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Abstract

Thesis Title: Exploring Dirac Materials and Two-Dimensional Magnet Using Green’s Function Method and
Quantum Magnetic Imaging

The development of techniques and methods, from an experimental and theoretical view, to
explore condensed matter systems is crucial to reveal the distinguishable features of their elec-
tronic or magnetic properties, characterize them and in this way uncover, understand, and con-
trol the footprint of exotic collective phenomena, novel quantum phases of matter, among oth-
ers and in this way then further use them for specific technological application and/or to ground
the foundational basis of condensed matter physics. Interestingly, many promises in quantum
technological applications and novel exotic phenomena as well as quantum phases of matter
have as a platform the very rich family of two-dimensional material, Some interesting phases
that have been or it is predicted to be observed are quantum spin liquid, topological quantum
phases, skyrmion textures, etc. In light of the aforementioned claims, our work presents several
novel theoretical and experimental approaches to studying different types of condensed matter
phases and properties in a wide range of materials but focuses on the family of graphene-like
and Van der Waals (VdW) materials.

First, in our work we have been able to develop a novel Green functionmethod for a microscopic
generalized Dirac Hamiltonian to study quantum transport properties in physical systems such as
topological insulators, cuprate superconductors, Weyl semi-metal, but in particular we applied
the method for graphene-like materials. The technique accounts for the main physical system’s
properties, i.e. spin-orbit coupling, valley-spin coupling, intrinsic gap, external fields, etc., the
specific edge condition of the system, and system size. These permit the exploration of exotic
phenomena and phases from relevantmaterials such as TransitionMetal Dichalcogenide (TMDs),
Germanene, and Silicene by calculating quantities such as local density of states (LDOS), density
of states, and scattering process, among others. Using this new approach, we find analytical and
closed-form expressions that allow us to make low computational cost numerical calculations
that determine a rich variety of phenomena. Some of them that we would like to highlight are
the valley-dependent properties of the TMDs scattering process, the evident spin-valley lock-
ing electronic state distribution of this type of system, as well as the presence of concentrated
edges state product of specific boundary conditions; from the Germanene and Silicene side, we
find that they behave as a topological insulator in normal conditions but in particular that their
topological properties are independent of specific edge condition over both system and by tun-
ing a perpendicular external field their topological properties remains robust but beyond some
critical field the system starts to behave as normal insulator. Our particular calculation paves the
way for applications of TMDs as monolayer transistors or for valley-selective excitonic devices
and on the other hand, in Germanene and Silicene, our results contribute to the use of them
as topological field effect transistors or for effective magnetic to electric transfer in spin-torque
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ferromagnetic resonance technique, to mention a few of the interesting impacts of our results
for the specific application of our technique in this manuscript.

Secondly, a recently popular experimental method for magnetometry based on spin defect in di-
amond called quantum magnetic imaging (QMI) with nitrogen-vacancy (NV) centers in diamond
has been implemented to study FGT and Co-doped FGT ultrathin VdW magnetic samples. Our
method takes advantage of the NV center ensemble working as a local sensor; when the NV
center is in resonance with a lab-controlled microwave (MW) field and an external target field
from our sample, it allows us to detect optical emission changes of each local sensor next to the
sample by capturing pixel by pixel light emitted by the spins, with it we get a map of the samples
field. Then by appropriately magnetizing the VdW ultrathin films with a bias field, we are able
to determine their magnetic phase at room temperature. Through our technique, we are able to
reveal that FGT and Co-doped FGT present ferromagnetism at room temperature, and that our
method allows us to screen multiple samples and find ferromagnetism in samples as tiny as 7
unit cells. Our results reveal that this type of VdWmagnet has relevant thickness for spintronics
devices and extends the portfolio of materials with ferromagnetic phase in that scale. Alongside
this method, we develop a new modality of magnetometry based on NV center, all-optical and
microwave-free at low field regime. Our new technique relies on two approaches, first the devel-
opment of an experimental setup that can measure the photoluminescence emission from an NV
ensemble when the magnetic field is systematically tuned and oriented in a desire orientation
and second a proper model for simulating the fluorescence spectrum that accounts hyperfine
coupling, quadrupolar interaction, and for interacting NVs with other defect centers in ensem-
bles. The findings from our experimental and theoretical results show the relevant impact of
spin cross-relaxation processes in the improvement of the method’s sensitivity, the role that
plays linear polarized light in the fluorescence and the importance of the NVs crystal plane ori-
entation with respect to the magnetic field. Our results are promising for future exploration of
VdW materials at cryogenic temperature and further understanding of the relevant physics that
influence in the proposed new magnetometry modality at low magnetic field.

Finally, at the end of the document, we draw approaches where the aforementioned methods
could complement each other and be used jointly to explore condensed matter systems of in-
terest, and we describe how using some findings and insights from one method can be used in
the other one to further understand and explore the object of study of interest.

Keywords: GreenFunction, Nitrogen-Vacancy center in diamond, QuantumMagnetic Imaging, All-optical
Magnetometry, Dirac Hamiltonian, Graphene-like materials, VdWMaterials .



vii

Resumen

Título de tesis: Exploración de materiales de Dirac e imanes bidimensionales usando el método de las fun-
ciones de Green e imágenes magnéticas cuántica

El desarrollo de técnicas y métodos, desde un punto de vista experimental y teórico, para ex-
plorar los sistemas de materia condensada es crucial para revelar los rasgos distinguibles de
sus propiedades electrónicas o magnéticas, caracterizarlos y de esta manera descubrir, com-
prender y controlar la huella de fenómenos colectivos exóticos, nuevas fases cuánticas de la
materia, entre otros, y de esta manera utilizarlos posteriormente para aplicaciones tecnológicas
específicas y/o para fundamentar las bases de la física de la materia condensada. Curiosamente,
muchas promesas en aplicaciones tecnológicas cuánticas y fenómenos exóticos novedosos, así
como fases cuánticas de la materia, tienen como plataforma la riquísima familia de materiales
bidimensionales. Algunas fases interesantes que se han observado o se prevé observar son el
líquido cuántico de espín, las fases cuánticas topológicas, las texturas de skyrmion, etc. A la luz
de las afirmaciones anteriores, nuestro trabajo presenta varios enfoques teóricos y experimen-
tales novedosos para estudiar diferentes tipos de fases y propiedades de la materia condensada
en una amplia gama de materiales, pero se centra en la familia de materiales similares al grafeno
y Van der Waals (VdW).

En primer lugar, en nuestro trabajo hemos sido capaces de desarrollar un novedoso método de
función de Green para unHamiltoniano de Diracmicroscópico generalizado con el fin de estudiar
las propiedades de transporte cuántico en sistemas físicos tales como aislantes topológicos, su-
perconductores cupríticos, semimetales de Weyl, pero en particular hemos aplicado el método
para materiales similares al grafeno. La técnica tiene en cuenta las principales propiedades
del sistema físico, es decir, el acoplamiento espín-órbita, el acoplamiento valle-espín, la gap
intrínseco, los campos externos, etc., la condición de borde específica del sistema y el tamaño
del sistema. Esto permite explorar fenómenos y fases exóticas de materiales relevantes como los
dicalcogenuros de metales de transición (TMDs), el germaneno y el siliceno mediante el cálculo
de cantidades como la densidad local de estados (LDOS), la densidad de estados y los proceso de
dispersión, entre otros. Utilizando este nuevo enfoque, encontramos expresiones analíticas y
de forma cerrada que nos permiten realizar cálculos numéricos de bajo coste computacional que
determinan una rica variedad de fenómenos. Algunos de ellos que nos gustaría destacar son las
propiedades valle-dependientes del proceso de dispersión de los TMDs, la evidente distribución
de estados electrónicos spin-valley locking de este tipo de sistemas, así como la presencia de
estados de bordes concentrados producto de condiciones de borde específicas; por el lado del
Germaneno y el Siliceno, encontramos que se comportan como un aislante topológico en condi-
ciones normales pero en particular que sus propiedades topológicas son independientes de la
condición de borde específica sobre ambos sistemas y al sintonizar un campo electrico externo
perpendicular, sus propiedades topológicas permanecen robustas pero más allá de cierto campo
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crítico el sistema comienza a comportarse como un aislante normal. Nuestro cálculo particular
allana el camino para aplicaciones de TMDs como transistores monocapa o para dispositivos
excitónicos selectivos de valle y por otro lado, en Germaneno y Siliceno, nuestros resultados
contribuyen al uso de ellos como transistores topológicos de efecto de campo o para la trans-
ferencia efectiva magneto-electrica en la técnica de resonancia ferromagnética de spin-torque,
por mencionar algunos de los impactos interesantes de nuestros resultados para la aplicación
específica de nuestra técnica en este manuscrito.

En segundo lugar, se ha implementado un método experimental recientemente popular para
la magnetometría basada en el defecto de espín en el diamante denominado imagen magnética
cuántica (QMI) con centros de vacantes de nitrógeno (NV) en el diamante para estudiar muestras
magnéticas VdW ultrafinas de FGT y FGT dopado con Co. Nuestro método aprovecha el conjunto
de centros NV funcionando como un sensor local; cuando el centro NV está en resonancia con
un campo de microondas (MW) controlado en laboratorio y un campo objetivo externo de nues-
tra muestra, nos permite detectar cambios de emisión óptica de cada sensor local próximo a la
muestra capturando píxel a píxel la luz emitida por los espines, con ello obtenemos un mapa
del campo de las muestras. A continuación, magnetizando adecuadamente las películas ultra-
finas VdW con un campo de polarización, somos capaces de determinar su fase magnética a
temperatura ambiente. Mediante nuestra técnica, somos capaces de revelar que las FGT y las
FGT dopadas con Co presentan ferromagnetismo a temperatura ambiente, y que nuestro método
nos permite estudiar múltiples muestras en una sola medición y encontrar ferromagnetismo en
muestras tan pequeñas como 7 celdas unidad. Nuestros resultados revelan que este tipo de
imán VdW tiene un grosor relevante para los dispositivos de espintrónica y amplía la cartera
de materiales con fase ferromagnética en esa escala. Junto a este método, desarrollamos una
nueva modalidad de magnetometría basada en el centro NV, totalmente óptica y sin microondas
en régimen de campo magnético bajo. Nuestra nueva técnica se basa en dos enfoques, en primer
lugar el desarrollo de un montaje experimental que puede medir la emisión de fotoluminiscencia
de un conjunto de NV cuando el campo magnético se sintoniza sistemáticamente y se orienta
en una orientación deseada y, en segundo lugar, un modelo adecuado para simular el espectro
de fluorescencia que tiene en cuenta el acoplamiento hiperfino, la interacción cuadrupolar y la
interacción de los NV con otros defectos. Las conclusiones de nuestros resultados experimen-
tales y teóricos muestran el impacto relevante de los procesos de relajación cruzada de espín
en la mejora de la sensibilidad del método, el papel que juega la luz polarizada lineal en la flu-
orescencia y la importancia de la orientación del plano cristalino de los NVs con respecto al
campo magnético. Nuestros resultados son prometedores para futuras exploraciones de mate-
riales VdW a temperatura criogénica y para una mayor comprensión de la física relevante que
influye en la nueva modalidad de magnetometría propuesta a bajo campo magnético.

Por último, al final del documento, trazamos enfoques en los que los métodos mencionados po-
drían complementarse y utilizarse conjuntamente para explorar sistemas de materia condensada
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de interés, y describimos cómo el uso de algunos hallazgos y conocimientos de unmétodo puede
ser utilizado en el otro para comprender y explorar más a fondo el objeto de estudio de interés.
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1 Introduction

In the last thirty years, condensed matter physics has been enriched by the discovery of a won-
derland of exotic quantum matter phases (QMP). These QMP come from emergent or collective
states of interacting particles, that are nothing like the solids, liquids, and gases of common
experience, as well as a massive increase of the two-dimensional (2D) material’s family since
graphene first-time fabrication, the set of all this kind of phases of matter are the so-called quan-
tum materials (QM). Boosted by the current new nanotechnology revolution driven by quantum
computers, quantum materials have been exploited and explored with the goal of developing
and creating the technology that will drive the world of tomorrow.

To highlight the interplay between QM and progress in quantum devices, let’s consider specific
cases such as topological insulators(TI) and quantum spin hall effect phases, topological super-
conductivity, and quantum spin liquid which are related to some of the families that belong to
the current research in classify all phases of matter with topological numbers [1].

To start with, let us talk about the quantum spin hall effect (QSHE) predicted by B. A. Bernevig
et Al in 2005 [2] without the need for an external magnetic field purely given by the high spin-
orbit coupling, which was experimentally observed in HgTe quantum wells in 2007 [3] by doing
hall resistance measurements at cryogenic temperatures. Then in 2014 [4] was predicted that
2D transition metal dichalcogenides (TMDs) are platforms to observe QSHE and useful building
block for a topological field effect transistor, more recently was proved that at 100 K in a mono-
layer of TMDs measuring edge conductance [5].

A more striking fact is the intrinsic connection between QSHE and topological insulators (TI),
both phenomena can be described by the Chern number or topological invariant reproducing the
exact same physics, reason because each one is the synonym of the other [6]. Topological insu-
lators were predicted and observed in 3D materials such asBi2Te3,Bi2Se3 andBi1−xSex using
ARPES measurements of surface electronic band dispersion state, showing in this way Dirac
cones at the surface at the QSHE state [7, 8, 9]. In addition, using TI Bi2Se3 at room tempera-
ture in 2014 was demonstrated that it provides a strong spin-orbit-transfer torque to a magnetic
material, showing efficient electrical manipulation of magnetic materials useful for memory and
quantum information applications. Afterward have been demonstrated giant spin orbit torque
(SOT) using different TIs and reinforcing their utility as a promising material for spintronics ap-
plications [10, 11]. In addition to 3D TIs, 2D TIs have been predicted in graphene [12] however
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due to their low spin-orbit coupling are less exciting than almost all the sub-family of 2D mate-
rials which are known as graphene-like materials, such as stanene, silicene, germanene, among
others, are excellent platforms for TIs and for quantum anomalous hall effect (QAHE) due to
their relative high-spin orbit coupling respect graphene [13].

An elusive topological state with promising groundbreaking application in quantum topologi-
cal computation and fundamental physics is the topological superconducting state dominated
by bound edges states called Majorana Fermions, a particle that is its own anti-particle which
has been extensively hunted in particle physics [14]. The realization of this material has been
initially predicted to be possible in the interface between of an s-wave superconductor and a
topological insulator with strong SOC by Liang Fu and C.L. Kane [15]. Despite the effort in the
community to demonstrate this topological state in this hybrid system [16, 17, 18], it is still
unsuccessful because of the difficulty to distinguish between Andreev bound states and Majo-
rana zero modes at the edge of this kind of material[19], given that both phenomena give rise
to zero peak voltage, the principal landmark to prove TS; however, now the community, leading
by Microsoft itself, have focused their research in the development of protocols to test several
signatures of TS and not just zero peak voltage at the edge of the interfaces [20].

In the meantime, also twisted bilayers of graphene have been predicted to have topological su-
perconductivity as well as TMDs, confirming how 2D materials are an excellent playground to
many types of QMP [21, 22]. One of the main applications for TS as mentioned previously is
related to QIS, due to their topologically protected states this assures an improvement in coher-
ence time that will outperform current technologies [23].

Finally, to summarize some of the QMP, there are also quantum spin liquids, which have cur-
rently been observed only in non-stoichiometric magnetically doped materials or in 3D layered
crystals of magnetic materials, not yet exfoliated into monolayers [24]. This phase could lead to
a new paradigm for high-density, low-power data storage in the context of solid-state systems[3].
It is known that 2D magnets such as CrI3 possibly can host this phase [25] and given their prop-
erties in general 2Dmagnets are also suitable platforms to observe skyrmions which are statically
stable topological spin textures that have been observed experimentally in this class of materials
using neutron scattering techniques as well as transmission electron microscopy methods [26],
these are also a particular kind of QMP for magnetic materials. So, 2D magnets are two types of
different QMPwith crucial impact in data storage, QIS and low-energy consumption devices [24].

Each type of QMP described so far has a broad impact on several potential technologies, however,
the key factor does not correspond to the existance itself of this phase but also to the commu-
nity’s capability to detect and predict each of them. Primarily all of them can be measured using
electric, magnetic or optical measurements techniques sensible to electric or magnetic behav-
ior. Hence, the development of techniques and methods, from an experimental and theoretical
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view, to explore condensed matter systems is crucial to reveal the particular features of their
electronic or magnetic properties, characterize them, and in this way uncover the footprint of
QMP. In this thesis, we describe the development and application of novel theoretical and ex-
perimental methods to the study of quantun material phases.

The 2D materials have shown that are suitable platforms for most QMP. From the theoretical
perspective, the 2D materials, that have been mentioned, describe a many-particle system. The
properties of these kinds of systems are mostly described from a quantum field theory per-
spective where Green’s function is a keystone. Using Green’s function it is possible to explore
superconductivity, superfluidity, as well as quantum magnets in 1D and 2D, two-dimensional
materials, and topological materials, from classic to more modern applications [27].

Quantities such as response functions (e.g. electric susceptibility, conductivity, magnetic sus-
ceptibility), the local density of states, and the density of states, can be described given the
hamiltonian from a particular physical system with the Green’s function [28]. Besides, with the
Green’s function for a system and by means of the Dyson equation, it is possible to do the en-
gineering of junctions of several materials, as well as create several kinds of interfaces using
this method to explore the surface’s or edge’s state [29]. In addition, the Green function al-
lows identifying the scattering processes in the interface of materials, e.g. reflection coefficient,
transmission coefficient, etc [30]. Regarding these quantities, it is possible to calculate several
magnitudes of high interest in studying novel phase phenomena as well as modeling real physi-
cal systems. Due to the broad information that could be found using Green’s function given the
hamiltonian and the boundary conditions for the system, the mathematical method is suitable
to explore electric and magnetic properties of any kind of condensed matter system.

On the experimental side, quantum magnetic sensing based on nitrogen-vacancy centers in di-
amond is a new method that has been used to explore two-dimensional magnets such as CrTe2
and CrI3 [25, 31]. Also, the viscous flow of graphene’s electrons has been revealed using this
technique [32], this fact allows us to think that this technique also is useful to explore current
flow in devices. In addition, magneto static twists in room-temperature skyrmions have been ex-
plored by spin texture reconstruction using this method [33]. Using this experimental approach
it is possible to explore key magnetic properties of 2D materials, as well as electronic properties.

Quantum sensing with NV centers in a diamond can be pictured as a spin qubit system, where
the electronic spin of the two-electron from the NV presents a three-level system. When the
external magnetic field is applied to the NV occurs level transitions between the levels due to
the field. The fluorescence emitted by the NV allows for finding the magnitude of the magnetic
field using an appropriate protocol to manipulate the whole system with an external alternating
electric field. This protocol allows for identifying the frequency of the fluorescence as well as
exploring a particular magnetic material with specific conditions. Besides the ensemble of NV
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center in a diamond magnetometer can be considered a leading modality for sensitive, high-
spatial-resolution, wide-field-of-view imaging of microscopic magnetic fields due to the wide
range of conditions that it could be operated, for instance from cryogenic to well above room
temperature, the narrowband detector of the magnetic field over a range of frequencies from
near DC to GHz, also full vector magnetic field sensing is possible using the distribution of NV
orientation along the four crystallographic direction in a diamond[34].

In this thesis, we present the development and applications of techniques based on a novel ap-
proach using Green functions method and ensembles in NV centers in diamond. The methods
are particularly applied to the wide family of two-dimensional materials. We explore several
electronic and topological phases in the so-called Dirac Materials, i.e. materials that obey the
Dirac Hamiltonian, but focus on the family of Graphene-like materials such as Germanene, Sil-
icene, and TransitionMetal Dichalcogenides (TMDs), with the Green function method which will
allow us to reveal several quantum transport properties such as local density of state, density of
states and scattering process. The beauty of the mentioned graphene-like materials is that they
are also part of a new class of materials called Van der Waals materials, which in short can be
described as those that present perpendicular bonding between layers, these properties allow
easy engineering and fabrication of devices based on the family of two-dimensional materials.
The method of quantum magnetic imaging using nitrogen-vacancy centers in diamond is used to
explore magnetism in magnetic Van der Waals materials with thicknesses as low as 7 unit cells
thick, due to their low thickness are called 2D magnets. Finally, further development on a new
modality completely based on the optical emission of NV center, is done using nitrogen-vacancy
centers at a low field regime (i.e. < 30 G), the emission of the NV centers is affected by the en-
semble density of NVs, this dependency is described through a theoretical model and outlooks
about the possible implementation of this method to explore condensed matter system is dis-
cussed.

The meaning of this work rests in the fact that the study objects, namely two-dimensional ma-
terials, are of key interest either for fundamental physics or technological application, however
even if the study objects are important themselves, the methods through which the studies are
done offer new paths to explore a wide range of new materials and as well as ways to engi-
neer and simulate devices. So the purpose of this thesis is two-fold, first, develop methods that
broadly can be used for a diverse range of two-dimensional materials and beyond, and second
explore phases and properties of the novel family of graphene-like materials and Van der Waals
magnets. Upon this is worth mentioning that both methods are complementary in the sense
that features that are predicted or described by the theoretical method offered by the newly
developed Green function technique can be later detected using the NV center ensembles, but
further elaboration about this point will be presented in the outlook of this document.
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This thesis is organized as follows. In the next chapter, the generalized Green function method
for Dirac materials is described in detail, then the method is applied to relevant graphene-like
materials and an exploration of the topological phase by applying an external fields. After, quan-
tum magnetic imaging using NV centers in diamond is briefly introduced, then a description of
the sample and experimental procedure is outlined, and finally, experimental results are shown
and explained. Lastly, an all-optical magnetometer based on NV centers in diamond at low field
is described, a theoretical method that predicts the behavior of the sensor is presented. The ex-
perimental results exploring the effects on the fluorescence of NV centers in diamond due to the
external magnetic field and compared with theoretical calculation; as an outlook, it is discussed
how the method can be used to explore relevant condensed matter systems. Finally, the thesis
conclusions are presented and an outlook of the interplay between methods and materials for
future research is done.



2 Generalized Green’s function method to
explore Dirac Materials

2.1 Introduction

Condensed matter physics is having an unprecedented expansion of novel phases of matter gov-
erned by the quantum laws of nature. In the zoo of the exotic quantum phase of matter, there
are several types of phenomena that at first glance look fundamentally different among them,
some of them are d-wave superconductors, topological insulators, or graphene-like materials,
however, despite their differences, many of these materials share low-energy characteristics
like the presence of nodal points or a linear band dispersion, tunable carrier density, and high
mobility due to suppressed backscattering, in the infrared regime, charge carriers follow a rela-
tivistic Dirac equation yielding the same universal behavior for, e.g., the optical conductivity or
the specific heat, this class of materials are called Dirac Materials[35, 36, 37, 37, 38, 39]. .

The origin of the Dirac-like behavior varies with the material, but in all cases, some specific sym-
metries protect the formation of Dirac nodes in the spectrum [35]. For example, in the recently
discovered quantum spin Hall insulator [40, 41] time-reversal symmetry promotes and protects
the formation of Dirac-like metallic one-dimensional (1D) edge states on an otherwise 2D insu-
lator. Similarly, three-dimensional (3D) topological insulators feature 2D edge states described
by a single (or an odd number of) Dirac cones [42, 36, 43].

Particularly, two-dimensional (2D) materials have become an excellent playground to predict
several exotic quantum phases such as topological insulators, d-type superconductors, topolog-
ical superconductors, among others. Examples include one- or few-atom thick materials like
graphene, silicene, stanene, germanene, and TMDs, all of them are Dirac materials, and their
properties make them up-and-coming candidates for quantum technology applications, and an
excellent platform to study novel quantum phases.

Dirac materials are characterized by their band structure, [44, 45, 46, 47], in particular, nanorib-
bons and junctions of two-dimensional material have motivated the use of density functional
theory and wave charge techniques to explore their electronic properties [48], and newmaterials
have been predicted from this kind of numerical methods. Once identified, their microscopic
properties are more easily accessed by numerical lattice calculations CITE, which can include
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finite-size effects and the presence of edges. For the study of quantum transport, it is also im-
portant to include the effect of atomic-scale interfaces, or the presence of well-defined edges in
layers of 2D materials; for example, the electronic spectrum of a graphene nanoribbon strongly
depends on the edge orientation[49, 50].

In a complementary approach, low-energy, effective microscopic Hamiltonians offer a way to
include all these effects (finite-size, edges and interfaces, etc.), while, at the same time, pro-
viding analytical results for the study of transport, for instance, in the absence of Coulomb in-
teractions, a scattering theory can be derived from the Dirac Hamiltonian including interesting
effects like edge orientation, spin-orbit coupling, magnetization, or even superconductivity[51,
52, 53, 54, 55]. A particularly interesting generalization of effective Hamiltonians are the green
function method combined with Dyson’s equation [52, 50]. In the past, green’s function tech-
nique has facilitated the the study of correlations (interactions, superconductivity, etc) and nat-
urally the computation of observables like differential conductance, the density of state, scat-
tering processes among other quantities of hybrid quantum systems based on junctions of Dirac
materials[29, 30].

However, although other methods have been implemented to predict or study 2D material’s
electronic band structures, there is a lack of knowledge of the effects of the specific boundary
conditions at the edges of nanoribbons based on graphene-like materials, for instance there is
literature that predicts the presence of topological phases in nanoribbons such as Germanene,
Stanene, and Silicine when their edges are zig-zag, howevers there is no experimental evidence
or theoretical predictions about what will be the behavior for the case of armchair edges [13].

In this work is developed a systematic and general method to analytically compute the micro-
scopic Green function of systems with a Dirac Hamiltonian and 2D honeycomb structure. The
resulting Green function accounts for the presence of well-defined edges or interfaces at the
atomic scale. We then obtain the green function of relevant examples of Dirac materials, like
germanene and TMDs, and obtain transport properties (density of states and scattering proba-
bilities) of infinite, semi-infinite, and finite layers. Our general method can distinguish specific
edge orientations like zigzag, which only involves one Dirac node or valley, and armchair that
combines two valleys. In all cases, the method provides simple analytical formulas.
This document is organized as follows

2.2 Brief Overview of Dirac Materials

Themost basic way to characterise condensedmatter physics corresponds to use the low-energy
excitations, because usually, this determines the system’s response to external sources. For in-
stance, metals and semiconductors fermions are usually described by the Schröndinger Hamil-
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tonian for a free particle in the free electron gas model, however for the case of semiconductors
an additional term is required to consider the gap, this difference makes a fundamental change
in response to temperature for each system, where for metals is linear and for semiconductors is
an negative exponential. For Dirac materials the low-energy excitations are described in general
by the following Hamiltonian:

HD = vF σ⃗ · p⃗+mv2Fσz (2-1)

In equation 2-1, the m corresponds to the effective mass of quasiparticles, σ⃗ = (σx, σy) and
σz are the Pauli matrices, the quasiparticles described by this hamiltonian are called ”Dirac
Fermions” [35].
Dirac fermions with non-zero mass are qualitatively different from Schröndinger ones because
the positive and negative energy eigenstate of the Dirac Hamiltonian is made from the sample
space of spinor wave functions, which makes that the particles and holes have the same effective
mass and are interconnected through their wave functions, this is directly related to the spectral
gap ∆ = 2mv2F , in the case of semiconductors or metals, holes and particles are described by
different Schrodinger equations.

Figure 2-1: The table summarizes the materials that behave as Dirac materials. In the table, the
pseudo-spin degree of freedom for each material is pointed out as well as the energy
scale were they are described by the Dirac material [35]

In figure 2-1, can be observed several physical systems that are Dirac materials, in this list several
difference in between systems can be observed, for instance, the Pseudo-spin for Graphene-like
materials, topological insulators, and d-type superconductors are physically different, in addi-
tion, the microscopic nature of the Dirac fermions for each of them also are.
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Figure 2-2: (a) Shows graphene crystal structure pointing out the two sublattices (one atoms in
blue and others in yellow) (b) Reciprocal lattices of honeycomb systems. (c) Numer-
ical simulations that shows the Dirac cones in honeycomb systems. Figure adapted
from [35]

In the case of graphene each unit cell contains two carbon atoms, which give rise to two sublat-
tices, A and B, each atom of sublattice A are surrounded by three nearest neighbors in sublattices
B, as shows in 2-2A. The system can be described by a tight-binding Hamiltonian which when
are considered the first nearest neighbors and the energy spectrum is calculated around the K
and K’ points in the first Brillouin zone (2-2B),it is reduced to a hamiltonian of the form

H(k⃗) = h̄vF k⃗ · σ⃗ = h̄vF (τkσx + qσy) (2-2)

where h̄vF =
√
3ta/2 t ≈ 2.7eV and a = 1.48is the hopping constant and the relative distance

in between C-C atoms, respectively. In figure (2-2C) can be clearly observed numerical calcula-
tions of Dirac cones around the inequivalent K and K’ points.

In graphene, there are two spin degenerate cones in each of the two valleys, and the speudo spin
corresponds to the sublattice degree of freedom. The Dirac fermions in graphene are derived
from the electronic band structure and are thus charged quasiparticles[56].

In the case of a topological insulator, they have a strongly spin-orbit coupling with an insulating
bulk but conducting surface states. In topological insulators the bands are separated by a finite
energy gap in the entire Brillouin zone of the bulk materials, however in their surface they hos
Dirac quasiparticles[14].

In this topological insulating systems there is a bulk-boundary correspondence, where the change
of the invariant, ∆ν, across an interface of two materials is intimately tied to the occurrence of
surface states, which closes the energy gap in the interface. These topologically protected sur-
face states have a massless Dirac spectrum, where the momentum is locked to the spin, and
thus results in a spin-helical metal[21]. This system is modeled a a dirac spectrum in one dimen-
sion, such chiral modes are also encountered at the edges of quantum hall systems. However,
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in constrast to the QHE, which occurs in strong magnetic fields, topological insulators exist in
the abscence of a magnetic field[22].

In topological insulators, spin-orbit coupling takes over the role of the magnetic field, and time-
reversal symmetry is preserved at interfaces between a topological insulator and a normal insu-
lator, unless further external perturbations, such as magnetic impurities, are present. Thus,
Kramer’s theorem is applicable and implies that the edge states must have a time-reversed
counter part (opposite spin and momentum) at equal energy at topological insulator interfaces.
In the simplest model, a topological insulator implements two copies of the Hamiltonian to
describe pairs of counter-propagating time-reversed states[57]:

HTI(k⃗) =

(
H(k⃗) 0

0 H∗(−k⃗)

)
(2-3)

2-3 is equivalent to 2-2, this is why we can consider that both are described by the Dirac Hamil-
tonian, because this preserve the time-reversal symmetry required by the system which is in
nature different of the symmetries required for the graphene, which are just related to its crys-
tallographic structure.

Regarding the superconductors cuprates which can be viewed as 2D materials, due to extensive
experimental data, it can be phenomenologically described by a 2D spin-singlet superconductor
where the gap is∆K = ∆0 [cos(kxa)− cos(kya)], the gap close when |kx| = |ky| in the Brillouin
zone, where the nodal points are presented around the corners of the Brillouin zone, where
∆K = 0 cross the fermi surce εk⃗ = 0 [35, 14]. In the nodal points the hamiltonian can be
simplified by doing a k.p approximation into the the Bogoliubov-de Gennes hamiltonian to a
anisotropic Dirac Hamiltonian with the form:

HBdG = h̄vFk⊥τz + h̄v∆k∥τx (2-4)

The previous mathematical and physical descriptions for the discussed systems show that the
nature of the microscopic origin of Dirac Fermion excitation is different for each system. In
addition to previous materials, also Weyl semi-metals and 3D Dirac semi-metal, are Dirac Mate-
rials.

In figure 2-3a angle-resolved photoemission spectroscopy have been used to probe the linear
band dispersion in Graphene, as well as for Ca-doped Bi2Se3 in figure 2-3b with the addition of
the locked behavior of the electronic spin to the surface Dirac cones states, which are pointed out
by the red arrows that show the orientation of the spin over each band [14]. Finally in figure 2-3c
the Fourier transform of scanning tunneling spectroscopy shows the contours of constant energy
below the conduction band were the fermi level is located, showing the nodal dirac lines in the
corners of the Brillouin zone of a high-temperature superconductor cuprateBi2Sr2CaCu2O8+δ
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Figure 2-3: Experimental evidence of appearance of dirac nodal lines and shapes in a) Topological
insulator. b) Graphene. c-d) High temperature superconductor

where concentration of states could be observed, in the figure 2-3d can be observed the con-
centration and distribution of states around the corner of the Brillouin zone[15].

The universal properties of Dirac materials that will be pointed out are the ones connected
to thermodynamics and to their dependence on magnetic fields. The low energy form of the
DOS, N0(E), for Dirac materials around the Dirac point and for a d-dimensional dirac material
is N0(E) ∼ Ed−1. This quantity influence in the thermodynamic response of this kind of mate-
rial, characterized just by a power-law depending on the exponent of the dimensionality of the
system, for instance the specific heat for Dirac Materials is C(T )T→0 ∼ T d, which is different
from the linear dependence encountered for normal metals[35].

In the case of magnetic field dependence, the Landau quantization appears in Dirac Materials
when the minimal substitution is done p⃗→ p⃗+eA⃗, where A⃗ is the vector potential. Introducing
this in the 2D Dirac Hamiltonian it is possible to find that the energy depending on the field is

En,± = h̄vF

√
2eB|n|

h̄
, in this case the dependency of the level index n is a square-root depen-

dence which contrast of with the linear dependence for Schröndinger fermions. Other distintive
feature is the zeroth landau level in this sistem is independent on the field and is located at zero
energy, this level is shared by electrons and holes to equal amounts. Its existence also gives rise
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to a quantum hall effect with quantization of the hall conductance at half-integer values, this
feature is a hallmark of magnetotransport dominated by Dirac carriers[57, 13].

There are also relevant transport properties in Dirac materials such as effects like suppressed
backscattering, Klein tunneling, creation of midgap states, universal minimum conductivity,
weak antilocalization, suppression and restoring of Anderson localization, and scattering off
random (pseudo)-magnetic fields have all been investigated theoretically. Many of these effects
have also been realized in experiments on graphene[35].

2.3 Graphene-like materials

2.3.1 Crystal structure

The discovery of graphene, the first 2D material, has led to joint efforts in the scientific commu-
nity for the synthesis of new 2D materials. The graphene-like family presents a similar crystal
lattice with honeycomb structures as in figure 2-4A, where blue and yellow atoms belong to
their own sublattices[44, 58]. The observation that such a single free-standing sheet of atoms
is stable was already quite a surprise since Mermin and Wagner theorem states that 2D crystal
cannot exhibit long-range order at any finite temperature, however in 1987 Nelson et Al[59].
performed a theoretical study on the intricate interplay between crystalline orden and thermal
fluctuations showing that this plays a crucial role in the stability of membrane due to anhar-
monic coupling. Material such as graphene shows this behavior that allows them to have this
exotic phase. Other examples are germanene, silicene, transition metal dichalcogenide (TMD),
arsenene, h-BN, among others[60].

In the case of graphene, monolayer do not have a buckled structure. Silicene and germanene
present buckle structures as shown in figure 2-4B and C. Si-Si or Ge-Ge have larger interatomic
distances which weakness the π-π overlaps, so it cannot maintain the planar structure anymore,
this results in a low-buckled structure with sp3-like hybrid orbitals. Silicene and Germanene due
to their larger atomic number have stronger spin-orbit coupling, a reduction in the buckling of
the system will increase the SOC by an order of magnitude. This change can open a small gap in
this system allowing topological-protected gapless helical modes at the edges of the 2D material
and a QSHE characterized by spin current transport.

The TMDs are another type of graphene-like material, which in contrast with previous materials,
can exist in three common structural phases as shown in image 2-4D, this of course, depends
on the type of chalcogen and transition metal atoms. The structural phase depends on how
the three atoms are stacked in each atomic plane[61, 62]. The 2D phases correspond to ABA in
which chalcogen atoms in different atomic planes occupy the same position A and are on top
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of each other for the same vertical line. In the case of 1T is characterized by an ABC order. 1T’
form exists as a metastable form. The 2H form is formed for instance by Mo and W and the 1T
for Ti and Re, either with S, Se, or Te as chalcogen atoms[63].

Figure 2-4: A. Shows the honeycomb structure of germanene and silicone. B. and C. Exhibit
the buckled structure for this type of honeycomb system. D. presents the different
crystal structures of TMDs, in particular, we will explore the TMDs type 2H. Figure
adapted from [47] and [64]

2.3.2 Electronic band structure

In this section, we will focus on germanene, silicene and TMDs. Initially using DFT calculations
with them in planar form has been observed that it has an unstable phase, however introducing
a slightly buckled structure results energetically favorable at the expense of lowering the point
group symmetry from D6h to D3d [65, 66]. The band structures for germanene and silicene are
shown 2-5, for the same material but varying the buckled height, will change the gap around
the Dirac points and will change the linear dispersion[44, 58]. The DFT studies shows that the
range for the height could be in between 6.4 − 7.4nm. For the actual crystal structure, each
material presents a spin-orbit coupling that is splitted around the K corners, in contrast with
graphene. For the case of silicene, the spin-orbit coupling is aroun 1.55 meV at a temperature
of 18 K, which is observed in 2-5A, for Germanene it is 23.9 meV at room temperature[65]. The
presence of this gap assures the appearance of topological properties for silicene and germanene.

The structural and electronic properties of germanene can be significantly modified by interac-
tionwith the underlying substrate ranging fromweak physisorption to strong chemisorption[67].
One mechanism that has been proven to be relevant for the magnitude of the buckling is lateral
strain, appearing deposited structures due to improper matching between the lattice constants
of the substrate and adsorbed layer[66]. In this case, silicene is more reactive than graphene.
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Figure 2-5: The figure shows the electronic band structure for Silicene (A) and Germanene (B),
inset in A zoom in to expose the gap due to spin orbit coupling. Adapted from [44]
and [58]

The substrate-absorbent interaction in silicene on Ag(1 1 1), for instance, is considerable, and
although the adsorption preserves the hexagonal structure of silicene, the Ag substrate induces
a sizable ot-of-plane buckling of the Si atoms, the hybridization between the silicene and the
Ag states leads to a large perturbation of the silicene electronic structure, such behavior is also
shown by germanene[68].

In the case of TMDs, their diversity of chemical compositions and structural phases of TMDs
result in a broad range of electronic properties, both from the point of view of the band struc-
ture character (metallic or insulating) and of the emergence of correlated and topological phases
[61, 70]. This section will be focused on the band structure of TMDs formed by group VI tran-
sition metals Mo and W combined with S and Se due to their semiconducting properties.

In their thermodynamically stable 2H phase, MoS2, MoSe2, WS2, andWSe2 are semiconductors.
This property drew attention to these TMDs as 2D materials for electronic devices. The evolu-
tion of the band structure of 2H-MoS2 as calculated from DFT upon reducing its thickness from
bulk to monolayer is shown in figure 2-5. The positions of the valence and conduction band
edges change with decreasing thickness and the indirect bandgap semiconductor bulk material
turns into a direct bandgap semiconductor monolayer, this observed in 2-5MoS2 and WS2, this
is a shared properties for TMDs of this family[62, 61].

The calculated values for the bandgap of bulk and monolayer 2H-MoS2 are 0.88 and 1.71 eV,
respectively. The experimental value for the bandgap of monolayer 2H-MoS2 is 2.16 eV[70].
Importantly, the valence band maximum and the conduction band minimum are located at the
two inequivalent high-symmetry points K and Kʹ, which correspond to the corners of the hexag-
onal Brillouin zone[47]. This property is common to monolayer 2H-MoS2 (and other group VI



16 2 Generalized Green’s function method to explore Dirac Materials

Figure 2-6: Electronic band structure from bulk to monolayer in semiconductor TMDs MoS2 (a)
and WoS2 (b). Adapted from [61, 69]

monolayer 2H-TMDs) and to graphene, and enables the observation of valley-dependent physi-
cal phenomena and potential valleytronics applications[61, 69].

Another important peculiarity of monolayer 2H-TMDs is that they lack inversion symmetry,
which results in a spin splitting of the electronic bands driven by the spin–orbit interaction.
Because points K and Kʹ do not correspond to the time-reversal invariant momenta, the spin
degeneracy of the conduction and valence band extrema at these points is lifted[61, 69]. This
effect is particularly strong in the valence band, in which spin-splitting values range from 0.15
eV in monolayer 2H-MoS2 to 0.46 eV in 2H-WSe2. This trend is understood by considering
that the spin–orbit interaction is a relativistic effect and hence is stronger for heavier elements.
Even though the spin splitting of the conduction band is about an order of magnitude weaker,
it is not negligible. Because of time-reversal symmetry, the spin splitting of bands at K and Kʹ
is opposite; the resulting band structure of monolayer 2H-MoS2 is relevant to realistic charge-
carrier concentrations. This property is referred to as spin–valley coupling and implies that the
valley polarization of charge carriers is automatically translated into their spin polarization[70].
This intrinsic property of TMDs may be used to design spintronic devices that do not involve
magnetic materials[63].
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2.3.3 Experimental evidence

The experimental realization of the graphene is mainly realized by micromechanical cleavage of
bulk graphite, the same technique that allowed the isolation of graphene for the first time[71, 72].
After fine-tuning, the technique now provides high-quality graphene crystallites up to 100 μm
in size, which is sufficient for most research purposes, like in figure 2-7A and B.

Superficially, the technique looks nomore sophisticated than drawing with a piece of graphite or
it’s repeated peeling with adhesive tape until the thinnest flakes are found. A similar approach
was tried by other groups but only graphite flakes 20 to 100 layers thick were found[73, 74].
The problem is that graphene crystallite left on a substrate is extremely rare and hidden in a
‘haystack’ of thousands of thick (graphite) flakes. So, even if one were deliberately search-
ing for graphene by using modern techniques for studying atomically thin materials, would be
impossible to find those several micrometer-size crystallites dispersed over, typically, a 1 cm2

area [71, 72]. For example, scanning-probe microscopy has too low a throughput to search for
graphene, whereas scanning electron microscopy is unsuitable because of the absence of clear
signatures for the number of atomic layers[73].

The critical ingredient for success was the observation that graphene becomes visible in an op-
tical microscope if placed on top of a Si wafer with a carefully chosen thickness of SiO2, owing
to a feeble interference-like contrast with respect to an empty wafer as is shown in figure 2-
7A, where for instance zig-zag and armchair edges can be observed. If not for this simple yet
effective way to scan substrates in search of graphene crystallites, they would probably remain
undiscovered today[73]. Indeed, even knowing the exact recipe, it requires special care and per-
severance to find graphene. For example, only a 5% difference in SiO2 thickness (315 nm instead
of the current standard of 300 nm) can make single-layer graphene completely invisible. Careful
selection of the initial graphite material (so that it has largest possible grains) and the use of
freshly cleaved and cleaned surfaces of graphite and SiO2 can also make all the difference[71].
Note that graphene was recently found to have a clear signature in Raman microscopy, which
makes this technique useful for a quick inspection of thickness, even though potential crystal-
lites still have to be first hunted for in an optical microscope[72].

Similar stories could be told about other 2D crystals (particularly, dichalcogenide monolayers)
where many attempts were made to split these strongly layered materials into individual planes.
However, the crucial step of isolating monolayers to assess their properties individually was
never achieved. Now, by using the same approach as demonstrated for graphene, it is possible
to investigate potentially hundreds of different 2D crystals in search of new phenomena and
applications[63].

The MoS2 and WS2 are probably the only TMDs that occur in nature in the form of a layered
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Figure 2-7: Experimental evidence of fabrication of graphene (A and B) and TMDs (C and D).
Adapted from [71, 72, 61]

crystal[61]. The first high-performance transistors made of monolayers of MoS2 were obtained
from crystals of the naturally occurring mineral molybdenite. Bulk crystals of other TMDs are
grown using the chemical vapor transport method , which enabled the first studies of the optical
and electrical properties of MoS2, MoSe2, and WSe2 crystals in the 1960s[47]. Such a technique
results for this kind of material can be observed in figure 2-7.

High-quality natural or synthetic crystals can be used as a source of thin flakes. Similarly to
graphene, which can be obtained by mechanical exfoliation with sticky tape from graphite, sin-
gle crystals of TMDs can serve as a source of monolayers[62, 75]. Because micromechanical
exfoliation requires only bulk crystals, a decent optical microscope and adhesive tape, which is
a very popular method for the rapid prototyping of devices based on TMDs and other layered
materials and has greatly contributed to the rapid expansion of research in this area. However,
this method is not scalable; moreover, the relatively small areas of uniform material and the
haphazard nature of material deposition can be limiting factors for more extensive studies[69].

Liquid-phase exfoliation based on organic solvents is a scalable alternative to mechanical exfoli-
ation and allows the production of solutions containing flakes with a controllable thickness[61].
The first experiments on liquid-phase exfoliation through Li intercalation date back to the 1970s,
with a report on solutions containing single-layer MoS2 from the 1980s[62]. The drawbacks of
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exfoliation through Li intercalation including reported phase transitions from the semiconduct-
ing 2H to the metallic 1T phase and the limited size of the flakes, which results in overlaps
between the flakes and in a large in-plane resistance of the films. One of the more scalable
method developed for the direct growth of TMDs was molecular beam epitaxy, results using
this technique can be observed in 2-7C

The synthesis of germanene and germanene-related materials do not have a general recipe due
that their fabrication still topic of research, however it was on the preparation and exfoliation of
germanane (GeH), Germanane, i.e. hydrogen-terminated germanene, was successfully prepared
via the topochemical deintercalation of CaGe2[65]. Germanane sheets can be obtained by simple
exfoliation of the layered van der Waals solid. At ambient conditions, germanane is very stable
and only oxidizes in a time span of several months. This stability is an important prerequisite
for the usage of germanane in any technological application[60].

As pointed out in the preceding section free-standing germanene is stable against local lattice
distortions. To date germanene has been reported to be synthesized on only a few substrates[65,
66]. In July 2014 was reported the growth of germanene on Pt(111). Germanium was deposited
on a pristine Pt(111) substrate at room temperature under ultrahigh vacuum conditions from a
germanium rod mounted in an electron-beam evaporator. Other techniques have focues in the
manipulation and use of differents substrate such as Au (111), Ge2Pt, among others. A sample
of germanene in substrate of Ge2Pt with nearest neighbor distance of 25 nm, observed with a
scanning tunneling microscope appears in figure 2-8A, where a clear honeycomb structure is
observed[66].

To date, germanene has only been grown on metallic substrates. It is very likely that the rele-
vant electronic states of germanene near the Fermi level hybridize with the electronic states of
the metallic substrate and destroy the 2D Dirac character of the germanene[76]. It would be a
huge step forward if germanene could be synthesized on a wide band gap material. A possible
candidate would be hexagonal boron nitride (hBN), h-BN has a band gap of about 6 eV and its
lattice constant (2.5 Å) is almost identical to the nearest neighbor’s distance of germanene[68].

An equivalent material is a silicene, which despite the theoretical prediction of it down to 2004,
the breakthrough in the experimental synthesis of silicene took place in the year 2012, when
several groups reported in parallel the successful preparation of monolayer silicene sheets on Ag
(111)[77, 78]. It should be noted that the successful synthesis of silicene on another substrate,
ZrB2(001), was achieved independently around the same time [76]. Following the successful
preparation of silicene, the studies on silicene see a sudden burst in the following few years.
A silicene honeycomb 2D structure grown in Ag(111) is presented in figure 2-8B, observed by
using scanning transmission microscopy[46].
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Figure 2-8: A. The honeycomb structure of Germanene in Ag substrate. B. Synthetized silicone
on Ag substrate. C and D are Brillouin zone representations of the region where
ARPES is calculated. E and F, correspond to experimental evidence of linear disper-
sion in Germanene and Silicene, respectively. [66]

Angle-Resolved Photoemission is used to study the formation of linear dispersion of states for
germanene and silicene[76]. The figure 2-8C is shown that the ARPES is studied in the K point
along the dashed line for the Germanene and Au substrate [67, 66], where in the figure 2-8E
is observed the signature of Dirac cone pointed out by the red lines around the K points from
Au, which recovers the features from the germanene sample[60, 65]. In addition 2-8D shows
that formation of the linear dispersion of a Silicene monolayer over a substrate of Ag(111) is
studied over the K point of the silicene honeycomb structure [68], with the direction pointed
out by the red arrows, the Dirac cones kind of shape is observed in figure 2-8F where there is
a gap or around 0.3 eV which is a product of the interaction in between the substrate and the
monolayer[66].
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2.3.4 Hamiltonian

In this section, we will discuss the common Hamiltonian considered for TMDs, silicene, and
germanene in the k.p approximation around the k points[70, 76].

For instance, a well-known Hamiltonian that describes the TMDs, that captures features such as
the linear dispersion and the spin-splitting in the valence band is described by the equation:

HTMDs = h̄vF (ηkσx + qσy) +
∆

2
σz − λSOC

σz − 1

2
sη (2-5)

Where vF is the fermi velocity, ∆ corresponds to the band gap, σ are the pauli matrices for the
pseudospin degree of freedom given by the sublattices, η corresponds to the valley index, s can
be 1 or -1 if the electron spin is up or down, respectively. k and q are the projections of the
wave number into the x and y direction.

This model correctly captures the large, spin-splitting of the valence band, predicts the valley-
dependent optical selection rule and express the coupled spin vand valley physics in accordance
with experiments [70, 79].

In addition, silicene and germanene can be described by an equivalent hamiltonian, which is
described as:

HSi/Ge = h̄vF (ηkσx + qσy) + sηλSOCσz (2-6)

where the main feature related to the Dirac cones at low energy near the fermi energy is fully
described by this equation. The opening of the gap is due to the spin-orbit coupling as predicted
by DFT calculations [80, 44].
In general this Hamiltonian can be compacted in the following way:

Ȟsη (k) = µsησ̂0 + h̄vF (kσ̂x + ηqσ̂y) +msησ̂z (2-7)

Where µsη is an effective chemical potential andmsη is an effective mass for the Dirac fermions
around the K points, each can be written as:

µsη = −EF + ηsλSO, (2-8)

msη = −ηsλSO +
∆

2
. (2-9)

Typical external field sources that previously have been reported correspond to the use of elec-
tric field perpendicular to the monolayer of Germanene and Silicene, which introduces an addi-
tional term in the equation 2-9 of the form λz = lEz, where l correspond to the relative distance
in between planes in the buckled structure in this kind of materials and Ez is the external elec-
tric field[81, 53]. Also, a magnetic-induced field due to the presence of magnetic materials in
contact with the monolayer can be taken into account by adding a term sλB where s correspond
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to the effect into the term due to the electron’s spin orientation when the hamiltonian at the
interface is studied[64].

Figure 2-9: Energy diagram around K points for TMD (left) and Germanene (right) for electons
with spin up (blue) and down (red)

The figure 2-9 show the energy plots for electron’s with spin up and down in Germanene and
TMD. For the case of TMD, in this caseWSe2, we observe the break of degeneracy for the valence
band and not for the conduction band; the energy diagram for spin up and down electron around
K point is inverted around K’ points, i.e. energetically spin down electrons in K behaves as spin
up electrons in K; the gap of a few eV exhibit the semiconducting properties of this type of TMD.
For the germanene, the scale used is one hundred times smaller than for TMDs, where a small
gap of a few mV is observed revealing in this way their properties as semi-metalic, in this type
of system there is not breaking of spin degeracy at least an external field is applied.

2.3.5 Applications

Graphene

Transparent conductive coatings are frequently utilized in electronic applications, such as touch
screens, e-paper, and organic light-emitting diodes (OLEDs). These coatings require low sheet
resistance and high transmittance (over 90%), depending on the specific application. Graphene
meets these requirements with a sheet resistance of 30 V per square of 2D area in highly doped
samples and an excellent transmittance of 97.7% per layer. Although indium tin oxide (ITO) still
has slightly better characteristics, graphene’s quality keeps improving every year and ITO depo-
sition is already expensive, making graphene a potential contender for securing a good portion
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of the market[82, 74].

Research is being conducted to open a bandgap in graphene for transistor use, but so far, none
of the approaches have been successful in creating a bandgap wider than 360 meV, limiting the
on/off ratio to about 103 [73]. New transistor designs are emerging that exploit themodulation of
the work function of graphene, allowing for vertical transport through various barriers[71, 72].
These devices can achieve on/off ratios of 106, but more work on integration is required to en-
able the use of graphene for logic applications.

Graphene photodetectors have a wide spectral range from ultraviolet to infrared and high oper-
ating bandwidth, making them suitable for high-speed data communications[71, 73].

Graphene’s unique properties make it ideal for sensor applications, from measuring magnetic
fields to DNA sequencing and from monitoring the velocity of surrounding liquids to strain
gauges. Graphene sensors’ multi-functionality allows for multidimensional measurements, such
as strain, gas environment, pressure, and magnetic field. With the development of increasingly
interactive consumer electronic devices, such sensors will likely becomemore prevalent inmany
products[71, 72].

Finally, graphene has potential applications in bioengineering, such as drug delivery, tissue en-
gineering, and regenerative medicine. Its unique mechanical properties make it ideal for imag-
ing biomolecules in transmission electron microscopy, and chemically-functionalized graphene
could lead to fast and ultrasensitive measurement devices capable of detecting a range of bio-
logical molecules[82, 74].

TMDs

Determining charge carrier mobility is essential in understanding quantum transport proper-
ties. For 2D TMDs, electron mobility is predicted to be in the range of 10 − 103 cm2V−1s−1 at
room temperature and increases up to 105 cm2V−1s−1 at low temperature. However, experi-
mental results show that point defects and disorders limit its practicality. The first transistor
based on a monolayer of MoS2 using encapsulation on HfO2 has been fabricated, but mobility
decreases at temperatures above 200 K due to impurities. Encapsulations with h-BN, combined
with graphene as the contact between the metal and MoS2 layer, have resulted in the highest
low-temperature measured to date, with hall mobility of 34000 cm2V−1s−1 and 100 cm2V−1s−1

for six layers and monolayer, respectively[47, 82]. These results pave the way for observing
fundamental phenomena such as shibnikov-de has oscillation in electrical conductivity at low
temperatures and high magnetic fields[63].

The high strength of 2D TMDsmakes them good for strain engineering as they can endure strains
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of up to 10% before breaking. When subjected to tensile strain, they can be turned into indi-
rect semiconductors, and their bandgap would fully close at a level of biaxial tensile strain of
10% [47, 69]. Strain can also modulate other properties such as charge carrier effective masses,
thermal conductivity, dielectric properties, spin-orbit coupling and on-state currents in TMD
transistors [75]. Therefore, strain engineering is a viable approach for creating electronic, opto-
electronic, electromechanical and spintronic devices with tunable characteristics[61].

TMDCs have attracted interest as materials that could host exotic electronic phases. Theoretical
predictions have shown the existence of the quantum spin Hall phase or 2D Z2 topologically
insulating phase in certain types of TMDs[69]. These phases are characterized by the presence
of helical edge states immune to backscattering. TMD-based quantum spin Hall insulators could
enable technological applications of this topological electronic phase[47, 62].

The 2D TMDs are more suitable for practical applications than other quantum spin Hall insula-
tors. Polymorphs of these materials were predicted to host a Weyl semimetal phase, which was,
to some degree, experimentally confirmed[70].

The superconducting behavior of bulk TMDs persists in the 2D limit. Recently, the first ex-
perimental evidence for intrinsic 2D superconductivity in TMDs was reported for monolayer
2H-NbSe2. The superconducting state in monolayer TMDs is characterized by an Isinglike po-
larization of spins in the out-of-plane direction, making it more robust against in-plane magnetic
fields. Ising superconductors could be useful for observing topological superconductivity and
as an alternative route to engineer Majorana fermions in solid-state systems[61].

Germanene and Silicene

Silicene, a silicon version of graphene, has a buckled honeycomb lattice and a tunable two-
dimensional monolayer, making it a promising material for nanoelectronic devices[78, 76]. The
material has the potential for a variety of predicted electronic properties, including the quantum
spin Hall effect, chiral superconductivity, giant magnetoresistance, and other field-dependent
states. Despite recent progress in epitaxial synthesis and investigation of its electronic prop-
erties, no experimental silicene devices have been reported due to air stability issues. Here,
we report a silicene field-effect transistor that exhibits ambipolar Dirac charge transport, with
a measured room temperature mobility of approximately 100 cm2V−1s−1 attributed to acoustic
phonon-limited transport and grain boundary scattering[68, 76]. These results were achieved
through a growth-transfer-fabrication process known as silicene encapsulated delamination with
native electrodes[58].

Applications of silicene and germanene in spintronics require the introduction ofmagnetism[58].
This can be achieved through the magnetic proximity effect with a magnetic insulator. For ex-
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ample, in a junction of silicene/ferromagnetic/silicene, the conductance of charge, valley, and
spin oscillate with the length of the ferromagnetic silicene[64, 57]. There is coupling between
the valley and spin degrees of freedom, which can be tuned using local gate voltage. This allows
for tuning of valley- and spin-polarization and achieving a fully valley-spin-polarized current.
Such applications make these materials useful for efficient manipulation of spin/valley degree
of freedom.

Other fundamental interest in germanene and silicene lies in their capabilities to host phenom-
ena such as anomalous quantum hall effect and quantum spin hall effect. In particular, let’s
remember that graphene has been discussed to host this type of phenomenon however, their
negligible SOC has avoided the direct observation of it. In this the strong SOC in germanene and
silicene has allowed the existence of such effects. In particular, the anomalous quantum hall
effect is on of the most powerful ways to check whether a 2D material is indeed a Dirac fermion
system[46, 64].

2.4 Generalized green function method for Dirac Hamiltonian

In this section, we will describe the general Hamiltonian for 2D Dirac materials, as well as the
solutions of the Hamiltonian for general crystallographic structure. Then, the green function
for an infinite system is shown, and the perturbative method using the Dyson equation is fully
described with the purpose of finding the semi-infinite and finite system green’s function con-
sidering specific boundary conditions.

2.4.1 Generalized hamiltonian for 2D Dirac Materials

We consider the following general Dirac Hamiltonian, acting on a two-dimensional space

Ȟ(x, y) = −ih̄vF (α̌x∂x + α̌y∂y) + V̌ (x, y), (2-10)

with vF the Fermi velocity and V (x, y) an electrostatic potential. Here, α̌x,y are 2N × 2N ma-
trices acting on the SU(2) degree of freedom that defines the Dirac Hamiltonian and the N -
dimensional space containing the rest of degrees of freedom.

In the following, we assume translation invariance along the y-axis, with ky ≡ q a conserved
quantity, and consider inhomogeneous systems along the x direction. Then, equation 2-10 re-
duces to

Ȟq = −ih̄∂xα̌x + qα̌y + V̌ (x), (2-11)

which obeys the eigenvalues problem

Ȟqψq (x, y) = Eqψq (x, y) , (2-12)
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with solutions of the form

ψq (x, y) = eiqy
[
ψ+
n e

ik+n x + ψ−
n e

ik−n x
]
, (2-13)

for V (x) = 0, where ψn = (ψ+
n , ψ

−
n )

T are 2N -dimensional spinors in the SU(2) space spawned
by α̌x, with n labeling the other quantum numbers.

The states ψ±
n e

ik±n x, where, usually, k−n = −k+n , represent right (ψ+
n ) and left (ψ−

n ) moving solu-
tions along the x direction, with probability flux current given by J±

n,x = vFψ
±†
n α̌xψ

±
n = ±vF .

However, these states are not orthogonal. To obtain an orthogonality relation, we must define
the states

ψ̃±
n = ±α̌†

xψ
±
n , (ψ̃±

n )
† = ±(ψ±

n )
†α̌x, (2-14)

which then fulfill
(ψ̃ε

n)
†ψε′

m = δnmδεε′ , (2-15)

with ε = +,−. Combining ψ±
n and ψ̃±

n states we also find the completeness relation∑
ε,n

ψε
n(ψ̃

ε
n)

† = 1̌, (2-16)

with 1̌ being the 2N × 2N unit matrix.

2.4.2 Green function for infinite 2D Dirac system

The green function for an infinite system corresponds to the solution of the following equation,(
E1̌− Ȟq

)
Ǧq (x, x

′) = Eδ (x− x′) 1̌. (2-17)

When k−n = −k+n = −kn, with kn ≥ 0, the Green’s functions of the unbounded (bulk) system
become

ǧ< (x < x′, x′) =
−i

2h̄vF

∑
n

f−
n (x− x′)ψ−

n (ψ̄
−
n )

T , (2-18a)

ǧ> (x > x′, x′) =
−i

2h̄vF

∑
n

f+
n (x− x′)ψ+

n (ψ̄
+
n )

T . (2-18b)

Here, the x-dependence is encoded in the functions f ε
n(x) = eiεknx, and the states ψ̄ε

n are solu-
tions to the transposed Hamiltonian in equation 2-10. Transposing a Dirac Hamiltonian results
in the exchange k → −k, so the transposed states can be related to the left and right moving
states in equation 2-13 as

ψ̄+T
n =

(
γ̌ψ−

n

)T
, ψ̄−T

n =
(
γ̌ψ+

n

)T
, (2-19)

with γ̌ a matrix such that the scalar product ψ†γ̌ψ is invariant under Lorentz transformations
and spatial inversion [52].
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Figure 2-10: a) and b) corresponds to the real-space orientation for edge type of boundary con-
dition. The hexagon next to each lattice case is the corresponding reciprocal unit
cell where the valley K and K’, i.e.-K, are shown. c) Corresponds to a semi-infinite
monolayer generated due a Dirac-like potential at a particular xa coordinate, the
arrows correspond to the incident (ψn) and reflected wave function ( ψm and ψ−m

) at the edges.

2.4.3 Green function for semi-infinite 2D Dirac system

We can define a sharp edge localized at x = xa by means of the perturbation potential V̌ (x) =

Uaτ̌ δ (xa − x), withUa the potential strength that takes the limitUa → ∞whenwe consider the
edge of a semi-infinite layer. Here, τ̌ is a matrix that encodes the specific boundary conditions
at the edge. The perturbed green function by this potential is given by Dyson’s equation as

Ǧa (x, x
′) = ǧ (x, x′) +

∫
dx1ǧ (x, x1) V̌ (x1) Ǧa (x1, x

′)

= ǧ (x, x′) + ǧ (x, xa)Uaτ̌aǦa (xa, x
′) . (2-20)

The solution for ǦRR(LL)
a (x, x′) when x, x′ > xa (x, x′ < xa) are on the right (left) of xa takes

the form

ǦRR(LL)
a (x, x′) = ǧ<(>) (x, x′) + W̌>(<) (x) ǧ<(>) (xa, x

′) , (2-21)
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where we have defined

W̌>(<) (x) = ǧ>(<) (x, xa)Uaτ̌aD
>(<), (2-22)

Ď>(<)
a =

(
1̌− ǧ>(<) (xa, xa)Uaτ̌a

)−1
. (2-23)

In what follows, it is more insightful to write explicitly the subspace spawned by the left and
right moving solutions of 2-10, that is, theN ×N matrices τ̂ εε

′
. Henceforth, we use the symbol

ˆ. . . to denote the 2× 2 matrices in the left and right mover space.

It is possible to transform the equation 2-23 in a more compact way as follows,

ǦRR
a (x, x′) = ǧ (x, x′) (2-24)

+
∑
nm

f+
n (x− xa)(r̂

+−
a )nmf

−
m(xa − x′)ψ+

n (ψ̄
−
m)

T ,

with r̂+ε
a = D̂+

a τ̂
+ε
a , where,

D̂ε
a =

−iUa

2h̄vF

(
1 +

iUa

2h̄vF
τ̂ εεa

)−1

. (2-25)

and τ̂ ε
′ε

a , are the entries of the matrix τ̂ projected in the right and left moving states.

τ̌ =

(
τ̂++ τ̂+−

τ̂−+ τ̂−−

)
. (2-26)

Equivalently we have

ǦLL
a (x, x′) = ǧ (x, x′) (2-27)

+
∑
nm

f−
n (x− xa)(r̂

−+
a )nmf

+
m(xa − x′)ψ−

n (ψ̄
+
m)

T .

Here, řa corresponds to the scattering matrix of reflection amplitudes. For a potential acting on
xa, we can define the transmission amplitudes as t̂εεa = 1̂+ r̂εεa , and the scattering matrix results
in

Ša = 1̌ + řa =

(
t̂++
a r̂+−

a

r̂−+
a t̂−−

a

)
, (2-28)

which fulfills the unitarity condition ŠaŠ
†
a = Š†

aŠa = 1̌.

The semi-infinite system requires a hard edge at x = xa, which we obtain taking the limit
Ua → ∞. Then, D̂ε

a → −(τ̂ εεa )−1. The scattering matrix for the semi-infinite system thus
reduces to

Ša =

(
0 (τ̂

++

a )−1τ̂
+−
a

(τ̂
−−
a )−1τ̂

−+

a 0

)
, (2-29)

where the transmission amplitudes are zero at the edge. As a result, the matrix of reflection
amplitudes is unitary, (r̂+−

a )
†
= (r̂+−

a )
−1, and, therefore, [(τ̂

++

a )−1]†(τ̂+−
a )† = (τ̂+−

a )−1τ̂++
a .
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2.4.4 Nanorribbon

A 2D nanorribbon of Dirac material correspond a more realistic quantum system in experimental
situations, due to this, in the following we will explore what happend to the green function such
system.

We can picture a nanorribbon as a an infinite system with two delta Dirac potential’s in two
different position along x, it is represented as V̌ (x) =

∑b
j=a Uj τ̌jδ(xj −x). In general the prob-

lem could be solved considering both potential simultoneaously and using the Dyson equation
can de calculated the perturbated green function for the system, however in our method we
consider each perturbation sequentially, then the perturbed green function when the second
potential is taken into account is calculated by using as unperturbed the green function the one
calculated for the semi-infinite system amd applying the Dyson equartion in the following way,

Ǧab (x, x
′) = Ǧa (x, x

′) + Ǧ<
a (x, xb)Ubτ̌bǦab (xb, x

′) (2-30)

Then using similar procedure as previous sectionwe can find another form of the Dyson equation
that depends uniquely of the semi-infinite Green function and other known quantities,

Ǧab (x, x
′) = Ǧa (x, x

′) + Ǧ<
a (x, xb)Ubτ̌b (2-31)

×
(
1− Ǧ<

a (xb, xb)Ubτ̌b
)−1

Ǧ>
a (xb, x

′) ,

The Green function can be reduced to the following form after taking the limit of Ub → ∞,

ǦLL
ab (x, x′) =

−i
2h̄vF

∑
n,m
ε,ε′

f ε
n (x) (w̌)

εε′

nmf
ε′

m (−x′)ψε
n(ψ̄

ε′

m)
T , (2-32)

where 6-45 reduces to

w̌> =

(
D̂++ D̂++r̂+−

a (xa)

r̂−+
b (xb) D̂

++ r̂−+
b (xb) D̂

++r̂+−
a (xa)

)
, (2-33a)

w̌< =

(
D̂++r̂+−

a (xa) r̂
−+
b (xb) D̂++r̂+−

a (xa)

r̂−+
b (xb) D̂

++ D̂−−

)
, (2-33b)

with

r̂+−
a (xa) = f̂++(−xa)r̂+−

a f̂−−(xa), (2-34a)

r̂−+
b (xb) = f̂−−(xb)r̂

−+
b f̂++(−xb), (2-34b)

D̂++ =
[
1̂− r̂+−

a (xa) r̂
−+
b (xb)

]−1
, (2-34c)

D̂−− =
[
1̂− r̂−+

b (xb) r̂
+−
a (xa)

]−1
. (2-34d)
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The later equations allow us to obtain the bound states of the finite region by taking the con-
dition D̂±± = 0, or, analogously, r̂+−

a (xa)r̂
−+
b (xb) = 1̂. Consequently, the bound states of the

finite region are tied to the reflection matrices at each independent edge.

2.5 Method applied to graphene like materials

2.5.1 Dirac system with zig zag edges

Definitions

The equation 2-7 correspond to the hamiltonian of to the zig zag edge, solving the eigenvalues
problem from the hamiltonian we found the energy spectrum for the system, as expressed below

E±,sη (k) = +µsη ±
√
m2

sη + h̄2v2F (k2 + q2). (2-35)

There are a few auxiliar definitions that are going to be frequently used, these are:

e±iα = h̄vF
k ± iq√

(µση − E)2 −m2
sη

, (2-36)

N2 =

√
E − µση −msη√
E − µση +msη

. (2-37)

From the retarded green function we define the spectral density of states as

ρ(E, q, x) =
1

π
Tr
[
Im
{
Ǧ (E; q; x, x)

}]
, (2-38)

and the DOS is then

ρ̂T (E, x) =

∫
ρ (E; q; x) dq. (2-39)

The bulk spectral density adopts the simple form ρ̂ = 1/ (πh̄vFk) and it is calculated in figure
2-11 for several infinite layer of graphene-like materials, the DOS is also shown in 2-12. We now
proceed to define and apply the edge potentials to obtain the GF of a semi-infinite and a finite
layer, or nanoribbon, with zigzag edges.

Semi-infinite layer

For zigzag edge orientation, the matrix that encodes the boundary conditions for border of A
and B atoms are, respectively

τ̌A =

(
1 0

0 0

)
, τ̌B =

(
0 0

0 1

)
. (2-40)
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Figure 2-11: spectral density of states (LDOS) for Graphene (A and B), TMDs (C and D) and Ger-
manene (E and F) infinite layer.

The main feature of equation 2-24 corresponds to the inclusion of the coefficients r̂+−
a . Refer-

ring to equations 2-28 and 2-29, is easy to see r̂+−
a = (τ̂

++

a )−1τ̂
+−
a , for instance τ̂

++

a corresponds
to the projection of matrix τ̂ onto right propagating states and their respective transposed states.
Then, r̂+−

a = −eiα, for border B the procedure is the same but r̂+−
b = e−iα. Finally the coef-

ficient have an additional phase given by the position of the potential,r̂+−
a (xa) = −eiα−2ikxa ,

where for border B we have a similar result r̂+−
b (xb) = e−iα−2ikxb . Pluging r̂+−

a (xa), into 2-24, is
found at x = xa that ρ = Im(iNeiα)/πh̄vF and for border B ρ = Im(ieiα/N)/πh̄vF . For more
details regarding previous calculations, refers to 6-73.
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Figure 2-12: DOS for several graphene-like materials. Inset: zoom-in of DOS for germanene
showing the lack of states due to the gap generated due to spin-orbit.

The LDOS at the edge of the semi-infinite layer is calculated by using this method for the case
of TMDs and Germanane, in 2-13 and 2-14, respectively.

Figure 2-13: Edge LDOS for a semi-infinite monolayer of TMDs, WSe2. The left and right plot
corresponds to LDOS at the valley K’ and K, respectively. The top and bottom plots
correspond to spin-up and spin-down electrons, respectively.

In both cases, there are gaps, however, for the germanene case, it is at energy scales one hundred
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Figure 2-14: Edge LDOS for a semi-infinite monolayer of Germanene. The left and right plot
corresponds to LDOS at the valley K’ and K, respectively. The top and bottom
plots correspond to spin-up and spin-down electrons, respectively.

times lower than TMDs, because of the semiconductor and semi-metallic behavior of TMDs and
Germanene, respectively. The asymmetry present in the case of TMDs is due to the combined
effect of SOC and intrinsic gap; this contrasts with the symmetry in the case of germanene due
to the gap that appears just because of SOC.

A striking features of both figures correspond to the intense state at the border of conduction
or valence band. In the case of TMDs, the state is always on the edge of the valance band; it is
different for germanene, where the spin up at valley K and spin down at valley K ′ are in the
conduction band and in the valence band for the other cases.

There is a transfer of state in between bands at the edge of each band for the case of TMDs
and Germanene. For the TMDs, the transfer is done in between valance bands from different
valleys, which means that there is a crossing of the states at the zero of the Brillouin zone, it
implies that in the case of spin-up electrons, the transfer is done at opposite velocity respect
to the spin-down case. For the Germanene, there is a transfer between the conduction band
and valance band, from valley K and K ′ or vice-versa, depending on the spin orientation; this
implies the presence of states that close system’s gap at the zero of the Brillouin zone, which
means that Germanene is a topological insulator.
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Figure 2-15: LDOS of spin-up electrons at the balance band in the valley K’ of a semi-infinite
monolayer of TMDs at different positions from the edge.

In figure 2-15 is shown what happens when LDOS is calculated for different distances from the
edge of the semi-infinite layer. The figure 2-15 shows that the intense state at the border of the
valence band is highly concentrated at the edge of the semi-infinite layer. At 10 unit cells away
from the edge, the behavior shows a periodic concentration of the states, and for 40 unit cells
from the border, the LDOS behaves as the case of an infinite layer. .

The figure 2-16 summarizes the obtained spectral properties of zigzag germanene, 2-16(a), and
TMDs, 2-16(c), showing the lowest energy spin-valley bands and the dispersion of the edge states
(red and blue lines). Notice the important inversion of the bands when the nanoribbon edge type
is changed from A to B in 2-16(a). Analogously, we also sketch the lowest band dispersion for
armchair germanene, 2-16(b), and TMDs, 2-16(d). We explore this edge termination in more
detail below

Nanoribbon

For this case we will build the Green function given by refeq:finite-GF, to do so we have to
look for the terms which define the equation 2-33 and 2-34. We already have found r̂+−

a (xa)

and r̂+−
b (xb). By doing a similar process as before we are able to find the r̂−+

a,b (xa,b) coefficients,
which are r̂−+

a (xa) = −e−iα+2ikxa and r̂−+
b (xb) = eiα+2ikxb . Plug in the coefficients into 2-33 and

2-34 and we are able to find at the edge A at xa 2-32, given by
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Figure 2-16: Summary of the different band dispersion for TMDs and germanene nanoribbons.
a) Sketch of the honeycomb lattice of a zigzag nanoribbon (middle) and band disper-
sion for the A (left in red) and B (right in green) type of terminations, for germanene
nanoribbons. b) Edge electronic band structure for armchair germanene. c,d) Edge
electronic bands of a TMDs nanoribbon with zigzag (c) or armchair (d) edges.

Ǧ>
ab (xa, xa) =

(
0 −i1+e2i(α+kW )

1+e2i(α+kW )

0 −iN2eiα 1−ei2kW

1+e2i(α+kW )

)
(2-41)

Then ρ in the edge is,

ρ (xa) =
1

πh̄vF
Re

(
N2eiα

(
1− ei2kW

)
1 + e2i(α+kW )

)
(2-42)

In previous equations, 2-42 and 2-41,W corresponds to xb−xa. When,W → ∞ then the result
in 2-42 is equal to the semi-infinite layer case.
Features such as intense states at the edge of bands and electronic properties for the semi-
infinite layer are observed in the case of a nanoribbon, as shown in 2-17. In the figure, the gap
on the germanene is not observed due that for both cases the energy scale is the same. The
interesting behavior corresponds to the fact that the states are concentrated in sub-bands that
appears periodically, and this periodicity depends on the width of the nanoribbon.

The figure 2-18 shows the behavior of the states when one end of the nanoribbon tends to
infinity, i.e. when tends to a semi-infinite layer, as mentioned before this reinforces the fact
that the nanoribbon case has all the features from a semi-infinite layer. Upon this, another
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Figure 2-17: Edge LDOS for TMDs (left) and Germanene (right) for a nanoribbon monolayer with
a width equal to four unit cells, in both cases, the LDOS corresponds to electrons
at valley K’ and with spin up.

Figure 2-18: Edge LDOS for nanoribbon monolayer of TMDs with electrons at the valley K’ with
spin up. Each case corresponds to different nanoribbon width.

remarkable property corresponds that the number of sub-bands is the same number of units of
cell width for the nanoribbon.
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2.6 Dirac system with armchair edges

General Definitions. The hamiltonian in this case is:

Ȟsη (k) = µsησ̂0 + h̄vF (qσ̂y − ηkσ̂x) +msησ̂z (2-43)

There is a direct change in the structure of the system’s eigenfunction due to a nonnormalizable
phase given by x direction boundary conditions and the inclusion of a new degree of freedom
given by the valley index, which explicitly increase the dimensionality of the spinors by a factor
of two, one valley respect another is distinguished by a ′, when this notation appears transforms
in the following way, kx → −kx , eiα → −e−iα and e−iα → −eiα, also when this notation appears
holds η = −1. As before, the orthogonal and transposed states are calculated as described in
equations 2-14 and 2-19 , but in this case

α̌x =

(
σ̂x 0

0 −σ̂x

)
. (2-44)

γ̌ =

(
σ̂z 0

0 −σ̂z

)
. (2-45)

This is consequent with the increase of the dimensionality in the spinors states. Full eigenfunc-
tions are shown in 6-79, 6-80, 6-81, 6-82 and 6-83 in the appendix.

2.6.1 Semi-infinite.

For this case the structure of the matrix which encodes the boundary conditions for border A is
a bit more complex than for zig-zag case,

τ̌ =

(
σ̂x σ̂x
σ̂x σ̂x

)
. (2-46)

As before, we are looking for equation 2-24, at the edge has the form of

Ǧ<
RR (x0, x0) =

(
M̂−−

11 + r+−
11 M̂

+−
11 r+−

11′ M̂
+−
11′

r+−
1′1 M̂

+−
1′1 M̂1̃′1̃′ + r+−

1′1′M̂
+−
1′1′

)
. (2-47)

Where,
M̂ ϵϵ′

nm = ψϵ
n(ψ̄

ϵ′

n )
T (2-48)

As before we are interested in r̂+− = (τ̂
++

)−1τ̂
+−

and r̂−+ = (τ̂
−−

)−1τ̂
−+

, however, in this case,
they are matrices where each entry corresponds to the projection of the matrix into the valley
degree of freedom, for instance, the entry r̂+−

11′ of r̂+− corresponds to the reflection amplitude
of a propagate state from the right to the left which goes from valley K to K ′. Then doing the
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calculations similarly to the zig-zag case, we can find that for example the coefficient r+−
11 holds

that r+−
11 =

h++
11′

h−+
11′

where hϵϵ
′

nm = φ̃ϵ†
n φ

ϵ′
m, here ϵ and ϵ

′ can be + or −, n and m can be K or K ′.

This means that each coefficient correspond to the projection of one state into another. Then
taking into account the calculated coefficients as described before, we can calculate the spectral
density of states:

ρ(E, q) = Re
(

4(1 + ei(α−α′))N2N ′2

πvF h̄(N2eiα +N ′2e−iα′)

)
. (2-49)

Figure 2-19: Edge LDOS for Germanene (left) and TMDs (right) armchair semi-infinitemonolayer.

In figure 2-19 the LDOS from the semi-infinite armchair system is presented. The case of TMDs
presents an asymmetry respect qwhich is not presented in the case of the germanene, this comes
from the effects of the combined effect of spin-orbit coupling and the intrinsic electronic gap.
In addition to this is worth mentioning that in the case of germanene, there is a concentrated
state that closes the gap, which reinforces the fact that the germanene behaves as a topologi-
cal insulator independently of the edge orientation; this is not shared by TMDs, which shows a
semiconductor behavior.

In figure 2-20 is shown the coefficient reflection amplitude at q = 0 for intervalley and intravalley
dispersions for TMDs and Germanene at a semi-infinite monolayer. The germanene shows that
the intravalley processes are mainly concentrated at the edge of each band, this is a behavior
that is equivalent to previous results reported for graphene. In contrast, TMDs show that the
intravalley processes are dependent on the valley index, in valley K’ the reflections are saturated
at the valence band with states concentrated in a region of energy two times bigger than in valley
K where the processes occur at the conduction band. Finally, for both materials, the intervalley
processes are saturated with the increase of the absolute value of energy.
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Figure 2-20: Electron reflection coefficient at the armchair border of a semi-infinite monolayer
of Germanene and TMDs at q = 0. In this plot intravalley (blue and black) and
intervalley (red and green) scattering are shown.

2.6.2 Nanoribbon.

the Green Function Matrix corresponds to a 16 × 16, where each entry can be understand as a
4× 4 matrix projected in the valley space, for example, the first entry:

G>
KK(x, x

′) = f̂++
11 (x, x′) r̂>,++

11 M̂++
11 +

f̂−−
11 (x, x′) r̂>,−−

11 M̂−−
11 + f̂+−

11 (x, x′) r̂>,+−
11 M̂+−

11

+ f̂−+
11 (x, x′) r̂>,−+

11 M̂−+
11 . (2-50)

In the previous equation, the reflection coefficient has a complex structure as shown in 2-33.
A complete description of each entry for GF for this kind of system is presented in the supple-
mentary material.
Numerically implementation for the closed form of GF for this system allows us to find the
LDOS as shown in 2-21, on here we observe the same periodical band behavior of the LDOS
for nanoribbons of TMDs and Germanene of 6 unit cells width. Similarly to the case of a semi-
infinite layer, we have a state that closes the gap in the germanene layer for the nanoribbon.
This is not surprising because the properties of the semi-infinite case are shared with the case
of a nanoribbon layer. However, there is an additional striking effect that is found in this type
of system, In 2-22, when the width of the germanene layer is multiple of 3, the germanene is a
topological insulator, otherwise the sub bands split and degerancy is broken, this last behavior
also happens for the case of a TMDs.

2.7 Germanene Voltage Manipulation

Now, let’s assume there is an electric field applied perpendicular to a sheet of Germanene. In
this context, we focus on a semi-infinite monolayer of Germanene.
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Figure 2-21: Edge LDOS for Germanene (left) and TMDs (right) armchair nanoribbon monolayer.

Figure 2-22: LDOS at the armchair edge of Germanene and TMDs nanoribbon monolayer for
widths of eight unit cells (top) and nine unit cells (bottom).

Calculating the DOS as appearing in 2-23 for different voltages we are able to observe that in a
region where the voltage is around from −∆× 10−3 to∆× 10−3, Germanene behaves as Topo-
logical insulator. For higher voltages behave as a semiconductor and then as an insulator.
As can be observed in LDOS for several voltages 2-24, when the voltage is increased, the state
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Figure 2-23: Edge DOS of a semi-infinite armchair monolayer of Germanene subjected continu-
ously to different perpendicular voltages

Figure 2-24: Edge LDOS for semi-infinite germanene armchair monolayer subjected to different
perpendicular voltages to the monolayer

at the gap gets less intense until the gap is closed, but the system behaves as a semi-metallic ma-
terial when the voltage is equal to the magnitude of the system’s gap, and then for magnitudes
of a voltage higher than the amplitude of the system behaves as a semiconductor.

In 2-25 we present the DOS at zero energy when the SOC and the applied voltage are tuned.
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Figure 2-25: DOS at zero energy for a semi-infinite armchair monolayer of Germanene subjected
to several voltages and with tunable spin-orbit coupling.

Regarding recently developedmethods for gap engineering [83, 84] it is interesting to understand
the electronic behavior of these materials due to this effect, given that in the zero-energy we are
able to observe the presence of the topological state, we focus on that particular spot to assess
how the intensity of the state change according with this parameters. This plot clearly identifies
the topological region and the non-topological ones.

2.8 Summary

• Our method allows us to study infinite, semi-infinite, and nanoribbon systems based on
Dirac materials, considering boundary conditions and physical properties of the system;
in the graphene-like case, our method allows us to account for the zig-zag and armchair
edges, as well as physical properties of relevant graphene-like materials such as spin-orbit
coupling, valley-spin coupling, intrinsic gap.

• Our findings for the case of graphene-like materials reveal the possibility of finding closed-
form results and analytical results that allow us to numerically calculate with low compu-
tational cost quantities such as reflection coefficients, LDOS, and DOS.

• Our results show that Germanene in normal conditions behaves as a topological insulator
when the boundary conditions correspond to a zig-zag and armchair. In addition, we find
that TMDs behave as a semiconductor with spin-valley locking in LDOS maps, this behav-
ior shows a spin-valley dependent in the scattering process for this type of semiconducting
2D material.

• Further exploration of topological phases in Germanene by applying an external electric
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field, shows that the topological state at zero energy is robust to external field perturba-
tion, however, there is a range of voltage where this is true.

• Some miscellaneous findings correspond to the fact that for a nanoribbon of TMDs or
Germanene, there is tuning in the degeneracy of orbital-like levels depending on the di-
visibility of the width of the nanoribbon, for width multiples of three there is degeneracy
for both and the presence of a topological state for germanene, in other cases the orbital
degeneracy is broken and a couple of orbital appears close to each other. Our simulations
shows that in the limit where one edge of a nanoribbon tends to infinitely our results
tend to the semi-infinite case, this shows that most of the principal features are shared
by nanoribbon and semi-infinite system; the key difference rests in the fact that for the
nanoribbon system, orbital-like states appear in the LDOS, either for TMDs or Germanene.



3 QuantumMagnetic Imaging based on
Nitrogen-Vacancy center in diamond to
explore Van der Waals material

3.1 Introduction

Van der Waals (vdW) material such as Fe5GeTe2 (FGT) and Cobalt substituted materials, like
Co-FGT with their long-range ferromagnetic ordering near room temperature, has significant po-
tential to become a platform for implementing novel spintronic and quantum devices [85]. To
enable their applications, it is crucial to determine the magnetic properties when the thickness
of such materials reaches the few-layers regime[86]. However, this is highly challenging due to
the need for a characterization technique that is local, highly sensitive, artifact-free, and oper-
ational with minimal fabrication. Prior studies have indicated that Curie temperature TC can
reach up to close to room temperature for exfoliated Fe5GeTe2 flakes, as measured via electri-
cal transport [87, 85]; there is a need to validate these results with a measurement that reveals
magnetism more directly.

On the other hand, although FenGeTe2, with n = 3, 4, 5, have demonstrated to have room
temperature Tc, there is still a need to extend the portfolio of materials that offer these mag-
netic properties at room temperature. In previous work, has been demonstrated that Fe5GeTe2
offers diverse rich properties when is Cobalt substituted (CFGT), for example, it could be an
antiferromagnet or a polar ferromagnet if the concentration of cobalt is above 40%, also when
there is a presence of around 30% previous results have shown the increase of the Curie temper-
ature in bulk material indicating the potential for above-room-temperature ferromagnetism in
thin Fe5GeTe2 with intermediate Cobalt substitution [88, 89, 90]. However thin flakes generally
have lower TC compared to bulk crystals, hence appears the question of if CFGT flakes are able
to exhibit room-temperature magnetism remains to be explored.

Nitrogen Vacancy (NV) centers in diamond are a quantum system used for sensing purposes
that function at ambient conditions, and have magnetically, electrically, and thermally sensitive
electronic spin ground states with long coherence lifetimes[91, 92]. The NV spin state can be
initialized, and the evolution of the spin states can be detected optically, thus allowing precision



3.2 Overview of Quantum Diamond Microscopy 45

sensing of magnetic fields and other effects. Magnetic field sensitivity and spatial resolution are
determined by the number of NVs in the sensing volume, the resonance linewidth, the resonance
spin-state fluorescence contrast, the collected NV fluorescence intensity, and the NV-to-sample
separation [93, 94].

Variation of the experimental setup and measurement protocol allows NV-diamond magnetic
imaging to be adapted for a wide range of applications in different fields of research[95, 96].
Although the desired capabilities for each magnetic imaging application vary widely, common
requirements include good field sensitivity within a defined frequency range, fine spatial reso-
lution, large field of view, quantitative vector magnetometry, wide field and frequency dynamic
range, and flexibility in the bias field and temperature during measurement[97].

Previous described properties and qualities from NV center in diamond magnetometry make
it suitable for exploration of magnetic properties in thin flakes of FGT and CFGT. In the next
section, we make an overview of quantum diamond microscopy, then the description of the
experimental methods implemented to study FGT and CFGT samples are fully explained after
the results are discussed and finally the conclusion and outlook are presented.

3.2 Overview of Quantum Diamond Microscopy

3.2.1 Crystal and Electronic Structure of NV centers in diamond

The NV center in diamond consists of substitutional nitrogen adjacent to a vacancy in the car-
bon lattice as shown in figure 3-1A. Although NV centers can exist in three charge states (NV−,
NV0, NV+), only the negatively-charge state, NV−, with two unpaired electrons, is convention-
ally used for sensing. Well protected inside the diamond lattice, a negatively-charged NV has six
electrons, with two electrons from nitrogen, one electron from each of the three carbon atoms,
and an additional electron from the lattice. These electrons occupy four sp3 atomic orbitals
with electronic spin quantum number S = 1. These sp3 orbitals linearly combine to form four
molecular orbitals comprising the ground electronic configuration.

The lowest energy state of the ground configuration is the orbital singlet, spin triplet state, 3A2,
which has fine, Zeeman, and hyperfine structures in their electronic transition states, in figure
3-1B are shown fine and Zeeman splitting. The four molecular orbitals also give rise to electron-
ically excited states: orbital-doublet spin-triplet 3E, and spin-singlet orbital-singlet 1A1 shown
also in figure 3-1B [100].

The 3E is coupled to the 3A2 ground state by an optical 637 nm zero-phonon line (ZPL). The 3E↔
3A2 have a radiative transition that generally conserves the electron spin state ms as a result of
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Figure 3-1: Crystalographic and electronic structure of NV centers in diamond. A.) Pictorial rep-
resentation of the nitrogen and a vacancy in the diamond lattice. B.) Representation
of electronic structure of NV centers showing optical pumping excitation (green ar-
row), spin conserving energy levels transition (red arrows) and intersystem crossing
pathway (dashed black arrows. ). Adapted from [98, 99]

weak spin-orbit interaction[101]. The 3E→ 3A2 (3A2 → 3E) transitions works for longer [shorter]
wavelengths in fluorescence [absorption] as a result of the phonon sideband (PSB) [?]. The 3-1B
also shows the radiative, spin conserving 1E ↔ 1A1 transition which has an infrared 1042 nm
ZPL and its own sideband structure.

Nonradiative transitions between states of different spin multiplicity exist between 3E and 1A1,
and between 1E and 3A2. These nonradiative transitions are caused by an electron-phonon me-
diated intersystem crossing (ISC) mechanism and do not conserve spin. The probability of the
ISC transition occurring for the 3E to 1A1 is only non-negligible for ms = 1 states of 3E and
is characterized by the ISC rate of transition. Similarly, the ISC transition probability from 1E
to the ms = 0 state of 3A2 is approximately 1.1 to 2 times that of the ISC transition from 1E
to the ms = 1 states of 3A2. These state-selective differences in the ISC transition rate allow
for spin polarization of the NV under optical excitation, typically from 532 nm laser illumina-
tion, the photodynamics of light emitted by NV centers when no field is applied due to previous
described spin-fluorescence dependent is shown in figure 3-2 [92, 102]

3.2.2 Spin polarization and optical pumping

In order to realize measurements using NV centers, initially an optical driving field from a pump
laser is applied in order to spin polarize the NV electronic state. This pump laser is also used at
the end of measurement to read out the final NV spin state through the fluorescence intensity.
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Figure 3-2: NV centers spin photodynamics. NV− centers prepared in the ms= 0 state emit more
photons than centers prepared in the ms=1 states. This spindependent fluorescence
forms the basis of conventional NV− readout. [103]

The NV optical pumping takes advantage of the ms selective nonradiative ISC decay pathway.
An NV that is optically excited from 3A2 to 3E state by a 532 nm photon, decays along either the
optically radiative 3E→ 3A2 pathway or the non-optical, ISC mediated by 3E→ 1A1 → 1E→ 3A2

pathway.

Thems-selectivity of the ISC will preferentially depopulate thems = +1 spin projection states.
NVs starting in the 3A2 ms = +1 sublevel are eventually pumped (on average, after a few pump
photon absorption cycles) into the 3A2 ms = 0 sublevel. Typically only ∼ 80% of NVs in an
ensemble can be initialized into thems = 0 state, where they remain in a cycling transition[104,
105, 106]. The 1E state is metastable with a ∼ 200 ns lifetime at room temperature. The 3E
upper state has a t3E ∼ 13 ns lifetime, and the 3A2 → 3E absorption cross section at λ = 532
nm is σ = 3.1× 10−17 cm2 (although there is disparity in the reported 532 nm absorption cross-
section value and saturation intensity ). Considering this quantities it is possible the intensity
needed to saturate the excited state using the equation (h̄c)/(λσt3E) ≈ 0.9 MW/cm2, where c
is the speed of light [107, 108].

The ISC is also responsible for the reduced fluorescence intensities of NVs in the ms = ±1

sublevels, since they emit fewer optical photons when returning to the 3A2 state through the
ISC mediated pathway. The fractional fluorescence difference between NVs in the ms = ±1

sublevels and NVs in the ms = 0 sublevel is called the fluorescence contrast and can be as
large as ∼ 20% for a single NV [109]. The fluorescence intensity from an optically pumped NV
diamond chip, therefore, indicates the percentage of the NVs in the ms = 0 state, or in the
ms = ±1 states. A transition of NVs from the ms = 0 to the ms = ±1 state, e.g., induced
by a resonant MW field, drops the fluorescence as more NVs follow the ISC-mediated decay
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transition. This is the mechanism underlying optical readout using NV centers in diamond as
sensors.

3.2.3 Ground state hamiltonian

The NV centers in diamond as a sensor uses their spin-state-dependent fluorescence from elec-
tronic state transitions to detect changes to the 3A2 ground state configuration that result from
coupling to a sample magnetic field. Therefore, focus is placed on the physics of the 3A2. The
NV centers have C3v point-group symmetry, and are spatially invariant under the C3v symmetry
transformations. NV centers also have a quantization axis along the NV avis, usually in that ori-
entation z-axis is placed [110].

The 3A2 electronic ground state is an orbital singlet and spin triplet with ground state hamilto-
nian,

Ĥgs

h̄
= Ŝ · D · Ŝ + Ŝ · A · Î + Î · Q · Î (3-1)

where h̄ is Planck’s constant and Ŝ =
(
Ŝx, Ŝy, Ŝz

)
and Î =

(
Îx, Îy, Îz

)
are the dimensionless

electron and nitrogen nuclear spin operator, respectively. The first term is the splitting due to
the electronic spin-spin interaction known as fine structure, whereD is the fine structure tensor.
The second term correspond to the interaction in between the NV electrons and the nitrogen
nucleus mediated by the A tensor. The last term correspond to the nuclear electric quadrupole
interaction where Q is the electric quadrupole tensor [111, 91]. The tensors are diagonal in the
NV coordinate of system, then the hamiltonian can be written as,

Ĥgs

h̄
= D(T )

[
Ŝ2
z − Ŝ2/3

]
+ A∥Ŝz Îz + A⊥[ŜxÎx + Ŝy Îy] + P

[
Î2z − Î2/3

]
(3-2)

Here, D(T ) is the fine structure term called the zero-field splitting (ZFS), A∥ and A⊥ are the
axial and transverse hyperfine terms, and P is the nuclear electric quadrupole component. Two
important features of the ground states are evident from the Hamiltonian. First, in the elec-
tronic state 3A2 the sublevels ms = ±1 and ms = 0 have difference in energy equals to D(T ),
which depends on the temperature because the electronic spin-spin interaction changes with
the lattice spacing, at room temperature D(T ) ∼ 2.87 GHz and it change linearly with tem-
perature dD/dT ≈ −74.2 kHz/K at room temperature. Second, the 3A2 electronic states have
an additional hyperfine energy splitting due to nitrogen nucleus, where I = 1 and I = 1/2

correspond to nitrogen isotopes 14N and 15N respectively [112]. In this case the hyperfine pa-
rameters are A∥

14N ≈ −2.14MHz, A⊥
14N ≈ −2.70MHz, P14N ≈ −5.01MHz, A∥

15N ≈ 3.03MHz,
A⊥

15N ≈ 3.65MHz [113, 105, 114, 115].
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Figure 3-3: Schematics of NV ensemble quantum magnetic sensing and typical protocols. A.
Diagram representing typical sensing measurement with NV enters. In this target
sample field (in light blue), bias magnetic field (dark blue), MW field (doted green),
green laser light and red fluorescence are presented, as well as NV ensemble and
sample. B. CW-ODMR protocol C. Pulsed ODMR protocol with a predefined spam of
time for the microwave pulse.

3.2.4 Optically detected magnetic resonance in NV ensemble

Optically detected magnetic resonance (ODMR) is a robust and simple method that can deter-
mine a magnetic field’s vector components when applied over an NV center. Due to easy im-
plementation, ODMR is the most common technique used for magnetometry applications with
NV centers in diamonds. The technique can be pictured as a continuous green laser pumping,
with a sweeping Microwave (MW) driving field with frequency f , a known bias magnetic field
and fluorescence readout, are performed simultaneously as shown in figure 3-3A. In the figure,
the NV ensemble refers to the synthetic diamonds with NV centers distributed in the crystal
structure, when it is doped with NVs it tends to have a purple color due to red spontaneous
fluorescence.

The laser is used to pump the NVs into the ms = 0 spin state and probe the population’s spin
states via the NV red fluorescence. The frequency of the MW drive is swept in time and syn-
chronized with the readout. A decrease in fluorescence occurs when theMW frequencymatches
the NV resonance due to the spin state dependence of NV photon emission described previously
when the external magnetic field, i.e. sample and bias field, is applied. When the technique is
applied continously is called Continuous-wave ODMR (CW ODMR), the sequence of each ap-
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plied quantity is shown in figure 3-3B, where the sample field is the quantity to be determined
by using the resonance frequency f .

CW ODMR suffers from laser repumping of the NV spins through the entire measurement. This
simultaneous laser pumping and MW drive spoil the measurement sensitivity as a result of the
competing processes of initializing the spin state (laser) and driving transitions (MW drive). In
order to mitigate this power broadening, a pulsed ODMR protocol uses a temporally separated
laser initialization, a MW control π-pulse with time Tπ, and a laser readout pulse as demon-
strated in 3-3C. This leads to the decreased linewidths as compared to CW ODMR. Alteration
of the MW power changes the necessary duration, Tπ, of a π-pulse, and must be optimized to
balance linewidth and contrast of ODMR resonance features. As well as these methods, there
are additional protocols for static and AC magnetic fields, which will not be discussed in this
document, for more information refers to [97].

Figure 3-4: Electronic energy levels depending on the nucleas spin of the nitrogen isotope and
expected ODMR spectrum depending on it. A. Nitrogen 14 and B. Nitrogen 15 [99]

Figure 3-4 shows an example of when a magnetic field parallel to NV axis is applied to the system
B∥, producing several minimums around a center frequency when there is resonance, the num-
ber of minimum around a particular frequency is due to hyperfine interaction with N14 and N15

as shown in figure 3-4, where hyperfine sublevels are also shown. For an NV ensemble, the reso-
nance lineshape – often modeled as a sum of multiple Lorentzians or Gaussians – is parametrized
by the center frequency, linewidths, and fluorescence contrast. The center frequencies of every
NV resonance feature are fit to the appropriate Hamiltonian to extract the desiredmagnetic field,
and also strain, temperature, and electric field for other sensing modalities. In a magnetometry
experiment, this analysis yields B0 + Bs, from which the unknown magnetic field of the sample
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(Bs) can be determined when a bias field (B0) is applied.

The CW-ODMR implies the application of an alternant magnetic field over the NV center with
specified frequency f , the time-dependent term is Ĥac/h =

√
2Ω cos (2πft) Ŝx, where Ω is

known as the on-resonance Rabi frequency in MHz, the sum of 3-1, 3-3 with nuclear Zeeman
term and the time dependent term allows to simulate the expected resonance which is presented
in figure 3-5

Figure 3-5: Upper resonance spectrum of fluorescence as a function of frequency.

The simplest way to apply a MW field to the NVs is with a piece of wire connected to a coaxial
cable. The QDM MW field is ideally uniform across the NV layer field of view, and there are a
variety of alternative engineered MW antennas that aim to optimize the MW field homogeneity,
efficiency, or bandwidth [94–100]. By the transition selection rules, the transitions between 3A2

sublevels require left-circularly or right-circularly polarized microwaves [101]. One QDM MW
antenna option is a pair MW loop as shown in Figure. The striplines are excited in-phase (or 90
degrees out-of-phase) to produce a linearly (or circularly) polarized MW field as needed for a
given sensing protocol.

3.2.5 Sensing parameters

Typically NV centers in diamond are used for magnetometry purposes, when an external mag-
netic field is applied over the system, the hamiltonian have to include an additional term related
to zeeman splitting due to the magnetic field BNV in the form of

Ĥmag/h =
µB

h
BNV · g · Ŝ =

µBge
h

(
BNV xŜx +BNV yŜy +BNV zŜz

)
(3-3)

Here γe = geµB/h ≈ 28.7 GHz/T is the NV gyromagnetic ratio, the quantities µB and g are the
Bohr magneton and the electronic g-factor tensor, respectively. The Zeeman interaction lifts the
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degeracy between the mS = ±1 sublevels, and when |BNV | is along the N-V axis, the sublevel
energies split linearly with |BNV | while ms sublevel is unaffected. The nuclear Zeeman term
is γnBNV · Î , with γn equals to 3.08 MHz/T and −4.32 MHz/T for nitrogen-14 and nitrogen-15,
respectively. This term can be disregarded for magnetic fields below 0.05 T. On this equation
BNV = B0 + Bs where B0 is the known bias field applied by a permanent magnet or helmholtz
coil and Bs is the unknown samples field to be determined.

In figure 3-6 are shown simulations of the energy levels diagram depending when the magnetic
field orientation is in on-axis with NV principal axis (A) or when it is 109.47◦ respect respect NVs
principal axis. In this figure can be observed that around 0.1 T there is a groun state level anti
crossing in between states withms = 0 andms = −1 for the figure 3-6A and this effect is gone
in 3-6B. Detailed discussion about level anticrossing will be provided in the next sections.

Figure 3-6: Transition energy level for NV center in diamond when fine and hyperfine term are
considered, A. corresponds to the case when the field is applied On-axis and B. when
the field is applied 109.47◦ respect NV principal axis.

The unknown orientation and magnitude of the sample magnetic field can be determined by
taking advantage of the ODMR resonances from the NV ensemble related to each NV axis pos-
sible orientation as shown in figure 3-8A, where each of the four possible orientation of an NV
center in a diamond lattice is shown, in the following 3-8B, 3-8C and 3-8E are shown special
cases of the resonances when the magnetic field is zero, showing just the zero-field splitting
for a N15; the resonances when a magnetic field is parallel to just one NV axis and forming an
angle of 109.47 with the other three axes; and when the magnetic field have equal projections
for each NV axis in the lattice. In figure 3-8E is shown the contribution of each projection over
each axis and with this information is possible to determine the magnitude and the orientation
of the unknown field.
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Figure 3-7: NV vector magnetometry using ODMR. (A) Shows NV four possible orientation in a
diamond structure. (B) ODMR of an NV center when no magnetic field is applied, the
split is due to nitrogen 15 hyperfine. (C) ODMR when the magnetic field goes along
one NV axis. (D) ODMR when the magnetic field don’t go in a particular orientation.
(E) ODMR when the magnetic field is equally projected over the four axis. [103]

The NV centers in diamond also can be used to determine external electric field, temperature
distribution, pressure, among others. The external sample electric field Es = (Esx, Esy, Esz)

adds to the local electric field, Eloc = (Eloc,x, Eloc,y, Eloc,z), produced by high density of P1
(neutral nitrogen) centers, such that Etot = Es+Eloc contribute to the hamiltonian [110] in Eqn.,

Ĥel/h = d∥Etot,zŜ
2
z − d⊥Etot,x(Ŝ

2
x − Ŝ2

y) + d⊥Etot,y(Ŝ
2
x + Ŝ2

y). (3-4)

Here d∥ = 3.5× 10−3 Hz/(V/m) and d⊥ = 0.17Hz/(V/m) are coupling constant related to the NV
electric dipole [116, 117].

In addition stress and deformation over the crystal structure can be calculated in the system by
considering the following hamiltonian,
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Ĥstress/h =MzS
2
z+Mx

(
S2
x − S2

y

)
+My (SxSy + SySx)+Nx (SxSz + SzSx)+Nx (SySz + SzSy)

(3-5)
whereMx,My,Mz,Nx and Ny are spin-strain coupling parameters [110, 97].

Another case of interest is the distribution of temperature in a sample due that D(T ) changes
in temperature will change the measurements using NV centers in diamond and it is distinguish-
able from magnetic or electric fields.

Let’s simplify the Hamiltonian doing reasonable approximation of the quantities included in the
full hamiltonian of the system that correspond to the sum of all the contribution from equations
3-2, 3-3, 3-4 and 3-5. The transverse magnetic coupling terms (∝ Bx, By) as well as the spin-
strain coupling terms (∝ Nx, Ny) are suppressed by D and typically negligible. Furthermore,
when an external biasmagnetic field is appliedwith a nonzero projection along the NV axis, shifts
in the ground state energy levels related to the transverse electric field components (Ex, Ey)

and spin-strain parameters (Mx,My) are suppressed proportional to the projection Bz. The
transitions between the |0⟩ and | ± 1⟩ sublevels of this simplified Hamiltonian (additionally
dropping the hyperfine and quadrupole structure) become,

f± = E±1 − E0 =
(
D(T ) +Mz + d∥Ez

)
± γBz (3-6)

The | ± 1⟩ sublevels are split in common (∝ S2
z ) from |0⟩ by the zero-field-splitting as well as

axial crystal stress and electric fields. Meanwhile, the Zeeman term shifts the | ± 1⟩ sublevels
differentially (in opposite directions). As a consequence, axial stress and electric field induced
shifts in the transitions can be deconvolved from magnetic-field-induced shifts by making sep-
arate measurements of the |0⟩ → |+ 1⟩ and |0⟩ → | − 1⟩ transitions.

Finally, the NV ground state spin can be coherently manipulated using MW irradiation resonant
with the f± transitions which are non-degenerate when Bz ̸= 0. Application of resonant or
near-resonant MW control fields in combination with the continuous wave or pulsed optical
excitation forms the basis of NV-based multi-modal quantum sensing: shifts in the NV ground
state spin resonances, f±, will result in changes in the detected NV fluorescence. For small
changes (relative to the dynamic range of the measurement), the shift in f± with respect to
the frequency of the applied MW control field can be linearly mapped to changes in magnetic
field, electric field, crystal stress, or temperature. In the following, we will consider transition
neglecting the effect of electric field assuming that the sample’s electric field, NV ensemble local
electric field, and strain variation are negligible.
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Figure 3-8: Typical quantun magnetic imaging with NV centers in diamond setup. The distinc-
tion comes from the use of different sources of bias field, permanent magnets (in A)
and Helmholtz coils (in B). [99]

3.2.6 Quantum diamond microscopy setup

The figure shows the basic components used for magnetic imaging using NV centers in dia-
mond, similar setup is used for quantum diamond microscopy, a technique used for mapping a
more broad variety of parameters such as electric field, temperature, deformation, among oth-
ers. From now on QMI and QM will be used to refer to the same setup. The main difference in
each configuration is the bias magnetic field source, in Figure A there are permanent magnets,
and in Figure B the Helmholtz coil. The components are the aforementioned bias magnets, the
optical sensor (in the image camera), the microwave delivery coil, the laser, the optical system,
and the doped synthetic diamond. In the following, we will describe some requirements for each
component to make a fully functional QDM, however we are not looking to make a exhaustive
description of the properties needed for QMI.

The diamond has to be fabricated with control of properties such as NV layer thickness, NV con-
centration, isotope and impurity concentration, and diamond cut, all of them can be controlled
during the fabrication process, the typical methods to produce diamonds are high-pressure and
high-temperature (HPHT) growth which is able to produce diamond with nitrogen density of
100 ppm, and the second technique is chemical vapor deposition, which grow the diamond sub-
strate layer by layer [118, 119, 120]. In the other hand, NV layer thickness is optical when the
it has size comparable to the magnetic source sedation from the sample, usual thickness cor-
responds to dimensions of 10 nm to 100 nm. The NV density should be tuned to achieve the
desired magnetic field sensitivity, although high NV density yields more fluorescence intensity
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and good photon shot noise, a high senility may contribute to inhomogeneity due to impurities
and isotopes, which broadening ODMR resonance and spoils magnetic field sensitivity, so NV
density should be chosen to get the better trade-off [91, 121, 122, 123]. Finally, the diamond
cuts typically used correspond to [100] or [110] planes

The diamond should be illuminated typically by of 532 nm solid-state laser, increasing the illumi-
nation intensity improves the NV fluorescence intensity, the photon shot noise, and sometime
the ODMR line shape. The red light emitted by the diamond and the green light that hit the
diamond should be collected and directed, respectively, with optics, usually the configuration
depends on the needs of the setup, but typically the optical photon collection efficiency requires
to be optimized by reaching the largest achievable numerical aperture (NA) from an objective
and several optical lenses are required to make telescope system to increase the magnification
and the illuminated area, a correct disposition of objectives and optical lenses are required to
optimize the mentioned parameters[96].

The emitted light should be collected and directed to an optical sensor, i.e. a camera or photodi-
ode, camera selection for a targeted application requires consideration of the expected photon
collection rate from the NV layer, camera read-noise and dark-current noise, well depth, glob-
al/rolling shutter capability, software and external triggering, frame rate, data transfer rate, pixel
size, and quantum efficiency [94]. For experiments with a high photon count rate, the camera
must handle enough photoelectrons per second without saturating. Here, the pixel well depth,
number of pixels, quantum efficiency, and frame rate are the important quantities to consider,
because they determine the maximum photon count rate for fluorescence detection. The cam-
era frame rate can limit the experimentally-realizable temporal resolution. Increasing the camera
frame rate is possible by using only a fraction of the sensor. However, the trade-off between
frame rate and number of pixels is generally not favorable with regards to maximizing total pho-
toelectrons/s. Alternatively, if the photon count rate is low, parameters like the read noise and
dark-current noise should be minimized while the quantum efficiency is maximized.

TheQDMbiasmagnetic fieldB0 can be provided by electromagnets (Helmholtz coil sets, solenoids,
and C-frame/H-frame electromagnets) or permanent magnets. Electromagnets allow us to select
arbitrary |B0| up to a few teslas. However, they require a stable current supply, may need wa-
ter cooling for the magnet, and can add to the sample and system heating. Permanent magnets
allow higher |B0| in a more compact instrument, though the applied B0 can drift with tempera-
ture. The direction of B0 also factors into the specific QDM application. Alignment of B0 along
the N-V axis ([111] crystallographic direction) allows for interrogating the NVs along this crystal-
lographic direction. This approach allows optimization of the other measurement parameters,
e.g., the optical polarization, which maximizes the fluorescence and contrast from the selected
NV orientation.
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3.2.7 QDM performance

Magnetic field sensitivity

The minimum detectable field difference is defined as the change in magnetic field magnitude, B
for which the resulting change in a given measurement of the field equals the standard deviation
of a series of identical measurements. However, for meaningful determination of sensor perfor-
mance characterizations of the minimum detectable field must consider the total measurement
duration, as well as the total number of NVs that contributed to the measurement. The magnetic
field sensitivity scales as the square root of the number of detected photons. The number of
photons collected over a unit time from a unit volume of NVs increases proportionally with time
and volume. To account for measurement time, sensitivity is represented as η = δB

√
(tmeas)

with units of T Hz−1/2, where tmeas is the total measurement time. To account for the number of
NV spins required to reach a given sensitivity, a sensor volume-normalized sensitivity is defined
as ηvol = η

√
V with units Tµ m3/2Hz−1/2, where V is volume for a fixed density of NVs [34].

Temporal Resolution and Frequency Bandwidth

For broadband QMI measurements, temporal resolution is defined as the time between subse-
quent measurements of the sample field. The physical limitation determining the fastest tem-
poral resolution is set by the time it takes for the NVs to react to a change in the sample field.
The temporal resolution can never be faster than the inverse of 5 MHz (the maximum optical
pumping rate), which is limited by the 1E metastable state lifetime. The same is true for pulsed
measurements, since NVs are optically reinitialized to the ms = 0 state. before each measure-
ment. For a measurement with continuous laser illumination and MW field, the QDM temporal
resolution is set by the optical pumping rate and the MW Rabi frequency. There is also a practi-
cal limit to the temporal resolution, set by signal-to-noise ratio (SNR) tolerance: faster temporal
resolution gives worse SNR per measurement. QDM frequency bandwidth is the range of sample
frequencies that can be interrogated with the same experimental protocol. A broadband mag-
netometry experiment has a frequency resolution spanning from static DC fields to ∼ 100s of
kHz.

Spatial Resolution and Field of View

QDM imaging seeks to resolve magnetic fields with sufficiently high spatial variation and wide-
field of view to probe the sample properties of interest; and to successfully invert the magnetic
field measurements to generate a map of closely-separated magnetic sources. Both goals have
fundamental and sensor-specific limitations. It is ideal to operate at the limit of magnetic field
inversion and not to be limited by the sensor properties such as resolution and field of view.

1. NV-sample standoff distance. As the standoff distance ∆z increases, the 2D magnetic
map is convolved with a Lorentzian of width ∆z, reducing the ability to resolve closely
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separated magnetic sources. Reducing the standoff distance improves the field strength
and often the spatial resolution.

2. NV layer thickness. A sample with an NV layer much larger than the sample standoff
distance will degrade the spatial resolution. An infinitesimally thin NV layer will ensure
the imaging resolution is not limited by the diamond properties. However, thicker NV
layers can increase sensitivity through increasing the amount of photons produced for a
given optical excitation intensity. Therefore, the optimal NV layer needs to be tuned to
balance needed imaging resolution with measurement sensitivity.

3. Optical diffraction limit. Set by the numerical aperture (NA) of the microscope objective
(λ/(2NA)) for a typical fluorescence wavelength of λ ≈ 700 nm. This assumes that the
camera pixel size is small compared to the diffraction-limited spot size in the image plane.
The spherical aberration from the diamond chip or other optics can also degrade the res-
olution so the optical diffraction limit would need to be modified.

In general, QDM magnetic field imaging is best used for applications that need both high spatial
resolution and wide-field of view, and can also afford small NV-sample separation. The intu-
itive rule-of-thumb is to have NV layer thickness, standoff distance, and sample thickness of
comparable sizes.

3.3 Experimental Methods

Sample preparation

Diamond cut is [100] created using CVD, implemented with nitrogen with NVs at a depth of
20 nm in average and density in the range of 1012 − 1013 cm−2. The diamond have fabricated
markers on the surface of the NVs side via litography and electron beam evaporation to facilitate
flake identification.

In figure 3-9A is shown the unit cell of Fe5GeTe2 (FGT) and co-doped Fe5GeTe2 (CFGT) single
crystals were grown using iodine as a mineralizer/transport agent together with elemental Fe
(granules), Ge pieces, and Te shot in sealed, evacuated silica ampoules. Single crystals of the
reported phase were obtained from growths with nominal compositions of Fe4.7GeTe2 Polycrys-
talline Fe5−xGeTe2 was obtained by reacting the elements in a sealed silica ampoule at 973-1023
K followed by quenched from the growth temperature and washed with ethanol and acetone.
For these samples, Fe powder, Ge powder, and Te shot were ground together in a helium glove
box and the quartz ampoule was sealed after purging with argon. Samples that were allowed
to cool to 10 K or less in a magnetometer in the furnace were characterized by X-ray diffrac-
tion patterns. The Fe content has not been controlled during these growths, which are done
in the presence of iodine, and the average composition is expected to be near Fe4.7GeTe2. The
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Figure 3-9: A. Crystallographic structure of Fe5GeTe2 (FGT) and Co-substited Fe5GeTe2 (CFGT).
B. NV-QMI setup implemented. Adapted from [124]

Fe5GeTe2 crystals are initially stored in a vacuum desiccator to avoid sample degradation. We
exfoliate flakes on the diamond surface with NVs. Exfoliation was performed with a standard
medium-tack Blue Plastic Film tape (Semiconductor Equipment Corporation P/N 18074). Exfo-
liation was done quickly in the air, and then the sample was immediately transferred into an
electron-beam evaporation chamber for deposition of a 5 nm Pt layer as a protection layer to
prevent degradation. In this work, we have investigated both flakes protected with the Pt layer
and flakes without a protective layer. In previous literature is based this procedure [125, 126].

Cobalt-containing crystals were grown using the same iodine-assisted approach as utilized as pre-
viously described, using initial compositions of Fe5−yCoyGeTe2. The raw elements were sealed
in evacuated silica ampoules and heated to 750 ◦C at 120◦C/h, followed by an isothermal step
for 1– 2 weeks at 750 ◦C. The ampoules were quenched into ice water and iodine was washed
from the surfaces of crystals with solvents (ethanol and/or isopropanol with an acetone rinse).
The exfoliation process was carried out as described previously.

The initial cooling and then heating procedure in FGT samples exhibit a first-order magnetostruc-
tural transition near 100K that increases the bulk Curie temperature from ≈ 270 to 310K. In
addition, the magnetic phase of Co-dope FGT samples exhibit different type of magnetic phases
depending on the percentage of cobalt in the lattice, and the introduction of it enhance the curie
temperature up to 330 K when the percentage of cobalt is up to 30%, beyond it behaves as an
antiferromagnet[127, 126]. In this work, the doping is 28%, for the bulk crystal characterization
shows a curie temperature of about 328 K for and an easy-plane anisotropy, with an effective
anisotropic field of Ha = −5.1 kOe.
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Experimental procedure

The schematic of QMI is described in 3-9B. We use a 532 nm laser (Coherent Verdi 2 G) in the
QMI system. A Kohler-illumination system, consisting of a beam expansion lens and an objective
(Olympus ULWD MSPlan80 0.75 NA), expands the laser beam to illuminate an area of about 40
× 40 µm2 on the sample. NV photoluminescence (PL) is collected with the same objective. The
collected light passes through a 552 nm edge dichroic (Semrock LM01-552-25), after which it is
separated from the excitation, passes through another 570 nm long-pass filter to further reduce
light not in the PL wavelength range, and is imaged via a tube lens (focal length f = 200 mm) onto
a camera (Basler acA1920- 155µm). Each pixel corresponds to 133 nm on the sample (265 nm
if an additional 2 × 2 binning is applied). The estimated number of NVs that contribute to the
signal of a pixel is ≤10. A SRS384 signal generator supplies microwave (MW) to an amplifier to
produce MW with power of 45 dBm. The MW is delivered into the signal line of a co-planner
waveguide on a printed circuit board (PCB), which produces an in-plane MW magnetic field for
driving NV spin transition. In our experiment, the diamond surface with exfoliated Fe5GeTe2
flakes and NVs may be either facing up or down.

Figure 3-10: ODMR spectrum for different bias field direction. A. BNV corresponds to split all
eight ODMR resonances. B. Bz corresponds to getting only two ODMR resonances
by projecting the field equally to each crystallographic orientation. Adapted from
[124, 128]

A permanent magnet, movable via motorized stages, supplies a bias field for splitting the ODMR
resonances. In principle, there can be up to four pairs of ODMR resonances, each correspond-
ing to ms = 0 ↔ ±1 transitions of NVs aligned with one of the four-diamond crystalline axes;
the direction of the nitrogen-vacancy bond provides the quantization axis for the corresponding
NV, and it may point along one of the four possible crystallographic directions. We employ two
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configurations of bias field B0.

First, a bias field can be applied in a direction to split all four ODMR resonances. In this configu-
ration, we sense BNV , the projection of the magnetic field along an NV quantization axis of our
choice; BNV has a contribution from both the out-of-plane and in-plane fields. The projection
of the total magnetic field (the sum of the sample stray field and an applied bias field) on each
axis, BNV , contributes to the shift of ODMR resonance. Off-axis field also contributes to the
shift of ODMR resonance; however, the leading order off-axis contribution is common-mode
motion between the upper and the lower transitions, and in our analysis procedure, we only
look at the differential shift, hence we are not sensitive to off-axis field. When the bias field is
fixed, the shifts in ODMR resonance reveal the amplitude of the sample field projected along the
crystallographic direction. In general, an ODMR spectrum includes four pairs of transitions due
to the Zeeman splitting as shown in figure 3-10A.

In a second configuration, we align B0 along the z direction (normal to the diamond surface),
which allows us to sense Bz, the projection of the field along the z direction. All measurements
are performed in the atmosphere. Only one pair of transitions is observed as shown in figure
3-10B because the field projection on each crystallographic direction is equal. As a matter of
fact, applying B0 in the z direction results in an enhanced contrast in the ODMR spectrum since
it is the sum of the contribution from all four NV axis, as long as the bias is not large (B ≤ 100

G) and hence the effect of the off-axis field on photoluminescence contrast is not strong. The
enhanced contrast in this configuration is confirmed by the comparison of resonance contrast
between figure 3-10A, and B where 4 transitions on each side are overlapped. However, it might
also broaden the linewidth due to the frequency shift of resonances induced by even a slight
misalignment between B0 and z direction. The broadened linewidth as a result reduces the
sensing sensitivity. Therefore, good alignment is crucial in Bz configuration.

The frequency splitting between lower and upper resonance transitions can be written by∆f =

2γNV (B0,NV +BNV ) where γNV = 28.03 GHz/T is the NV gyromagnetic ratio, B0,NV , and BNV

are the bias field and sample stray field projected on the corresponding NV axis. Thus, the stray
field is calculated by BNV = (∆f/2γNV )−B0,NV . While in Bz configuration, the stray field Bz

is calculated by the formula Bz =
√
3(∆f/2γNV )−B0 according to the geometric relationship

between the bias field and NV axis.

Measurements and analysis protocol

By sweeping the MW frequency, the camera records an ODMR spectrum for each pixel. Thus,
mapping of the sample field is realized by extracting resonances from each pixel, acquiring an
image I(x, y, f). We scan the microwave frequency between 2.65 ∼ 2.70 GHz and 3.07 ∼ 3.11
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Figure 3-11: A. Step by step process for imaging sum up using flakes edges in each image. B.
ODMR far and near flake.

GHz to obtain the branch of the two transitions with the largest frequency span. We repeat PL
imaging of the sample N times (N > 50) and the recorded images, Ii(x, y, f), are added up to
reduce the noise in measured ODMR spectrums. However, misalignment might occur among
recorded images due to the drift of sample position in the x-y plane. As described in figure
3-11A, the displaced images could be corrected by aligning the contours of the imaged flakes.
This is a necessary step before we sum up the images. The summed image will be followed with
pixel binning to further improve the signal-to-noise ratio (SNR) in the image. We analyze each
pixel in the binned image by fitting the ODMR spectrum with a double-Lorentz function. The
lineshape is a result of hyperfine splitting due to 15N nuclear spins. The fitted values of reso-
nance frequency are used to calculate the stray field at the corresponding pixel, which allows us
to map the entire imaged region depending on the configuration of the bias field employed. It is
noted that in the final mapping result, we discard the contribution from the external magnetic
field B0 by subtracting the average of the image region without flakes.

In 3-11B, we show the two ODMR spectrums which are measured from a pixel near to the flake
edge and one pixel far away from the flake. Here, we only show the resonance of the upper
transition (ms = 0 ↔ +1). The resonant peaks are fitted using a double-Lorentz formula and
the center of the peak is used to determine ∆f . It is observed that the ODMR peak position
shifts to a lower frequency in the presence of a magnetic material, which indicates the generated
negative stray field from a flake.
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3.4 Results and discussion

The figure 3-12a,3-12b,3-12c, and d shows the QMI method applied to detect the magnetic field
in Z generated by flakes of different thickness of Fe5GeTe2 at ambient conditions, i.e. at room
temperature and in the atmosphere. The thickness of each flake was determined using an atomic
force microscope and the optical image as well as the measurement value are shown in figures
3-12g, 3-12h, and 3-12f. Now first we will show that the origin of the stray field comes from
the ferromagnetism nature of the flakes.

To probe the ferromagnetic behavior of the flakes we follow the next procedure, we magnetize
the flakes before imaging them, to do so, we use one side (pole 1) of a cylindrical permanent
magnet with a magnetic field of about 0.6 T. The way we determine the bias magnetic field in z
consists of using the ODMR spectrum of the regions where the flakes are not located, in these
regions the ODMR is due just to the bias field only. In this configuration, the magnet provides
a bias field B0 = 40 G in the z-direction, and it is useful to split the lower and upper transitions
in the ODMR spectrum and hence identify the sign of the stray field. The analyzed δBz fields
of a 100 nm thick flake magnetized by pole 1 are plotted in Fig. a. Subsequently, we magnetize
the flakes again but with the opposite pole (pole 2) of the permanent magnet. We then perform
measurement in a similar bias field B0 = 30 G. The field mapping result is shown in Fig. 2b.
We note that measurements occurred at two different bias fields because the diamond position
slightly changes with respect to the permanent magnet underneath the PCB board when each
time the diamond is mounted after the magnetizing procedure. The contribution from the bias
field to the map has been removed in the figure.

Now, before we move forward, let’s consider the numerically simulated field in the z-direction
generated from a small square magnet with a single domain in the figure 3-13. In 3-13A shows
the Bz map with the centrosymmetric pattern when the magnetization is out of the plane, the
major contrast is observed at the edges of the square and in the inner has a weak intensity but
still significant. When the magnetization goes along x direction, the simulation shows that the
largest intensity of the field is at the two edges with the opposite sign, and in the inner part is
almost zero as shown in figure 3-13B. Line cuts of the field generated by each configuration at
y = 0 are shown in figures 3-13C and 3-13D, where can be highlighted the change of sign in Bz
field generated when the magnetization is out-of-plane in 3-13C. In general, flakes could have
domains or magnetic textures, which will produce more complex patterns, hence the experi-
mentally imaged magnetic field will not necessarily have all the features exhibited by a single
domain, however, in general one could anticipate that the δBz field will be along the boundary
and more generally across the flakes, if magnetization is present.

Indeed, in figures 3-12(a) to 3-12(e), a stray field across the flakes is observed with similar fea-
tures to the mentioned above for the magnetized square, however, the question then is whether
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Figure 3-12: Ferromagnetism in exfoliated thin flakes of Fe5GeTe2. Measurements have been
performed when a magnetic bias field in z, Bz, is present and δBz is mapped in
the figures. The flakes are magnetized by the two poles of a permanent magnet.
Pole 1 is used for figure (a) and (c) , and pole 2 is used for figure (b) and (d), figures
(a) and (b) shows the thickest flakes (around 10 nm). In figure (e) displays the Bz
field mapping of the thinnest flake of 21 nm. (f) Top: zoomed-in view of the upper
part of the flake in Figure (e). Bottom: Stray field variation along the four linecuts
marked in (e). Each curve has a vertical offset for clarity of display. Horizontal black
dashed lines indicate zero ΔBz value for each of the curves. Curves are correlated
to the line cuts in (e) by different colors. In each curve, the left peak and right
dip clearly indicate the boundary of the thinnest part. In particular, a sharp dip
manifests along the right boundary, which is marked with vertical orange dashed
line. (g)-(i) AFM images of the 4 measured flakes where the thicknesses of flakes
are labeled by the numbers in the unit of nanometers. The outlines of the flakes in
panels (a) to (e) have been depicted with black dash lines.

the field from the flakes comes from a ferromagnetic or paramagnetic phase. If the flakes are
paramagnetic, then the local magnetic moment that compounds the total magnetization of the
flake will orient in the same direction as the applied magnetic field and its intensity will be pro-
portional to the applied field, so, it is expected that in a paramagnetic sample when pole 1 (bias
field of 40 G) faces the sample the field generated by the flakes should be more intense and
with an opposite sign than the field generated by the flakes when the pole 2 (bias field of 30 G)
is applied. Instead, we observe the opposite, when pole 2 is facing the flakes, the intensity of
the field is way higher than the field produced by the sample when pole 1 faces the sample, so
clearly, the measured stray fields show a significant difference in strength when we magnetize
the flake in opposite directions. This result is consistent with the presence of ferromagnetically
ordered magnetization: when the magnetization is polarized along the opposite directions, one
polarization will show a stronger magnetization (and hence a stray field) in the same or even
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Figure 3-13: A. Magnetic field generated by a out-of-plane magnetization in a square sample. B.
Magnetic field generated by a in-plane magnetization in a square sample. C. Linecut
at y=0 for the figure A. D. Linecut at y=0 for the figure D.

a smaller bias field. This analysis does not require the flake to have a single magnetic domain,
as we have access to local stray fields. Similar observations are found in the other two smaller
flakes with thicknesses of 40 nm and 30 nm as shown in figure 3-12(c) and (d). Therefore, we
conclude the stray field observed is generated by ferromagnetism in the flakes.

Using the map of the ∆Bz on the surface of the sample provides insights into the magnetic
anisotropy of the flake. As is shown in figure b, we observe the field has mostly the same sign
along the edge as well as in the inner part of the flake. The pixel data with low signal-noise-to-
ratio, e.g., when the error of δ(∆Bz) larger than 300µT, has been removed, this is because the
thick flakes attenuate light and reduce the number of collected photons. Additional features in
the map are likely due to domain or magnetic textures. The observed topology looks similar to
the expected distribution induced by a perpendicular magnetization, additionally is worth high-
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lighting that the feature doesn’t correspond to the ones generated by an in-plane field, this is
a pattern with field localized to the boundary and vanishingly small in the inner part of the flake.

Figures 3-12(c) and 3-12(d) are thinner flakes, hence the SNR is higher in the flakes center in
both, so the field is generally visualized in the entire flakes. Lastly, we note the contrast between
Figures 3-12(a) and 3-12(b), as well as 3-12(c) and 3-12(d), indicates the change in magnetiza-
tion induced by a perpendicular magnetizing field persists after the magnetizing field has been
removed. Aspects of these results point to easy-axis anisotropy near TC , though further inves-
tigation is required to draw certain conclusions. For instance, the stray field appears to remain
across a crystal, though the existence of domains could lead to apparent sign inversions within
a given flake that may also give the appearance of in-plane anisotropy. Future measurements
at higher and variable bias fields would provide even more insight into the magnetism in these
and similar materials in this thin flake form, and in particular allow more definitive conclusions
about anisotropy.

Lastly, we explore what is the thinnest flake we have observed that exhibits room-temperature
ferromagnetism. To do so, we show the stray field map of a 21 nm thick flake in figure 3-12(e)
and in figure 3-12(f) there is a zoom-in view of the upper part where the thinner part of the flake
is shown. We trace four linecuts to study the field through the flake, which clearly displays a
stray field near the boundary, this demonstrates the ability of our wide-field NV magnetometer
to characterize the stray field induced by very thin flakes. Hence, we demonstrate Fe5GeTe2,
when protected with a thin Pt layer, exhibits ferromagnetism in flakes as thin as 21 nm, cor-
responding to 7 unit cells. The thicknesses of all those flakes are measured by atomic force
microscopy (AFM) as shown in figure 3-12(g) to (i). We note that in figure 3-12(i) multiple ter-
races are present in the bottom half of the flake, as revealed by AFM, and may be responsible
for the complex stray field pattern in the bottom half of figure 3-12(i).

At last, we demonstrate the utility of our QMI technique for rapid screening of magnetism in
exfoliated flakes. Multiple Fe5GeTe2 flakes without Pt protection layer are imaged at room tem-
perature and the stray field map is shown in figure 3-14(a). We note that in this measurement,
BNV was imaged, hence the stray field pattern looks different from those in figure ??. As men-
tioned above near the center of the flakes, the SNR of stray field measurement is low so here
the stray field values are not displayed for these pixel points. The AFM image of the correspond-
ing flakes are shown in figure 3-14(b). We have properly labeled the flakes or flake clusters in
both panels. It is seen that some small flakes are visible in AFM picture (for example, flakes
circled by red box A and B) but do not generate stray field. This may be attributed to the fact
that those flakes are too small or too thin and hence have completely degraded in the absence
of protective layer. However, even some larger flakes (for example, the flakes around the clus-
ter number 2) also do not generate stray fields, which may also indicate complete degradation.
Among the flakes that generate stray fields, we find the thinnest flake is 40 nm thick (< 20 unit
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Figure 3-14: The BNV stray field map of Fe5GeTe2 flakes without Pt protection layer. Stray field
in areas where SNR is low is not shown. (b) The AFM image of the flakes in (a).
The flake or the flakes cluster are labeled by numbers and the measured flakes
thicknesses are 1(45 80 nm), 2(35 100 nm), 3(40 65 nm), 4(110 nm), 5(75 150 nm),
6(85 nm), 7(60 nm), 8(100 nm).

cells). This result shows our image tool can measure the magnetism of unprotected Fe5GeTe2
flake also down to very thin layers. It also provides an option to investigate the degradation
of the magnetic flakes in an ambient condition by imaging the sample field changing with time.
Lastly, this work demonstrates the utility of QMI for rapid, parallel characterization of the thin
flakes of other potential 2D magnets near room temperature, providing an enabling tool that will
aid the effort in discovering additional 2D magnets that are useful for applications.

To help inform what kind of pattern of stray-field distribution one anticipates to observe, we
show simulated Bz(x, y) generated by a square magnetic structure with a uniform out-of-plane
(3-152(a)) and in-plane 2Dmagnetization (3-15 (b)). The former generates aBz(x, y) that switches
sign at the boundary, where the latter generates a dipole-like pattern that is antisymmetric along
the magnetization direction. In figures 3-15(c) to 3-15(h), we show images of experimentally
measured stray field distribution of several flakes. The thickness of flakes was measured with an
atomic force microscope (AFM) and is 15.7(3) nm (16 layers) for figures 3-15(c), 3-15(f), 28.6(3)
(29 layers) for figures 3-15(d), 3-15(g), and 25.6(2) nm (26 layers) for figures 3-15(e), 3-15(h),
and. Thickness is 56.5(6) nm (58 layers) for figure 3-15(i). In Figures 3-15(c) to 3-15(e), we show
Bz(x, y) with an out-of-plane bias field B0 ∼ 30 mT. In each case, we observed Bz(x, y) maps
that have a similar topology to the one shown in Figure 3-15(a), indicating that magnetization is
directed out-of-plane. We then lowered the bias field toB0 ∼ 3mT. The correspondingBz(x, y)

maps, shown in figures 3-15(f) to 3-15(h), undergo a dramatic change in topology and reveal a
texture of the change in the distribution of the stray field and hence the underlying magnetic
domains. The stray field texture contains multiple dipole-like features, consistent with the ex-
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Figure 3-15: Quantum magnetic imaging of CFGT flakes. a) and b): Simulated distribution of
vertical stray field Bz for uniform a) out-of-plane (pointing along z) and b) in-plane
(pointing along x) magnetization. Here, one assumes a 2D 1 µm × 1 µm square of
magnetization, and stray field is simulated at a stand-off distance d=100 nm. Im-
ages are convolved with a point spread function corresponding to 600 nm optical
resolution of the experimental setup. c)-e) Experimental stray field of CFGT flakes
at room temperature with an applied vertical bias field (along z-direction) ∼30 mT.
These images have a similar topology to a), demonstrating that magnetization is
aligned along the vertical direction. f)-h): Measurement of the same flakes corre-
sponding to c-e respectively, but with a smaller vertical bias field ∼3 mT. Here, we
see stray field texture develops that reveals underlying domains. Magnetizations
that get oriented along the bias field at high field and forms domains at low field
demonstrate that these flakes have ferromagnetic order. The thickness of flakes
are 15.7(3) nm (16 layers) for c, f, 25.6(2) nm (26 layers) for d, g, and 28.6(3) nm
(29 layers) for e, h. i) Measurement of a 56.5(6) nm thick (58 layers) flake under
the same condition as f-h. All experimental images are shown to the same scale; a
2 μm scale bar is shown in (i)

pectation of in-plane magnetized domains inferred from bulk magnetization measurement that
shows zero remanence and easy-plane anisotropy. The change in stray field topology as the ex-
ternal field was lowered and the revelation of domains confirmed the ferromagnetic ordering
of flakes; if the flakes were paramagnetic, the stray field would merely change in amplitude but
not topology. In figure 3-15(i), we show the stray field of another flake at a bias field ∼3 mT,
which also displays stray field texture, demonstrating that room-temperature ferromagnetism is
ubiquitous among CFGT flakes.
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3.5 Summary

• We have developed a NV-QMI modality with reliable capabilities to explore thin and ul-
trathin flakes of Van der Waals Material.

• We have probed ferromagnetism in flakes of FGT and Co-doped FGT at room temperature.
In particular have shown magnetism in flakes with thickness as little as 7 unit cells.

• Our method allows us to screen several flakes at once and explore the thickness effects in
the intensity of the magnetic field generated by each flake. In addition our method allows
us to study in-plane magnetization as well as out-plane magnetization over the samples
studied.

• Finally, our numerical simulation to predict ODMR behavior and to simulate the magnetic
field generated by samples was in good agreement with our experimental finding.



4 All-Optical and micro-wave free Low Field
Magnetometer based on NV center in
diamond

4.1 Introduction

As shown in previous chapter the NV center in diamond magnetometry is a modality that de-
pends directly on the use of microwave fields to detect external sensing parameters. However,
this technique could be problematic for studying systems where both external magnetic field
and microwave might disturb the target system. Some examples correspond to the detection of
MWs generated by eddy currents in conductive materials in the context of magnetic induction
tomography[129, 130], high-Tc superconductors (Tc stands for the superconducting transition
temperature) [131] and also has remained an outstanding challenge to extend the vector capa-
bility to cryogenic temperatures (less than 4 K) due to difficulties of thermal management. The
heat from the applied microwaves is unavoidable and causes temperature variations, restricting
the sensors for numerous innovative applications, such as mapping the magnetization of indi-
vidual atomic layers of van der Waals materials.

There have been several demonstrations of MW-free, and all-optical, diamond-based magnetic
sensors, initially implemented with single NV centers attached to scanning atomic force micro-
scopes, and more recently with ensembles of NV centers[132, 102, 133, 134]. These MW-free
magnetometric protocols have been realized by exploiting either the properties of theNV centers
photoluminescence (PL), shown in figure 4-1 [135], or their decoherence properties under the
influence of external MWs, some experimental realizations have demonstrated competitive sen-
sitivities around the few nT/

√
Hz, taking advantage of features such as GSLAC [102, 132, 136].

Spin cross-relaxation (CR) at low field due to NV-NV interaction has also been observed and
could be deployed for higher sensitivity microwave-free magnetometry. The CR contrast was
indeed shown to be much larger in this zero-field limit but all the relaxation mechanisms have
not been identified there.

Understanding the impact of CR in all-optical microwave-free modality is essential to improve
sensitivity, to do so a simulation model is required to get insights about the parameters that



4.1 Introduction 71

Figure 4-1: PL spectrum as a function of an on-axis magnetic field for a nitrogen vacancy center

could affect the CR features in the photoluminescence behavior in NV centers in diamond
[137, 138, 133]. A semi-classical model that considers the main 7-level states from the NV center
system, i.e. ground state, excited state, and intersystem crossing, has been developed for such
purposes, however, the existing model offers light on the behavior around GSLAC mainly and
doesn’t explore the effects of CR at low field, in addition, the method cannot be extensible to
systems that include nuclear spin, or other defect centers, due a lack of mathematical basis to
introduce the additional degree of freedom in a phenomenological manner[139]. In addition,
several models that are based on the Lindblad equation are computational expensive and have
not been extended for cases when interaction in between defect centers should be considered
[140, 141].

On the other hand, further experimental research for an all-optical low-fieldmagnetometer based
on NV is still required. Recent reports explore such modality, however, the absence of a full
theoretical model that accounts for their findings is still missing for properly grounding their
insights. In our work, we develop a theoretical model based on previous literature to understand
the cross-relaxation nature and build our own all-optical magnetometer based on the nitrogen-
vacancy center, to verify our findings from the simulation model and get further understanding
of experimental parameters that play a role in the study of this modality. This chapter, initially
will introduce important Hamiltonian considerations about the system. After the theoretical
model proposed is shown, as well as relevant numerical simulations. Then experimental results
contrasted with simulations are discussed. Finally, a summary of our findings are presented.
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4.2 Theoretical Methods

4.2.1 Hamiltonian considerations

In the previous chapter, the ground state Hamiltonian for NV centers in diamonds was broadly
discussed considering several fields and effects over the system. In the following, we will con-
sider features such as fine, quadrupolar, and hyperfine terms as well as the Zeeman term, when
the magnetic field is applied, as follows,

Ĥgs

h̄
= Ŝ · D · Ŝ + Ŝ · A · Î + Î · Q · Î + Î · Q · Î + µB

h
B · g · Ŝ (4-1)

In figure 3-6 shows the energy level diagram for an NV center in a diamond, however, when
focus is given to the ground state level anticrossing (GSLAC) around 0.1 T and to low magnetic
field features, either when the nitrogen isotope is 15N or 14N, features such as the one in figure
4-2 are observed. The anticrossing features are vital in the NV center physics because using
these features it is possible to transfer information from the nuclear spin state to the electronic
spin state and are useful also for all-optical sensing purposes.

For high-density ensembles, the paramagnetic interaction between NV centers and NVs with
other defect centers plays a role in the system’s hamiltonian. The interaction term read as
follows,

HInt = Ddd

[
3(Ŝ1 · n12)(Ŝ1 · n12)− (Ŝ1 · Ŝ2)

]
. (4-2)

In the Hamiltonian, the interaction term is defined as a function of the unitary vector n12 of the
relative position between the NV and the second defect center, so the angles respect the denied
coordinate system will play a role as shown in the figure 4-3A, where n12 appears in the figure as
r̂12. In addition Ddd is the interaction strength that depends of the relative position in between
defect centers in units of MHz.

The equation 4-2 can be expressed in terms of the polar (θ) and azimuthal (ϕ) angle as shown in
the figure 4-3A, to do so, let’s consider that Sx = 1/2 (S+ + S−) and Sy = i/2 (S− − S+). Then
the equation can be expressed as,

HInt = Ddd(A+B + C +D + E + F ), (4-3)

where,

A = S1
zS

2
z

(
1− 3 cos 2θ

)
, (4-4)
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Figure 4-2: Anticrossing level states at low field and ground state for 15N (A and C) and 14N
(B and D). For A. and C., color labels correspond to: ms = 1 and mi = 1/2 (light
blue),ms = 1 and mi = −1/2 (light green), ms = −1 and mi = +1/2 (purple),
ms = −1 and mi = +1/2 (yellow), ms = 0 and mi = +1/2 (red), and ms = 0

and mi = −1/2 (red); for B. And D. ms = 1 and mi = 0 (orange), ms = 1 and
mi = −1 (dark blue), ms = 1 and mi = 1 (dark red), ms = −1 and mi = 0 (light
blue), ms = −1 and mi = 1 (light green), ms = −1 and mi = −1 (purple), ms = 0

andmi = 0 (yellow),ms = 0 andmi = −1 (red), andms = 0 andmi = 1 (blue).

B =
1

2

(
1− 3

2
sin 2θ

)(
S1
+S

2
− + S1

−S
2
+

)
, (4-5)

C = −3

2
sin θ cos θe−iϕ

(
S1
zS

2
+ + S1

+S
2
z

)
, (4-6)

D = −3

2
sin θ cos θeiϕ

(
S1
zS

2
− + S1

−S
2
z

)
, (4-7)

E = −3

4
sin 2θ cos θe−2iϕS1

+S
2
+, (4-8)

F = −3

4
sin 2θ cos θe2iϕS1

−S
2
−. (4-9)
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Figure 4-3: A. Representation of coordinate system respect first defect center (NV) and relative
position vector respect to second defect center. B. Representation of second defect
center possible orientation. C. Application of magnetic field respect the coordinate
system.

The term A acts as a local static field, while B leads to flip-flop interactions. Both these terms
commute with the hamiltonian, since ∆mz = 0. For this reason, they are known as the secular
part of the dipole-dipole interaction. For all other terms, ∆mz ̸= 0, and thus they lead transi-
tions. They are collectively knows as the non-secular part of the Hamiltonian.

As discussed in the previous chapter, NV center can be oriented in four possible orientations,
in general, the second defect center can be oriented in any of the four possible orientations as
represented in figure 4-3B. For the tensors, A, Q and the magnetic field B when second defect
center principal axis is not parallel to the first deferec principal axis, when this is done, Tensor
transforms as R̂T (θ, ϕ, α)AR̂ (θ, ϕ, α) and the vector of the magnetic field R̂ (θ, ϕ, α)B, where
R̂ is the rotation matrix.

4.2.2 Density Matrix and Von Neumann Equation

In short the density matrix describes the quantum states of a physical system. Thematrix entries
correspond to the quantum state’s probability to occur if it is measured. On a given basis, the
representation of a density matrix is given by:

ρ ≡
∑

i=1,...,N

pi|ψi⟩⟨ψi| =

ρ11 ... ρ1N
... ρij ...

ρN1 ... ρNN

 . (4-10)

The equation that gives the density matrix dynamics for a closed quantum system read as fol-
lows,

ρ̇ = −i [H, ρ] , (4-11)

this is the so-called Von-Neumann Equation.



4.2 Theoretical Methods 75

4.2.3 NV Photoluminiscence Model

The model is based on the described in [135], due to the easy implementation and the grasp of
the major physical features of the quantum system. The method use the Von Neumann Equation
to describe the photoluminiscence (PL) spectrum of a system of two interacting paramagnetic
centers, each with a nuclear and electronic spin, in particular, paramagnetic centers such as NV
and P1 (substitutional nitrogen) centers are considered. This method is introduced to describe
the low-field regime, i.e. below ∼ 0.1T. To simplify the system, realistic assumptions, such as
the following, are made as follows,

• Photo-Excitation, fluorescence, and inter-system crossing processes are faster than spin
dynamics at the ground state.

• There is no energy exchange with the system surroundings; then, spin distribution is a
coherent process.

• The ground state mainly gives the system’s dynamics because it remains excited for a short
period compared to its time at the ground level.

The first and third assumptions imply that the system transition from excited to ground state
defines the initial condition for the density matrix, and this means what the electronic spin state
initial polarization of the ground state is. The second condition means that the system will con-
serve its quantum state overall time, which means that the system will evolve with the Von
Neumann Equation. The third condition allows us to ONLY use the ground state Hamiltonian to
describe the system’s dynamics that’s why the figure 4-4make focus on the ground state energy
levels, in this case of a 14N.

Figure 4-4: NV electronic levels with the blue dashed circled ground state energy levels describ-
ing hyperfine energy levels in the dashed blue box to emphasis the assumption of
the model
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The isolated NV hamiltonian correspond to equation 4-1 and when dipole-dipole interaction is
considered then the term of the equation 4-2 should be included. In each case described by
previous hamiltonians, we can simulate the magnetic field aligning in the NV axis direction, or
109.47 degrees with respect to the NV axis as shows in figure 4-3.
The density matrix for the system initially is:

ρ0 = ρs1 ⊗ ρs2 ⊗ ρI1 ⊗ ... (4-12)

where each term in the Kronecker product corresponds to electronic spin and nuclear spin, and
the indexes 1 and 2 correspond to the first defect center, NV, and 2 for the second defect center,
P1 or another NV. In addition, the electronic spin polarization of the NV is given by

ρs1 = α

0 0 0

0 1 0

0 0 0

+
1

3
(1− α)

1 0 0

0 1 0

0 0 1

 (4-13)

where the parameter α tunes the intensity of the optical polarization and it affects directly the
initial condition for the electronic spin state polarization for the NV. When the NV and the mag-
netic field are oriented in the same direction, the parameter is 1 and when it is in the other
orientation is 0.7.

After the previous definition and consideration have been made, we will now mathematically
develop the method that will be used to model the fluorescence of the system. To start with,
as it is observed the initial density matrix and the Hamiltonian are not on the same basis, so
this means that in the frame of reference of the Hamiltonian, the density matrix evolves in time.
The von Neumann equation is easily solved if the frame of reference corresponds to one where
the Hamiltonian is diagonal. To do that, we make a transformation using the eigenvectors of the
Hamiltonian as a matrix called V̂ , as follows:

ρeb0 = V̂ −1ρ0V̂ . (4-14)

After the transformation, it is easy to write the right side of the von Neumann equation as:

[Heb, ρeb] = 2π (Ei − Ej) ρ
eb
ij , (4-15)

Then, we can solve the von Neumann equation in this frame of reference as,

i
dρebij
dt

= 2π (Ei − Ej) ρ
eb
ij → ρebij (t) = ρebij (0) exp (−2πi (Ei − Ej) t) . (4-16)

After this, we get back to the initial frame of reference in the following way,

ρ(t) = V̂ ρeb(t)V̂ −1, (4-17)
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and we assume that the projection of the density matrix on thems = 0, i.e. P0 state corresponds
to the evolution of the PL with time, as

ρ00(t) = Tr (P0ρ(t)) . (4-18)

We are interested in finding the PL as a function of the magnetic field, to do so we will calculate
the average in time of the PL for each value of the magnetic field. In the average calculation,
we have to take into account that the photo-excitation process interrupts the PL time evolution
with time rate τ and re-initializes the system, this is taken into account in the following way in
the average calculation

⟨ρ00⟩ = Tr
(
P0

1

τ

∫ ∞

0

ρ(t) exp (−t/τ) dt
)
. (4-19)

Replacing ρ(t) we can see that previous equation can be written in the following way

1

τ

∫ ∞

0

ρ(t) exp (−t/τ) dt = 1

τ

∫ ∞

0

V̂ −1ρeb(t) exp (−t/τ) V̂ dt. (4-20)

Solving the integral we find that,

ρstij =

∫ ∞

0

ρeb(t) exp (−t/τ) dt =
ρeb0,ij

(1 + 2πi (Ei − Ek)τ))
, (4-21)

and then we can find a simplified expression in terms of the last result to find the PL through
the population of groundms = 0 state

⟨ρ00⟩ = Tr
(
P0V̂ ρ

stV̂ −1
)
. (4-22)

4.3 Experimental Procedure

The setup in figure 4-5 is meant to make detections of changes in fluorescence emitted by a bulk
NV ensemble due to the changing magnetic field coming from the Helmholtz coil. For the light
collection, we used a balanced photodiode Throlabs PDB210A that records data from fluores-
cence and green light. The diamond has been fabricated using CVD with a [111] cut, has an NV−

concentration of about 3.8± 0.25 ppm which according to the literature should exhibit features
due to NV-NV interaction. The diamond is glued to a sapphire substrate that is mounted over
a rotational stage Thorlabs ELL14K that allows us rotations around an axis that is perpendicu-
lar and passes through the center of the diamond face. The Helmholtz coil used is BH300-3-A
300mm from ASC scientific and gives up to 20 G for each axis when 4 A are applied. The power
supply is a Rohde and Schwarz HMP2030 and it has three DC supplies that the computer can
control. To record the data, a DAQ from National Instruments NI-USB6281 is used and it goes
directly connected to the computer and it gathers information from the photodiode. There is
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a microwave source used to calibrate the Helmholtz coil field as well as the orientation of the
ensemble planes with respect to the Helmholtz coil field. Regarding the optics, we use as ob-
jective Olympus Plan N with NA 0.4 and up to 20x magnification and a dichroic Semrock FF625;
lenses and mirror were disposed in such a way that the beam spot from fluorescence and green
light has a size lower than the diameter of the photodiode sensor, i.e. below 5 mm.

Figure 4-5: Setup for all-optical microwave free quantum magnetometer based on nitrogen-
vacancy center in diamond, MW loop and signal generator are not needed, however
are used for benchmarking process.

We use the experimental setup to record fluorescence change when a magnetic field generated
by one axis of the Helmholtz coil is applied over the diamond. Initially, the magnetic field is ap-
plied perpendicular to the face of the diamond, which we will call Bz, by a Helmholtz axis that
we will call z, and regular changes in the field are applied and the corresponding fluorescence is
recorded at least ten thousand times per each magnetic field step. Secondly, when the magnetic
field is applied in-plane by another Helmholtz coil axis that we will call x, the rotational mount is
used to orient the crystal planes of the ensemble in such a way that when ODMR is done over the
diamond the resonances look as figure 3-8E, in this case, the ODMR is used to test the position
of the crystal planes; when a field in-plane is applied perpendicular to the field generated by the
x-axis, a similar resonance is observed and we will called y. Similar fluorescence measurements
are done for the in-plane directions x and y. Lastly, a magnetic field is applied parallel to the NV
principal axis, and information on the behavior of the fluorescence is registered.

Finally, we will realize two-dimensional maps of the fluorescence when the magnetic field is
applied simultaneously in z and y, as described in the previous paragraph. Also, a 2D map will
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be measured for magnetic field applied by x and y axis. After, for both configurations of two-
dimensional maps, measurements are done when the planes are rotated around the z-axis. In
the end, a two-dimensional plot is generated when an on-axis magnetic field, i.e. parallel to the
NV axis and an off-axis (i.e. perpendicular to the NV principal axis) are applied over the diamond,
simultaneously.

4.4 Results and Discussion

4.4.1 Theoretical results

Fluorescence model for isolated and interacting NV

We calculate the fluorescence as a function of the magnetic field when it is applied parallel to
the NV principal axis and when it is applied 109.47 ◦ respect the NV principal axis as shown in
4-3C. In figure 4-6 calculations of the fluorescence for isolated NV (A), NV interacting with a
P1 (B), and NV interacting with another NV (D) are shown. In the plots for interacting NVs, we
did the average of the fluorescence for those cases considering the PL when the second defect
center is oriented in any of the four possible orientation and the first defect center (The NV)
points out in the z direction as shown in figure 4-3C.

In figure 4-6A, the calculation is done for an isolated NV center. In the literature, the seven-level
model is the well-established method to explore the fluorescence of NV centers, and although
it considers the excited states, the method fails when an additional degree of freedom such as
the nuclear spin of the nitrogen is included. In the approach we are proposing we are able to
easily include an additional degree of freedom while the main physical features are considered.
From the calculation, it is easy to observe that when the magnetic field is parallel to the NV axis
there is a pronounced dip in the fluorescence around 0.1 T. The feature is related to the GSLAC
that is presented in figure 4-2, when this level anticrossing happens, there is a strong mixing of
the quantum states from a nuclear state to another due to the hyperfine coupling. This type of
feature has been used for all-optical magnetometers based on NV centers in diamond as well as
for quantum information advantages.

On the other hand, the behavior of the PL when there is an off-axis component of the field shown
in figure 4-6A, it is due also to spin mixing effects, in this particular case in between electronic
spin states. To picture the mixing, we can imagine that the system initially is emitting photons
that proceed from a population of NV that is in a spin-up state at the beginning, however, when
an off-axis magnetic field component is applied and increased, part of the population that was
used to emit photons from spin up stars to transfer for another spin state that it is the mix in
between the spin up and spin down state, this effect reduce the potential population that can
be used for photon emission which drops then the fluorescence when the field is increasing.
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Figure 4-6: PL spectrum for different defect system. A. Isolated NV with hyperfine interaction.
B. NV interacting with P1 centers. C and D. Correspond to NV interacting with an-
other NV.

This fluorescence quenching is at the heart of all-optical and microwave-free methods using a
nitrogen-vacancy center in diamond. This feature is a common behavior that is observed also
for a system of interacting defect centers, such as the one presented in figures 4-6B and 4-6D.

Additional sharp dips in the fluorescence spectrum of NV centers in diamonds have their nature
resting in the interactions among the several defect centers that are in an NV ensemble. In fig-
ure 4-6B the dip with several wiggles appears when the field is aligned with the NV axis and it
happens for values of a magnetic field around 500 G, which of course is due to the NV-P1 inter-
action. For figure 4-6C and D, the features happened for low field, i.e. below 20 G, and for the
field of around 600 G, the initial increase has been accounted to dynamical nuclear polarization
process in between NVs from different crystal planes or equivalent NVs, called classes, as well
as accounted for flip-flop process and double flip process. In general, the understanding of the
mechanism that truly explains the existence of this dip is still a topic of research. In our work,
we seek to develop an all-optical magnetometer based on NV center in a diamond that takes
advantage of the initial increase in the fluorescence due to NV-NV interaction, that is why in our
work is essential to have a clear understanding through the model on how this feature can be
considered to further development of the magnetometer.



4.4 Results and Discussion 81

Finally, it is worth remembering that our model accounts for the average of an interacting NV
center with a second defect center in their respective four possible orientation. The model is
simplified, in the sense that doesn’t consider the fact that the real system is an NV ensemble.
However, our model is accurate in the predictions about the appearances of the sharp dips
in the NV spectrum with respect to a magnetic field when applied. In the end, the measured
spectrum reported in the literature, as presented in 4-1, is the sum of the spectrum found for
each particular case with an appropriate weight to account for the contribution of each system
configuration into the real fluorescence spectrum.

The role of τ and n12

In our model, there are parameters related to the transition rate from the ground state to the
excited state that influence the average of the population. The effect is shown in figure 4-7 for
the case of an interacting NV-P1, either for GSLAC or the dip around 500 G, shows that when
time is increased above 1 µs the fluorescence doesn’t change anymore, that suggests that the
transition time is of the scale of a few microseconds, as it is well known in the literature that
is the case for NV centers in diamond. In the GSLAC case call our attention that in the base
of the dip additional features that for times of 0.1 µs are not observed, so it is not a matter of
amplification of the depth of the deep but that also helps to resolve additional features in the
spectrum.

Figure 4-7: PL spectrum for different transition rate time for NV-P1. A. PL zoomed in 500 G. B.
PL zoomed in GSLAC. The fluorescence have not been normalized to 1 in this figures.

In Figure 4-8A, can be observed the photoluminescence spectrum as a function of the magnetic
field for an NV interacting with a P1, for different polar angles of the relative position of the
defect centers around the dip in 500 G. As can be observed the polar angle plays a role in the
amplitude of the dips of the photoluminescence, which is easy to see that applies for all the
deeps that are part of the spectrum in 4-8C. Lastly, in figure 4-8B is shown that changes on the
azimuthal angle don’t affect the spectrum of the fluorescence. From now on, the calculations
will be done assuming the polar angle is 90º, the azimuthal angle is 0º and the optical transition
time or decay rate is about 1 µs.
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Figure 4-8: A. and B. PL spectrum for different azimuthal and polar angles for NV-P1. A. PL
zoomed in 500 G for different polar angles. B. PL zoomed in 500 G for different
azimuthal angles. C. PL spectrum up to 0.15 T for different polar angles.

4.4.2 Experimental results

One-dimensional NV centers ensemble PL at low field

The figure 4-9A shows the fluorescence of NV centers when the magnetic field is applied by
the Helmholtz coil Z and X axis as discussed before, clearly, the magnetic field direction over
the sample plays a valuable role in the slop of the initial increase of the fluorescence, where for
the case when the field is in Z presented a more high slop. This finding is valuable in order to
determine what is the specific setting of the magnetometer that gives us the highest sensitivity
if it is understood as the slop of the PL spectrum. However, further research should be done to
establish a reliable way to define sensitivity for this type of magnetometer.

For the simulation shown in figure 4-9B, we are going to now consider the first NV could be in
any of the other three possible orientations of the diamond crystal structure and the system is
just interacting with another NV center, with this in mind wewill have 16 possible configurations
of our interacting NV-NV system in the average calculation of the PL. In the plot, the results are
consequent with the observation in the sense that the initial fluorescence increase for the case
of the magnetic field in x has a fluorescence that is above of the case when the magnetic field is
applied in z. In our model, as mentioned before, additional improvements should be considered
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Figure 4-9: Experimental (A) and theoretical (B) simulations of fluorescence at low field for dif-
ferent axis orientation.

in order to better match the experimental results, but even in this case, the model still gives us
insight into the order of magnitude of difference between the fluorescence from each case (∼
0.001) which correspond to the experimental observations.

Linear polarization effects in the fluorescence increase

In previous literature [135], it has been reported that linear polarization plays a role in the initial
PL increase when the magnetic field is applied on-axis. Due to that our interest rest in looking
for parameters that play a role in the improvement of the slope of the initial increase, we explore
the effect of the light polarization by using a linear and circular polarizer before the green light
hit the diamond but that is not in the path of the collected red light, each at a time.

Figure 4-10: Fluorscence affected by linear or circular polarization for field oriented in z (A) and
on-axis (B)

The reported results of our studies are shown in figure 4-10, in A the magnetic field is applied
in Z, and in B the magnetic field is applied parallel to the NV principal axis, i.e. on-axis, as it is
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observed the initial fluorescence is affected by the linear polarization when the magnetic field is
applied On-axis, in addition, when the field is applied in z, the slope is still better than when the
field is applied on-axis. Secondly, the effect on the polarization changes the initial PL in almost
0.005 units, we point out that the error bars of the fluorescence of our data point is 0.0005 units,
this suggests that our linear polarization changes directly the initial PL, and the initial change is
not an artifact. Finally, the circular polarizer doesn’t change the initial fluorescence increase, for
either case.

These results are related to the fact that when light linear polarization is changed, some NV
classes are stimulated to emitmore fluorescence than others, several additional techniques using
microwaves have allowed us to observe this phenomenon before, however, this corresponds to
one of the first times this results is reported to the community, for the best of our knowledge.

Figure 4-11: Theoretical (B and D) and experimental (A and C) results of two dimensional
fluorscece from a magnetic field coming from two different directions. A. and B.
correspond to on-axis and off-axis magnetic fields.. C. and D. correspond to z and
x axis magnetic fields
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Two-dimensional fluorescence maps

The two dimensional map are valuable tool in our study because this reveal information about
region where the changes in the fluorescence are abrupts, this region offers a playground for
all-optical measurement with high sensitivity. Plots A and B in figure 4-11, correspond to the
experimental results and theoretical simulations for the case when the magnetic field is applied
in an on-axis and off-axis setting, the magnetic field range and the colormap have the same scales
for simulations and measurement; Plots C and D are the same type of plot, but when the mag-
netic field is applied in z and x. The nature of the sharp changes in the fluorescence map, that
looks like thick lines in the colormap, are due to the presence of NV-NV interaction. Comparing
plots A and C, the lines that appears depends on the orientation of the applied magnetic field,
because the number of lines that appears and the intensity of the map change due to orienta-
tion change of the field, additional discussion about it will be done in later section. Finally the
experimental results and the simulation results shows agreement in the features that the fluo-
rescence two dimensional map exhibit when the magnetic field is changed simulatoneasly in two
perpendicular directions, this can be noticed either by comparing the contrast of the intensity of
fluorescence for theoretical predictions and experimental results, or by looking at the locations
of the the features lines that appears in simulated and experimental plot.

Figure 4-12: Fluorscence spectrum due on-axis and off-axis magnetic field for two different in-
teraction strength, 1 MHz (A) and 0.04 MHz (B)

In figure 4-12A and 4-12B, the interaction strength in the former is about 1 MHz and in the
later around 40 kHz. Using this simulation can explore how when the interaction strength get
weaker the features lines, where sharp changes in fluorescence happens, start to vanish and re-
duce their sharpness changes in intensity. This result is a clear evidence about the role that play
the density of NV centers in diamond in the existence of this features. In our simulations in
figure 4-11 we are using a few hundred of MHz strength. As discussed previously the existance
of this initial increase of fluorescence is related to NV-NV cross-relaxation, this means that ini-
tially when there is not field, NVs from different crystallographic planes have same energy levels
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this allows the transfer of population from one NV from a particular orientation to another in
other crystal orientation because of the coupling due to their interaction , in the case when the
interaction is negligible this transfer is not possible hence all the population is emitted as light,
but in former case all the population is not available for light emission then a lower value of
fluorescence is observed at low magnetic fields[142]. In the following, we will establish how the
different NV classes in each crystallographic plane, play a role in the appearances of the lines in
the PL two-dimensional map.

Two-dimensional fluorescence maps for different crystal planes orientation

In these experimental results, we consider that 45◦ corresponds to the casewhen resonance from
each NV overlapped all together due to the in-plane field by either x or y axis from the Helmholtz
coil. Then the procedure is that with the rotational mount, we rotate the diamond around the z
axis of the Helmholtz coil about 15◦. To check the alignment we did ODMR measurements for
different magnetic field when Bx is applied and identified if there was just two resonance peak.

Figure 4-13: Theoretical (D,F, and H) and experimental (C,E, and G) results for different diamond
orientations when the magnetic field is applied in by Bx and By. A. and B. are
different orientation of an ensemble of NV center from a top view. The colorbar
for all the two dimensional map is the same.

In figure 4-13 and 4-14, sketches A and B, are how the crystal planes look with respect to the
applied magnetic field for different angles in a top view of a unit cell. Experimental results are
shown in figure 4-13C, E, and D for different angles, as well as simulations are shown in figures
4-13D, F, and H, all the figures share the same color bar. In measurements from figure 4-13 the
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angles don’t correspond exactly to the mentioned value, it can be observed when simulations
and measurements are compared, however, the angle is close to the claimed one.

The first insight from the experimental results from figures 4-13 is that each line comes from
NV-NV cross relaxation when the magnetic field is equally projected into the crystallographic
planes of the interacting NVs. To draw this point, let us consider figure 4-13D or C, when theBy

is off, and Bx is applied, the fluorescence have a value defined by the dark blue color intensity
in the map, that represents the lowest fluorescence from the system. This also happens because
when only By is applied. In the previous described setting, the projection of the field is equal
over the NVs that are in the plane parallel toBx orBy. To notice also the previous point consider
the case when in figure 4-13D or C the field applied all the time is Bx = By, in such a case also
a line related to cross relaxation feature is presented due to the equal project of the field into
all the NVs crystal planes, but in this time there is more emission of fluorescence than in the
case when the field is just applied in Bx or By. To finish, notice that when the field do not hold
any of previous condition the fluorescence don’t exhibit any particular feature, suggesting then
the need of an equal projection over at least two NVs in the same crystal plane to exhibit some
cross relaxation lines feature in the 2D PL map.

The second point is that it is easy to notice that the physical rotation of the NV ensemble is
reflected in an equal rotation of the feature lines in the fluorescence map. To showcase this,
let’s compare plots 4-13D and H, the horizontal or vertical dark blue line at the edge of figure D
corresponds to the line with 45 ◦ angle respect the Bx axis in figure H, this is because now, in
the configuration of 90 ◦ it is needed to apply the same amount of Bx and By at the same time
to talk to the four NV classes, which in the setting of 45 ◦ degrees corresponds to the applica-
tion of only Bx or By when the other was off. Similarly observing plot 4-13F and E, a rotation
of 15 ◦ can be estimated for the light blue line feature that in the case of figure D was diag-
onal to the plot. It is worth mentioning that some feature lines in the experimental result are
a bit vanished due to noise frommeasurement, however, the general pattern can be appreciated.

According to these results, the appearance of these feature lines is due to cross-relaxation be-
tween different NV classes, which is in agreement with the current understanding on the phe-
nomena in 1D PL plots in the literature[142]. In our work we are able to visualize and predict
this behavior by using our field all optical magnetometer and our theoretical model, as well as
observe that the cross relaxation features in the 2D PL maps are represented as sharp intensity
contrast lines which are influenced by the equal projection of the field into the different NV
classes, however further first principle explanation about the mechanism that explains this fea-
tures is required. From now on, the mentioned features will mentioned as cross-relaxation lines.

In figure 4-14C and D, we have an equivalent case to the one discussed in previous results,
where when each field is applied individually when the other is off, then all the NV classes are
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Figure 4-14: Theoretical (D,F, and H) and experimental (C,E, and G) results for different diamond
orientations when the magnetic field is applied in by Bz and By. A. and B. are
different orientation of an ensemble of NV center from a top view. The colorbar
for all the two dimensional map is the same.

influenced equally by the field, enhancing the cross-relaxation. Figure 4-14E and F look more
complicated because whenBy andBz are applied in such a way that their resulting vector points
out in a specific orientation, it influences the cross-relaxation lines of cases when the projection
is over 2,3 or 4 NV classes, each cross-relaxation line corresponds to the specific angles for that
to happend. However, further research should be done to improve the experimental result to
properly visualize all the cross-relaxation lines. Lastly, Figure 4-14G and H, shows when there is
one NV class that is parallel to the magnetic field and there are three that are equally projected
to that field, the cross relaxation lines observed correspond to this particular situation.

Finally, it is worth mentioning that further research should be done in order to improve the
resolution of the experimental results presented due to noise effects. A way to overcome this
is the use of a lock-in amplifier that allows us to modulate the magnetic field in a way that
the noise can be cancelled, This procedure offers the derivative of the PL measurements. In
addition, further investigation should be done to explain themechanism about how themagnetic
field projection influences in the contrast observed in the cross-relaxation lines. The all-optical
magnetometer methods presented in this work, show the best sensitivity when the sensing field
is applied in a perpendicular direction to the cross-relaxation lines, due that in those locations
the change in fluorescence is sharp which means that are regions for high sensitivity, however,
further improvement of the experimental setup should be introduced to make an appropriate
estimation of the sensitivity of our experimental setup. Our work paved the way to a better
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understanding of the cross-relaxation effect of a high-density ensemble in the sensitivity of an
all-optical magnetometer based on NV centers in diamond which could have applications for
biotechnology, condensedmatter physics, and study of geological samples at low field [143, 138].

4.5 Summary

• In this chapter we engineer and build a functional all-optical microwave magnetometer
based on NV centers in diamond, upon this we developed a numerical simulation that
correctly predicts and explains several features observed experimentally.

• On the experimental side, when a one-dimensional PL spectrum is measured, we found
that when the magnetic field is changed perpendicularly to the face of the diamond the
initial increase shows a better slope than when the field is applied on x or on-axis.

• Our numerical simulations calculate the one-dimensional PL spectrum when an on-axis
magnetic field is applied in two possible NV orientations. Our results agree on the location
of the features observed in the literature which are due to NV-NV interaction around 600
G, NV-P1 interaction around 500 G, and GSLAC around 1000 G. In addition, our method
shows that fine-tuning of parameters such as the transition rate time, the n12 and the
interaction strength open the door to better modeling.

• Our exploration of the effects of linear and circular light polarization gives us insights into
the role that play in the PL spectrum at low-field. Circular polarization does not affect the
PL spectrum at low field, but interestingly, the linear polarization only affects when the
magnetic field is applied over an on-axis NV center, the effect to the linear polarization are
not observed when the field is in z direction.

• The CR effect related to the crystal planes directly affected by the magnetic field is exhib-
ited by CR lines in the two-dimensional plot, which are connected to the crystallographic
structure of the NV classes due to the direct correlation in between the physical rotation
of the diamond and the rotation of CR lines in the two-dimensional plot for fluorescence.
Our simulation accounts for our experimental findings and our insights offer further ex-
ploration of the nature of the CR process that happens at low field.

• Our methods clearly suggest that the most sensible region for sending purposes corre-
sponds to those near CR lines, in particular in the perpendicular direction to them where
the highest sensitivity is observed.
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Initially we claim as the main purpose of this work: the development and/or application of novel
theoretical and experimental methods to explore relevant and exotic condensed matter systems.
To show that our goal have been accomplished, we will walk through a general overview of the
key achievements from each chapter. In the second chapter of this thesis, we have developed
a new generalized Green function method for Dirac materials based on the microscopic proper-
ties of our systems that allows us to determine closed-form and analytical results for measurable
quantum transport properties in graphene-like materials that have infinite, semi-infinite and fi-
nite sizes and have different type of boundary conditions, in particular this method allows us
to study semiconducting, insulating, metallic and topological phases in materials such as ger-
manene and TMDs. After, in our third chapter we fully introduce and describe a novel quantum
sensing technique that is starting to be a well-established method in the community, quantum
magnetic imaging using NV centers in diamond to study Van der Waals magnets, by using this
method we were able to reveal room temperature ferromagnetism in FGT and CFGT in samples
with thickness as little as 7 unit cells and with this magnetic imaging technique we were able to
screen several flakes simultaneously. In our last chapter, we have engineered and developed a
new all-optical and microwave-free magnetometer based on NV center in diamond for low mag-
netic field regime, as well as develop a numerical simulation that predicts the behavior of the
fluorescence due to the magnetic field which allows us to understand the cross-relaxation effects
which when tuned appropriately are key to the enhancement of the sensitivity of the sensor,
our results show that implementation of the magnetometer close to cross-relaxation lines in the
two-dimensional maps improves sensitivity; our finding paves the way to the implementation
of such magnetometer for application in the study of relevant condensed matter systems such
as Van der Waals materials or high-temperatures superconductor at low temperatures. So far,
we believe that the independent parts of our work expose the same philosophy and are highly
correlated, all of them propose a new technique or use a recently developed novel technique
to explore equivalent measurable physical quantities with the end goal of exploring condensed
matter systems, in our manuscript particularly we study the family of the two-dimensional ma-
terial, however, all the techniques are applicable beyond that.

Some possible future directions of research based on the integration of the developed tech-
niques and studied materials are the following. The use of the generalized Green function
method allows the engineering of junctions based on two-dimensional graphene-like materi-
als or Dirac materials, for instance studying the junction of different TMDs will allow us to
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get insights into the electronic and optoelectronic properties of atomically p-n heterojunctions
based on this type of semiconductors by applying our developed method [144]. In addition,
our method can be extended to the engineering of heterostructure based on superconductors
and graphene-like materials with the purpose of studying the scattering process at the interfaces
[55]. Finally, recently realized Dirac magnon quasiparticles correspond to quantum excitations
in a honeycomb structure that has been reported in CrI3 with a Hamiltonian that after some
manipulation can be transformed into a dirac hamltonian, which could be properly studied by
the natural extension of the generalized Green function method to include peculiarities of this
system, whichwill allow the inclusion of new type of Dirac excitation into themethod [145, 146].

In general, the green function technique allows the engineering and simulation of several inter-
esting devices with topological phases [147], in addition to this, the properties of such devices
could be explored by using a probe nitrogen-vacancy center in diamond either as a magnetome-
ter or for sensing an electric field [116, 97], either way, will allow the study of quantum transport
properties, to understand this point we have to aware of the fact that magnetic field generated
by two-dimensional material can be imaged by this quantum sensor but in addition to this, the
map of the electric or spin current in the surface of this material can be done by using the mag-
netic field map, revealing in this way transport properties of the materials as recently was done
for the Dirac viscous flow in graphene [32], techniques like this using NV-QMI can be extended
to all the family of graphene-like materials, the key to do this, is that the inverse problem of
finding the distribution current given a magnetic field is mathematically solvable in two dimen-
sions. In addition to this, findings from our thesis such as the topological insulating properties
from materials such as silicene and germanene could be probed by using NV-QMI, the reason
relies in the fact that at the edge of these graphene-like materials, there are topologically pro-
tected current states with different helicity [44, 58], this makes the current at the edge move in
opposite direction respect each other, these currents should have associated to a magnetic field
which can be measured by NV-QMI, currently two-dimensional current flow in the edge of 2D
material due to topological phase have not been experimentally observed yet.

Another possible direction of the use NV-QMI technique corresponds to the use of the technique
as a way to study temperature-dependent VdWmaterials with magnetic properties or with inter-
esting electric properties for valleytronics or spintronics [148, 69, 149, 150], due to multi-modal
characterization capabilities of NV-QMI because the fine term is a temperature-dependent and
can be calculated by knowing the sum of the resonance frequencies over the system and the
magnetic field by the difference of the resonance frequencies [97], this then opens the doors
to simultaneous screening and characterization of multiple physical parameters of this type of
system, then magnetic hysteresis curve and additional ways to prove magnetism or other elec-
tronic properties can be tested by using this method without being electrically invasive into the
sample of interest.
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Finally, due that very recent evidence of sensitivity as low as 6 nT/
√
Hz for all-optical magne-

tometry with NV centers in diamond at low field [143, 138], it is possible to use this method as a
reliable sensing technique for imaging modality as QMI but microwave-free. Remember that the
fields of the flakes were of the order a few tens of µT, which suggests that possible sensitivity
for the modality is good enough to study this system at room temperature, however, due to the
flexibility that this type of method have to explore cryogenic temperature, further studies of
VdW material as CFGT and FGT, and beyond those, can be done at such regime with a compet-
itive sensitivity. It is worth mentioning that QMI modality without a microwave has not been
reported, so this is a promising path in the further development of the technique. In addition
to this, the use of the technique using optical Fourier processing method citeBacklund2017Nov
allows to the stimulation with green light directly of a specific NV class in the crystal structure
could allow us to enhance our current insight into the role of different NV classes explored
through our measurements and theoretical methods .

The novel developedmethods as well as the exotic physical system studied offer a rich landscape
of possibility for the application of the techniques as well as the further use of the materials for
technological and fundamental physics purposes.
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6.1 Generalized Green function method for Dirac Materials

6.1.1 Semi-infinite system

Equation 2-22 is one key step in our calculations that is fundamental to the development of the
method. The way we find this results is shows as follows,

W̌> (x) = Uaǧ
> (x, xa) τ̌a

∞∑
p=0

(Uaǧ
> (xa, xa) τ̌a)

p
. (6-1)

Using the completeness relation, 2-16, we find
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where we have defined the projector operators

P̌ εε′
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and the matrix representation of τ̌a as
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As a result, 2-22 becomes
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∑
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Analogously,

W̌< (x) =
∑
n,m,ε

f−
n (x− xa) (r̂

−ε
a )nmP̌

−ε
nm, (6-6)
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a τ̂
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a .
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6.1.2 Iterative method

In this section, we obtain W̌> (x) given in 6-1 following an iterative method. First, we start
using 2-22 with x < x′ in the definition of the GF,

Ǧ<
a (x, x′) = ǧ< (x, x′) + ǧ> (x, x0)Uaτ̌aǦ

<
RR (x0, x

′) . (6-7)

Here, Ǧ<
RR (x0, x

′) is given by Dyson’s equation, 2-21, as

Ǧ<
RR (x0, x

′) =
[
1 + W̌> (x0)

]
ǧ< (x0, x

′) . (6-8)

Substituting into 6-7 we get

Ǧ<
RR (x, x′) =ǧ< (x, x′) + ǧ> (x, x0) (6-9)

× Uaτ̌a
(
1 + W̌> (x0)

)
ǧ< (x0, x

′) .

Comparing 6-9 with 2-21, namely,

ǦRR,<
a (x, x′) = ǧ< (x, x′) + W̌> (x) ǧ< (x0, x

′) ,

we obtain the following equation for W̌> (x),

W̌> (x) = ǧ> (x, x0)Uaτ̌a + ǧ> (x, x0)Uaτ̌aW̌
> (x0) (6-10)

We then solve 6-10 recursively to find

W̌> (x) = Uaǧ
> (x, x0) τ̌a

∑
p=0

Up
a (ǧ

> (0) τ̌a)
p
. (6-11)

6.1.3 Scattering matrix

We now derive the expression and general properties of the scattering matrix in 2-28. To define
the scattering problem, we consider a potential barrier at x = xa. Incoming states from the left
(right) of the barrier are ψ+

m (x) with amplitudes a+m (ψ−
m (x) with a−m), which are solutions of

2-12. In the absence of a potential barrier, a general unperturbed scattering state reads

ψ0 (x) =
∑
m,ε

aεmψ
ε
m (x) . (6-12)

In the presence of the barrier potential, the perturbed state to the left or right of the barrier is
obtained using Dyson’s equation as

ψL(R) (x) = ψ0 (x) + W̌<(>) (x)ψ0 (xa) , (6-13)

with ψε
m (x) = ψε

mf
ε
m (x) and f ε

m(x) = eiεkmx.
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Owing to the translational invariance along the x-direction, we proceed taking xa = 0 without
loss of generality. For simplicity, we also define ψR (0) = ψR and ψ0 (0) = ψ0 and obtain
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where we have used that P̂+ε
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m′ . Summing over ε we get
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with b+n being the outgoing scattering amplitudes,
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Here, we have defined the transmission amplitudes as the elements of the following matrix

t̂++
a = 1̂ + r̂++

a , (6-17)

which allows us to rewrite eq:appb1 as

b+ = r̂+−
a a− + t̂++

a a+, (6-18)

with

b+T = (b1, b2, ..., bN)
T , (6-19)

a+T = (a1, a2, ..., aN)
T . (6-20)

The perturbed scattering state to the left of the barrier is obtained analogously as
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Combining the previous results, we define the scattering matrix Ŝ as

b = Ša, (6-24)



96 6 Appendix

with

b =

(
b+

b−

)
, a =

(
a+
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)
. (6-25)

Note that in the usual definition of the scattering matrix the reflection amplitudes are in the
diagonal, which results from taking bT = (b−T , b+T ). In what follows, however, we use
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We can now set the potential barrier at an arbitrary position xa ̸= 0 changing the scattering
matrix as

Š (xa) = f̌ (−xa) Šf̌ (xa) , (6-27)
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Here, Ŝ (xa) and Ŝ are related by an unitary transformation since f̂ (−x0) f̂ (x0) = 1̂.
As it is usually interpreted, b represents the outgoing flux and a the incoming one. Consequently,
the probability flux to the right and left of the barrier reads
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Conservation of the probability flux requires that JL = JR; therefore,∑
n
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which we can recast in vector form as |b|2 = |a|2. As a result, we find that

a†Š†Ša=|a|2, (6-34)

and thus,
a†
(
Š†Š − 1

)
a = 0. (6-35)

eq:appb2 proves that the scattering matrix is unitary, that is,

Š†Š = ŠŠ† = 1̌, (6-36)

which we can recast using the reflection matrix ř as
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(
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)
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(
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)
(1 + řa) = 1̌. (6-37)

6.1.4 Nanoribbon Green’s function and bound states

The solution to 2-31 reads as
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Using the explicit expression for the semi-infinite GF, 2-24, we write the GF with x > x′ for the
central region as
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with L = xb − xa > 0 the length of the finite region. Here, ŵεε′

b are the submatrix elements of
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with
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a (W ) is defined from the reflection matrix at the left interface, r̂+−
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where we have used the projector operators, 6-3. This result is equivalent to the reflection ma-
trix for a single barrier at x = xb, r̂++, changing w̌b by τ̂++.

In this section we provide more details on the derivation of the nanoribbon GF, 2-32, and the
associated bound states. For the case of two potential barriers placed at x = xa and x = xb > xa,
the perturbed GF for the region between the barriers is

Ǧab (x, x
′) = Ǧa (x, x

′) + W̌< (x) Ǧ>
ab (xb, x

′) , (6-46)

for x > x′, where
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with w̌> given by 6-45.

The equation 6-46 can be solved after obtaining Ǧ>
ab. However, to do so, one can not take the

limit Ub → ∞ and invert w̌, because the matrix τ̌ has no inverse (det[τ̌ ] = 0). To circumvent
this problem, we define the matrix

Ň = 1̂− AUbτ̌ , (6-48)

with A = −i/(2h̄vF ), and
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We can now compute the inverse of N̂ and then take the limit Ub → ∞. To do so, we use Schur
complement, which, for example, is defined for submatrix N̂4 as

Ĉ = N̂1 − N̂2N̂4
−1N̂3.

Therefore, defining
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we get
Ĉ = 1̂− r̂+−

a (L) r̂−+
b , (6-50)
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which simplifies to
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b

(
τ̂−+
b

)−1

r̂−+
b Ĉ−1 U−1

b r̂−+
b Ĉ−1

(
1̂− Ubr̂

+−
a (L) τ̂−+

b

) (
τ̂−+
b

)−1

)
. (6-52)

We can now take the limit Ub → ∞, resulting in

w̌< =

(
Ĉ−1r̂+−

a (L) r̂−+
b −Ĉ−1r̂+−

a (L)

r̂−+
b Ĉ−1 −r̂−+

b Ĉ−1
(
r̂−+
b

)−1

)
. (6-53)

Analogously, we get

w̌> =

(
D̂++ D̂++r̂+−

a (xa)

r̂−+
b (xb) D̂

++ r̂−+
b (xb) D̂

++r̂+−
a (xa)

)
, (6-54)

with

D̂++ =
[
1̂− r̂+−

a (xa) r̂
−+
b (xb)

]−1
, (6-55)

D̂−− =
[
1̂− r̂−+

b (xb) r̂
+−
a (xa)

]−1
. (6-56)

The nanoribbon’s bound states are obtained from the denominator of the GF, that is, setting the
inverse of D̂++ or, equivalently, D̂−−, to zero. From 6-55, this condition reduces to

r̂+−
a (xa) r̂

−+
b (xb) = 1̂. (6-57)

We can interpret this condition as follows: inside the nanoribbon, the scattering state is a su-
perposition of left and right movers, namely,

ψ =
∑
n

(
c+nψ

+
n + c−nψ

−
n

)
. (6-58)
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At each potential barrier, x = xa,b, the amplitudes for left and right movers, c−n and c+n , respec-
tively, are related by

c−n =
∑
m

r̂−+
nm (xb) c

+
m, (6-59)

c+n =
∑
m

r̂+−
nm (xa) c

−
m. (6-60)

In matrix form we have

c− = r̂−+ (xb) c+, (6-61)

c+ = r̂+− (xa) c−, (6-62)

which form the closed cycle
c+ = r̂+− (xa) r̂

−+ (xb) c+. (6-63)

It is thus straightforward to get

c+
(
1̂− r̂+− (xa) r̂

−+ (xb)
)
= 0, (6-64)

which corresponds to the zeroes of the GF, as shown in 6-57. This result shows that the nanorib-
bon’s bound states are determined by the reflection matrices at each edge of the finite region,
and can thus be obtained by the zeroes of the inverse of 6-55.

6.1.5 Applications

General definition for zig-zag case: The normalized eigenstates:

ψ+
1 =

1√
2 cosα

(
N−1e−iα

2

Nei
α
2

)
(6-65)

ψ−
1 =

1√
2 cosα

(
N−1ei

α
2

−Ne−iα
2

)
(6-66)

ψ̃+
1 =

1√
2 cosα

(
Nei

α
2

N−1e−iα
2

)
(6-67)

ψ̃−
1 =

1√
2 cosα

(
Nei

−α
2

−N−1ei
α
2

)
(6-68)

Then we can define the transposed states which are

ψ̄+
1 =

1√
2 cosα

(
N−1ei

α
2

Ne−iα
2

)
(6-69)

ψ̄−
1 =

1√
2 cosα

(
N−1e−iα

2

−Neiα2

)
(6-70)
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Finally with this we can calculate the bulk gf:

g< (x, x′) =
eik(x

′−x)

2 cosα

(
N−2 −eiα
−e−iα N2

)
(6-71)

g> (x, x′) =
eik(x−x′)

2 cosα

(
N−2 e−iα

eiα N2

)
(6-72)

Semi-infinite layer with zig-zag edge: The projections of τ̂ into the system eigenstates for border A
is done as follows:

Ŝ++
11 = Ŝ−−

11 =
1

2N2 cosα
(6-73a)

Ŝ+−
11 =

eiα

2N2 cosα
(6-73b)

Ŝ−+
11 =

e−iα

2N2 cosα
(6-73c)

similarly is done for border B.

Regarding the outcome of the previous procedure it is easy to calculate the respective coeffi-
cients for the gf, which has the following form:

ĜRR (x, x′) = ĝ (x, x′)− (6-74)

eiαeik(x+x′−2x0)M̂+−
11

Where,

M̂ ϵϵ′

nm = ψϵ
n(ψ̄

ϵ′

n )
T (6-75)

Ĝ>
RR (x, x′) =

Aeik(x−x′)

2 cosα

(
N−2 e−iα

eiα N2

)
− (6-76)

Aeiαeik(x+x′−2xa)

2 cosα

(
N−2e−iα −1

1 −N2eiα

)
Then in the edge we can find

Ĝ>
RR (xa, xa) = − i

h̄vF

(
0 1

0 N2eiα

)
(6-77)

Where easily can be observed the result of LDOS for the semi-infinite layer with zig-zag edges.
Nanoribbon layer with zig-zag edge:
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A contracted form for the Green function in this case is,

Ĝ>
ab (x, x

′) = AD++
(
eikxψ+ + r−+e−ik(x−2xb)ψ−)× (6-78)(

e−ikx′
ψ+† + r+−eik(x

′−2xa)ψ−†
)

Where D++

D++ =
[
1− r+−r−+e2ik(xb−xa)

]−1

Finally we are able to operate to find the gf matrix:

Ĝ>
ab (xa, xa) = −i

 0 1+e2iαei2kW

h̄vF [1+e+2iαe2ikW ]

0
N2eiα(1−ei2kW )

h̄vF [1+e+2iαe2ikW ]


General Definitions for Armchair case: Particularly for this case we find that the normalized eigen-
functions projected into each valley space are:

φ+
1 =

1√
2 cosα

(
N−1e−iα

2

Nei
α
2

)
, (6-79)

φ−
1 =

1√
2 cosα

(
N−1ei

α
2

−Ne−iα
2

)
(6-80)

φ+
1′ =

1√
2 cosα′

(
N ′−1ei

α′
2

−N ′e−iα
′
2

)
, (6-81)

φ−
1′ =

1√
2 cosα′

(
N ′−1e−iα

′
2

N ′ei
α′
2

)
(6-82)

φ̃−
1′ =

1√
2 cosα′

(
N ′ei

α′
2

N ′−1e−iα
′
2

)
(6-83)

and φ̃ϵ
n = σ̂xφ

ϵ
n

Semi-infinite for armchair Previously was shown the matrix coefficients for the semi-infinite arm-
chair layer, could be written compactly in the edge as:

Ĝ<
RR (x0, x0) =

(
ψ−
1 + r+−

11 ψ
+
1 + r+−

1′1 ψ
+
1′

)
ψ−†
1 (6-84)

+
(
ψ−
1′ + r+−

1′1′ψ
+
1′ + r+−

11′ ψ
+
1

)
ψ−†
1′
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Coefficients such as r+−
1′1′ could be defined in terms of auxiliary quantities, for instance in this

specific case we have r+−
1′1′ =

h++
1′1

h−+
1′1

. Motivated by this several definitions for hϵϵ
′

nm are shown:

h++
11′ = φ̃+†

1 φ+
1′ (6-85)

=
ei

(α′−α)
2

2
√
cosα cosα′

(
N

N ′ −
N ′

N
e−i(α′−α)

)

h−+
1′1 = h−+

11′ = (6-86)

ei
(α′+α)

2

2
√
cosα′ cosα

(
N

N ′ +
N ′

N
e−i(α′+α)

)

h++
1′1 =

ei
(α′−α)

2

2
√
cosα cosα′

(
N ′

N
− N

N ′ e
−i(α′−α)

)
(6-87)

with this in mind we are able to find the reflection coefficients:

r+−
11 = eiα

N2e−iα −N ′2e−iα′

N2eiα +N ′2e−iα′ (6-88)

r+−
1′1 = −2

NN ′
√
cosα cosα′

N2eiα +N ′2e−iα′ e
iα−α′

2 (6-89)

r+−
11′ = −2

NN ′
√
cosα′ cosα

N ′2e−iα′ +N2eiα
ei

α−α′
2 (6-90)

r+−
1′1′ = eiα

′N ′2 −N2e−i(α′−α)

N ′2 +N2ei(α′+α)
(6-91)

Nanoribbon Armchair Layer As an illustration in this case we show the diagonal elements of the gf
matrix

G>
KK′(x, x′) = f̂+−

11′ (x, x′) r̂>,+−
11′ M̂+−

11′ + (6-92)

f̂−+
11′ (x, x′) r̂>,−+

11′ M̂−+
11′ + f̂++

11′ (x, x′) r̂>,++
11′ M̂++

11′

+f̂−−
11′ (x, x′) r̂>,−−

11′ M̂−−
11′
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G>
K′K′(x, x′) = f̂++

1′1′ (x, x
′) r̂>,++

1′1′ M̂++
1′1′+ (6-93)

f̂−−
1′1′ (x, x

′) r̂>,−−
1′1′ M̂−−

1′1′ + f̂+−
1′1′ (x, x

′) r̂>,+−
1′1′ M̂+−

1′1′+

f̂−+
1′1′ (x, x

′) r̂>,−+
1′1′ M̂−+

1′1′

Here f εε′
nm(x, x

′) = f ε
n(x)f

ϵ′
m(x

′), where f ε
n(x) = ei(K+εkn)x. Also, each coefficient is described by

the reflection coefficient matrices which define r>αβ . Each entry of this matrix depends on the
following matrixes:

r̂+−
a (xa) =

(
h11′
h1̄1′

e−2ikxa − 1
h1̄′1

e−i(2K+k+k′)xa

− 1
h1̄1′

ei(2K−k−k′)xa h1′1
h1̄′1

e−2ik′xa

)

r̂−+
b (xb) =

 h−−
11′

h+−
11′
e2ikxb − 1

h+−
1′1
ei(−2K+k+k′)xb

− 1
h+−
11′
ei(2K+k′+k)xb

h−−
1′1

h+−
1′1
e2ik

′xb



6.2 All-Optical and micro-wave free Low Field Magnetometer
based on NV center in diamond

6.2.1 Rotation Matrix

R (ϕ, θ, λ) = cos (ϕ) cos (θ) cos (λ)− sin (ϕ) sin (λ) cos (ϕ) cos (θ) cos (λ) + sin (ϕ) sin (λ) − cos (ϕ) sin (θ)
− sin (ϕ) cos (θ) cos (λ)− cos (ϕ) sin (λ) − sin (ϕ) cos (θ) cos (λ) + cos (ϕ) cos (λ) sin (ϕ) sin (θ)

sin (θ) cos (λ) sin (θ) sin (λ) cos (θ)


(6-94)
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