Nick Langellier

Postdoctoral Fellow

Ph.D. Physics, Harvard University, 2020
B.S. Engineering Physics, University of Illinois at Urbana-Champaign, 2011

Nick’s research focuses on precision radial velocity detection of habitable exoplanets around sun-like stars and machine learning applied to precision measurements.

Fun Fact: Nick loves rock climbing. His favorite climb was a 550 foot (180 meter) rock face in the Yunnan province of China called “Fly Me to the Moon”!

generated by bibbase.org
  2025 (1)
Machine learning for improved current-density reconstruction from two-dimensional vector magnetic images. Niko R. Reed; Danyal Bhutto; Matthew J. Turner; Declan M. Daly; Sean M. Oliver; Jiashen Tang; Kevin S. Olsson; Nicholas Langellier; Mark J.H. Ku; Matthew S. Rosen; and Ronald L. Walsworth. Phys. Rev. Appl., 23: 034035. Mar 2025.
Machine learning for improved current-density reconstruction from two-dimensional vector magnetic images [link] link   Machine learning for improved current-density reconstruction from two-dimensional vector magnetic images [pdf] pdf   doi   link   bibtex   24 downloads  
  2024 (1)
Machine Learning for Improved Current Density Reconstruction from 2D Vector Magnetic Images. Niko R. Reed; Danyal Bhutto; Matthew J. Turner; Declan M. Daly; Sean M. Oliver; Jiashen Tang; Kevin S. Olsson; Nicholas Langellier; Mark J. H. Ku; Matthew S. Rosen; and Ronald L. Walsworth. arXiv:2407.14553v1. 2024.
Machine Learning for Improved Current Density Reconstruction from 2D Vector Magnetic Images [link] link   Machine Learning for Improved Current Density Reconstruction from 2D Vector Magnetic Images [pdf] pdf   link   bibtex   32 downloads  
  2021 (3)
Estimating Magnetic Filling Factors from Simultaneous Spectroscopy and Photometry: Disentangling Spots, Plage, and Network. T. W. Milbourne; D. F. Phillips; N. Langellier; A. Mortier; R. D. Haywood; S. H. Saar; H. M. Cegla; A. Collier Cameron; X. Dumusque; D. W. Latham; L. Malavolta; J. Maldonado; S. Thompson; A. Vanderburg; C. A. Watson; L. A. Buchhave; M. Cecconi; R. Cosentino; A. Ghedina; M. Gonzalez; M. Lodi; M. López-Morales; A. Sozzetti; and R. L. Walsworth. The Astrophysical Journal, 920(1): 21. October 2021.
Estimating Magnetic Filling Factors from Simultaneous Spectroscopy and Photometry: Disentangling Spots, Plage, and Network [link] link   Estimating Magnetic Filling Factors from Simultaneous Spectroscopy and Photometry: Disentangling Spots, Plage, and Network [pdf] pdf   doi   link   bibtex   11 downloads  
Detection Limits of Low-mass, Long-period Exoplanets Using Gaussian Processes Applied to HARPS-N Solar Radial Velocities. N. Langellier; T. W. Milbourne; D. F. Phillips; R. D. Haywood; S. H. Saar; A. Mortier; L. Malavolta; S. Thompson; A. Collier Cameron; X. Dumusque; H. M. Cegla; D. W. Latham; J. Maldonado; C. A. Watson; N. Buchschacher; M. Cecconi; D. Charbonneau; R. Cosentino; A. Ghedina; M. Gonzalez; C-H. Li; M. Lodi; M. López-Morales; G. Micela; E. Molinari; F. Pepe; E. Poretti; K. Rice; D. Sasselov; A. Sozzetti; S. Udry; and R. L. Walsworth. The Astronomical Journal, 161(6): 287. may 2021.
Detection Limits of Low-mass, Long-period Exoplanets Using Gaussian Processes Applied to HARPS-N Solar Radial Velocities [pdf] pdf   Detection Limits of Low-mass, Long-period Exoplanets Using Gaussian Processes Applied to HARPS-N Solar Radial Velocities [link] link   doi   link   bibtex   4 downloads  
Estimating Magnetic Filling Factors From Simultaneous Spectroscopy and Photometry: Disentangling Spots, Plage, and Network. T. W. Milbourne; D. F. Phillips; N. Langellier; A. Mortier; R. D. Haywood; S. H. Saar; H. M. Cegla; A. Collier Cameron; X. Dumusque; D. W. Latham; L. Malavolta; J. Maldonado; S. Thompson; A. Vanderburg; C. A. Watson; L. A. Buchhave; M. Cecconi; R. Cosentino; A. Ghedina; M. Gonzalez; M. Lodi; M. López-Morales; A. Sozzetti; and R. L. Walsworth. arXiv:2105.09113. may 2021.
Estimating Magnetic Filling Factors From Simultaneous Spectroscopy and Photometry: Disentangling Spots, Plage, and Network [link] link   Estimating Magnetic Filling Factors From Simultaneous Spectroscopy and Photometry: Disentangling Spots, Plage, and Network [pdf] pdf   link   bibtex   11 downloads  
  2020 (3)
Detection Limits of Low-mass, Long-period Exoplanets Using Gaussian Processes Applied to HARPS-N Solar RVs. N. Langellier; T. W. Milbourne; D. F. Phillips; R. D. Haywood; S. H. Saar; A. Mortier; L. Malavolta; S. Thompson; A. Collier Cameron; X. Dumusque; H. M. Cegla; D. W. Latham; J. Maldonado; C. A. Watson; M. Cecconi; D. Charbonneau; R. Cosentino; A. Ghedina; M. Gonzalez; C.-H. Li; M. Lodi; M. López-Morales; G. Micela; E. Molinari; F. Pepe; E. Poretti; K. Rice; D. Sasselov; A. Sozzetti; S. Udry; and R. L. Walsworth. arXiv:2008.05970 [astro-ph]. August 2020.
Detection Limits of Low-mass, Long-period Exoplanets Using Gaussian Processes Applied to HARPS-N Solar RVs [link] link   Detection Limits of Low-mass, Long-period Exoplanets Using Gaussian Processes Applied to HARPS-N Solar RVs [pdf] pdf   link   bibtex   1 download  
Magnetic Field Fingerprinting of Integrated-Circuit Activity with a Quantum Diamond Microscope. Matthew J. Turner; Nicholas Langellier; Rachel Bainbridge; Dan Walters; Srujan Meesala; Thomas M. Babinec; Pauli Kehayias; Amir Yacoby; Evelyn Hu; Marko Lon˘car; Ronald L. Walsworth; and Edlyn V. Levine. Physical Review Applied, 14(1): 014097. July 2020.
Magnetic Field Fingerprinting of Integrated-Circuit Activity with a Quantum Diamond Microscope [link] link   Magnetic Field Fingerprinting of Integrated-Circuit Activity with a Quantum Diamond Microscope [pdf] pdf   Magnetic Field Fingerprinting of Integrated-Circuit Activity with a Quantum Diamond Microscope [pdf] supplement   doi   link   bibtex   100 downloads  
Testing the Spectroscopic Extraction of Suppression of Convective Blueshift. M. Miklos; T. W. Milbourne; R. D. Haywood; D. F. Phillips; S. H. Saar; N. Meunier; H. M. Cegla; X. Dumusque; N. Langellier; J. Maldonado; L. Malavolta; A. Mortier; S. Thompson; C. A. Watson; M. Cecconi; R. Cosentino; A. Ghedina; C.H. Li; M. López-Morales; E. Molinari; Ennio Poretti; D. Sasselov; A. Sozzetti; and R. L. Walsworth. The Astrophysical Journal, 888(2): 117. January 2020.
Testing the Spectroscopic Extraction of Suppression of Convective Blueshift [link] link   Testing the Spectroscopic Extraction of Suppression of Convective Blueshift [pdf] pdf   doi   link   bibtex   1 download  
  2019 (4)
Principles and techniques of the quantum diamond microscope. Edlyn V. Levine; Matthew J. Turner; Pauli Kehayias; Connor A. Hart; Nicholas Langellier; Raisa Trubko; David R. Glenn; Roger R. Fu; and Ronald L. Walsworth. Nanophotonics, 8(11): 1945–1973. September 2019.
Principles and techniques of the quantum diamond microscope [link] link   Principles and techniques of the quantum diamond microscope [pdf] pdf   doi   link   bibtex   111 downloads  
Probing Dark Matter Using Precision Measurements of Stellar Accelerations. Aakash Ravi; Nicholas Langellier; David F. Phillips; Malte Buschmann; Benjamin R. Safdi; and Ronald L. Walsworth. Physical Review Letters, 123(9): 091101. August 2019.
Probing Dark Matter Using Precision Measurements of Stellar Accelerations [link] link   Probing Dark Matter Using Precision Measurements of Stellar Accelerations [pdf] pdf   Probing Dark Matter Using Precision Measurements of Stellar Accelerations [pdf] supplement   doi   link   bibtex   14 downloads  
Three years of Sun-as-a-star radial-velocity observations on the approach to solar minimum. A. Collier Cameron; A. Mortier; D. Phillips; X. Dumusque; R. D. Haywood; N. Langellier; C. A. Watson; H. M. Cegla; J. Costes; D. Charbonneau; A. Coffinet; D. W. Latham; M. López-Morales; L. Malavolta; J. Maldonado; G. Micela; T. Milbourne; E. Molinari; S. H. Saar; S. Thompson; N. Buchschacher; M. Cecconi; R. Cosentino; A. Ghedina; A. Glenday; M. Gonzalez; C.-H. Li; M. Lodi; C. Lovis; F. Pepe; E. Poretti; K. Rice; D. Sasselov; A. Sozzetti; A. Szentgyorgyi; S. Udry; and R. Walsworth. Monthly Notices of the Royal Astronomical Society, 487(1): 1082–1100. July 2019.
Three years of Sun-as-a-star radial-velocity observations on the approach to solar minimum [link] link   Three years of Sun-as-a-star radial-velocity observations on the approach to solar minimum [pdf] pdf   doi   link   bibtex   1 download  
HARPS-N Solar RVs Are Dominated by Large, Bright Magnetic Regions. T. W. Milbourne; R. D. Haywood; D. F. Phillips; S. H. Saar; H. M. Cegla; A. C. Cameron; J. Costes; X. Dumusque; N. Langellier; D. W. Latham; J. Maldonado; L. Malavolta; A. Mortier; M. L. Palumbo III; S. Thompson; C. A. Watson; F. Bouchy; N. Buchschacher; M. Cecconi; D. Charbonneau; R. Cosentino; A. Ghedina; A. G. Glenday; M. Gonzalez; C.-H. Li; M. Lodi; M. López-Morales; C. Lovis; M. Mayor; G. Micela; E. Molinari; F. Pepe; G. Piotto; K. Rice; D. Sasselov; D. Ségransan; A. Sozzetti; A. Szentgyorgyi; S. Udry; and R. L. Walsworth. The Astrophysical Journal, 874(1): 107. March 2019.
HARPS-N Solar RVs Are Dominated by Large, Bright Magnetic Regions [link] link   HARPS-N Solar RVs Are Dominated by Large, Bright Magnetic Regions [pdf] pdf   doi   link   bibtex   2 downloads  
  2016 (1)
Gravitational wave detection with optical lattice atomic clocks. S. Kolkowitz; I. Pikovski; N. Langellier; M.D. Lukin; R.L. Walsworth; and J. Ye. Physical Review D, 94(12): 124043. December 2016.
Gravitational wave detection with optical lattice atomic clocks [link] link   Gravitational wave detection with optical lattice atomic clocks [pdf] pdf   Gravitational wave detection with optical lattice atomic clocks [pdf] supplement   doi   link   bibtex   13 downloads  
  2015 (1)
Operation of a broadband visible-wavelength astro-comb with a high-resolution astrophysical spectrograph. Alexander G. Glenday; Chih-Hao Li; Nicholas Langellier; Guoqing Chang; Li-Jin Chen; Gabor Furesz; Alexander A. Zibrov; Franz Kärtner; David F. Phillips; Dimitar Sasselov; Andrew Szentgyorgyi; and Ronald L. Walsworth. Optica, 2(3): 250–254. March 2015.
Operation of a broadband visible-wavelength astro-comb with a high-resolution astrophysical spectrograph [link] link   Operation of a broadband visible-wavelength astro-comb with a high-resolution astrophysical spectrograph [pdf] pdf   Operation of a broadband visible-wavelength astro-comb with a high-resolution astrophysical spectrograph [pdf] supplement   doi   link   bibtex   3 downloads  
  2012 (1)
Conjugate Fabry-Perot cavity pair for improved astro-comb accuracy. Chih-Hao Li; Guoqing Chang; Alexander G. Glenday; Nicholas Langellier; Alexander Zibrov; David F. Phillips; Franz X. Kärtner; Andrew Szentgyorgyi; and Ronald L. Walsworth. Optics Letters, 37(15): 3090–3092. August 2012.
Conjugate Fabry-Perot cavity pair for improved astro-comb accuracy [link] link   Conjugate Fabry-Perot cavity pair for improved astro-comb accuracy [pdf] pdf   doi   link   bibtex