which can be
regarded as a single qubit that has an Ising interaction with an
additional spin with a large quantum number. The latter can be
realized by varying the coupling strength g in an interacting
symmetric 1D chain three qubit system using the following
Hamiltonian:

Ĥ3q ¼ � _
2 H1�σ1þH2�σ2þH3 � σ3þH0

0σ
z
1 þ 1

2H
0
0σ

z
2

�
�g σx

1σ
x
2 þ σy

1σ
y
2

� �� g σx
2σ

x
3 þ σy

2σ
y
3

� ��
:

(6)

The topological phases measured in these two systems can be
mathematically connected via projection functions:

~g
0 ð~Hr ; ~H0Þ ¼ 1

2~Hr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1� j1� 2~H0jÞ2

q
;

~H
0

0ð~Hr; ~H0Þ ¼ 1
~Hr
ð1� j1� 2~H0jÞ;

(7)

where eg0 ¼ g=Hr , eH0
0 ¼ H0=Hr , eHr ¼ Hr=Ak, and eH0 ¼ H0=Ak .

As shown in Fig. 4b, we numerically calculate the topological
phase diagram of the interacting three-qubit system. For a largeeHr , where the Rabi frequency becomes significantly larger than Ajj,
the normalized coupling strength eg0 approaches 0, where the
three qubits distinctively contribute to the total Chern number
such that C ¼ 3. Owing to the inverse relation, when eHr

approaches 0, both eg0 and eH0
0 become large, where C ¼ 0 in the

phase diagram. The Chern number behaviour for these limiting
cases remains similar to that of the coupled two-qubit Hamilto-
nian25. Meanwhile, a more complex phase structure can be found
by analytically calculating the positions of the ground state
degeneracy points with respect to the sweep parameter sphere
manifold. The white dashed boundaries clarify four distinctive
regions where the Chern number in each region corresponds to
the number of monopoles enclosed by the surface. Along the eH0

0
axis, one monopole exits the surface at eH0

0 ¼ 1 (C ¼ 3 to C ¼ 2)
and secondly at eH0

0 ¼ 2 (C ¼ 2 to C ¼ 1). Next, along the eg0 axis,
the two monopoles escape the surface at eg0 ¼ 1=

ffiffiffi
2

p
, inducing the

Chern number transition from C ¼ 3 to C ¼ 1.
Finally, we project the NV three-monopole topological phase

measurements onto the interacting three-qubit system using Eq.
(7) and then compare with the three-qubit Chern number
simulation results (Fig. 4c). For a fixed eH0, eHr is swept from 0.22
to 2.2 by varying the Rabi frequency on the NV spin. The
orthogonal parameter axes, eH0 and eHr , are nonlinearly trans-
formed into eH0

0 and eg0, which gives topological phase transition
curves in radial cross-sections for eH0 = 0, 0.23, 0.45, 0.68, and 0.91.
The three-monopole Chern number transition projection, evalu-
ated using Eq. (8), and the simulated Chern number transition
cross section of the interacting three-qubit system are consistent
with each other (blue dotted line in Fig. 4b).
The coupled multiqubit Hamiltonian carries multiple degen-

erate ground states, which leads to the realization of a high Chern
number. Here, the interaction strength, g, between qubits

Fig. 4 Tunable topological invariant with three monopoles. a Topological equivalence of the Chern number measurement using the
electronic-nuclear spin system of the NV centre and three interacting qubits. (left) Degeneracy points of the NV electronic-nuclear spin system
(yellow circles) relative to a 2D slice of the control Hamiltonian parameter sphere (dashed line). The inter-degeneracy spacing Ak is constant,
whereas the radius Hr and offset H0 are variable. (right) Degeneracy points of the equispaced interacting three-qubit system. The inter-qubit
coupling strength g and the radius H0

r are variable, while the offset H0
0 is fixed. b Simulated Chern number phase diagram for the interacting

three-qubit Hamiltonian. White dashed lines indicate the transition boundaries; blue dotted lines denote the radial cross-sections presented in
(c). c Projected three-monopole Chern number measurements (blue open circle); and cross-sectional transition of a simulated three-qubit
phase diagram (parula colourmap). Sweep parameters are normalized for attaining a unitless topology (three-monopole system normalized by
Ak and three-qubit system normalized by H0

r ). Each radial projection corresponds to a fixed eH0 = 0, 0.23, 0.45, 0.68 and 0.91.
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determines the position of the monopoles on the parameter space
z-axis (see Supplementary Methods). In principle, investigating the
topology of an N-interacting qubit system could simulate the
topology of non-interacting 2 N band models. For example, two
interacting qubit systems, simulating the topology of the ground
band of a four-band electronic model, together with an
interacting three-qubit system could help to probe the topological
structure of the half-filled eight-band model29.
Our scheme clearly shows that a high Chern number can be

deterministically simulated using a single-qubit-based multi-
monopole system, in addition to tuning the level of its transition
depending on the range of H0=Ak and Hr=Ak variations. In
particular, the electron-nuclear spin-coupled NV system in
diamond can be a versatile tool for studying a high-dimensional
topology; e.g., further scaling up to a higher topologically-
invariant number can be straightforwardly performed, in principle,
by utilizing the intrinsic 13C nuclear spins near the NV electronic
spin qubit, with hyperfine coupling strengths varying from a few
tens of kHz to almost ~100 MHz43. For a higher-number symmetric
monopole system, one can engineer the Chern number transition
with an increment of 1, or an even number transition,
C ¼ 0; 2; 4 � � �, or an odd number transition C ¼ 1; 3; 5 � � �, by
adjusting the detuning H0=Ak.
In this work, we simulate a high topologically-invariant number

(the Chern number, C) using the experimentally accessible system
of a single NV electronic spin qubit that is hyperfine coupled with
the host 14N nuclear spin. We also demonstrate the robust
tunability of the measured Chern number up to C ¼ 3 by
harnessing the control parameters of the qubit. A systematic
design of the Hamiltonian parameter sphere reveals the detailed
topological structures over three synthetic monopoles, as well as
intriguing Chern number physics associated with the adiabaticity
of the system’s evolution over time. The generality of this method
can be expanded to various qubit platforms to investigate the
topology of higher dimensions, such as N-interacting qubit
systems, which can simulate the topology of non-interacting 2 N
band models in condensed-matter physics. Furthermore, the
tunability of the topological invariant of a qubit system can be
directly applied to explore more exotic topology, which could be
applied to the field of topological quantum information science.

METHODS
NV spin system with three degeneracies
The NV centre ground-state has an electronic spin with quantum
number S ¼ 1 and sublevels j0i and ±1j i. Throughout this work,
we use only sublevels j0i and �1j i as a two-level system, by
Zeeman splitting the ±1j i states using a static external bias
magnetic field. The NV electronic spin experiences a hyperfine
interaction with the host nuclear spin 14N, with spin quantum
number I ¼ 1. The longitudinal component of the hyperfine
interaction, with coupling strength Ak=2π ¼ 2:2 MHz, further splits
the �1j i sublevel into three hyperfine levels. The internal NV
Hamiltonian assumes the form Ĥ0 ¼ ð_=2ÞAkσz Iz . Consequently,
this electronic-nuclear spin system contains three degeneracy
points, allowing us to simulate topological phases with a Chern
number greater than 1. Additionally, the transition between
different Chern numbers can be realized by introducing a
common offset to these degeneracy points. The topology realized
in this study corresponds to an eight-band noninteracting
triangular lattice model.

Experimental setup
Measurements are performed using a home-built NV-diamond
confocal microscope. An acousto-optic modulator (Isomet Corpora-
tion) enables time gating of a 400mW, 532 nm diode-pumped
solid-state laser (Changchun New Industries). The laser beam is

coupled to a single-mode fibre, and subsequently, delivered to an
oil-immersion objective (×100, 1.3 NA, Nikon CFI Plan Fluor), and
focused onto a diamond sample. The diamond sample is fixed on a
three-axis motorized stage (Micos GmbH) for precise position
control. NV red fluorescence (FL) is collected using the same
objective and then passed through a dichroic filter (Semrock
LP02–633RS-25). A pinhole (diameter 75 μm) is used with an
f= 150mm telescope to spatially filter the FL signal, which is
detected using a silicon avalanche photodetector (Perkin Elmer
SPCM-ARQH-12). A signal generator (SG, Agilent E4428C) provides
the carrier microwave signal. The phase and amplitude of the
carrier signal is modulated with a 1 G s−1 rate arbitrary waveform
generator (AWG, Tektronix AWG 5014 C) and an IQ mixer (Marki IQ
1545 LMP). The microwave sideband signal is amplified (Mini-
circuits ZHL-16W-43-S+) and passed through a gold coplanar
waveguide, fabricated on a quartz coverslip using photolithography
that is mounted directly on the diamond sample to control the NV
spin qubit. The diamond sample is CVD-grown, 12C isotopically
purified to 99.99%, with dimensions of 2mm × 2mm × 0.5mm. The
diamond is annealed at 800 °C for 8 h and then at 1000 ◦C for 10 h
to mobilize vacancies in the diamond and, combined with existing
nitrogen defects from the CVD process, to create the NV centre
used in the experiment. During the measurement, the external
magnetic field is aligned with the NV crystalline axis at a field
strength of ~100 G. The measured NV spin resonance lifetimes are
T1 	 3ms, Hahn-Echo T2 	 400 µs, and T�

2 	 40 µs.

Quantum state tomography
To create a hemispherical trajectory of the Larmor vector and
hence the NV electronic spin Bloch vector to follow, a sine-
envelope-chirped microwave signal is used, with sweeping of
both the detuning and Rabi frequency. To match the relative
phase of the chirped signal, a tomography pulse is applied directly
after the control pulse at a specific time Tmeas. The hσyi rotation
tomography pulse’s relative phase is set with respect to the end
phase of the chirped control signal. The tomography pulse Rabi
frequency is set to 10 MHz. During calibration of the tomography
pulse, the observed dynamic phase noise contribution is highly
suppressed. The final NV electronic spin state is read out by optical
illumination at 532 nm and measurement of the NV fluorescence
(FL) in the 640–800 nm band over an observation time of 400 ns. A
change in NV FL intensity occurs due to a non-radiative decay
pathway via metastable singlet states (Fig. 1b). Measurements are
repeated ~106 times to establish good statistics, given finite
optical collection efficiency of the apparatus. Because the NV spin
qubit system has two isolated spin levels in the presence of an
external bias magnetic field (~100 G), leakage to other states can
be neglected, which gives a fidelity advantage for using an NV
centre for quantum simulations.

Adiabaticity parameter determination
We determine an optimized condition for the adiabaticity
parameter α, where the NV electronic spin qubit response is
quasi-adiabatic. This condition is fulfilled when (i) the qubit
adiabatically follows the Larmor vector trajectory; and also (ii) the
observable NV electronic spin Bloch vector component hσyi,
which is the Lorentzian deviation from the Larmor vector
trajectory, has a sufficiently large signal-to-noise ratio to be
detected. Using dynamic-state preparation as a benchmark of the
adiabaticity parameter calibration25, we first detect the
Landau–Zener transition (Supplementary Fig. 3) by measuring
hσzi, the hemispherical manipulation of the NV spin qubit, and
confirm that the transition probability depends on both the Rabi
frequency Ω and T ramp as expected. The Landau–Zener hσzi
measurements, obtained by varying α, show that our system’s
quasi-adiabatic boundary is approximately with the
2 � α � 10 range.
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Numerical simulations
All numerical simulations of NV spin evolution in this work are
performed by computing the time-ordered time evolution
operator at each time step:

U ti; tfð Þ ¼ T̂ exp �i
Z tf

ti

H tð Þdt
� �� �

¼
YN
j¼1

exp �iΔtH tj
� �� �

(8)

where ti and tf denote the initial and final time, respectively; T̂ is
the time-ordering operator; Δt is the time step size of the
simulation; N ¼ ðtf � tiÞ=Δt is the number of time steps; and ĤðtÞ
is the time-dependent Hamiltonian. In the simulation, a step size
of Δt ¼ 1 ns is used, which is sufficiently small in the rotating
frame. The algorithm is implemented using MATLAB® software.
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